ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Calibration of Aluminum Thickness and Uniformity Measurements

Dr. Lynn Fuller, Kennedy Jensen

Webpage: http://people.rit.edu/lffeee

Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu Department webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

7-13-2014 AluminumCalibration.ppt

© July 13, 2014 Dr. Lynn Fuller

CONTENTS

Introduction Starting Wafers Aluminum Coated Wafers CDE 4-point Probe Thickness Uniformity and 3D Plot Lithography Etched wafer Tencore P2 Thickness Comparison Calibration CDE Recipe for Thickness

Sputter Shields

Rochester Institute of Technology

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

INTRODUCTION

This document contains information on measurement and calibration of sputtered aluminum thickness for the CVC601 tool. After sputtering aluminum the thickness is measured using the CDE Resistivity Mapper (4pt Probe). The thickness is found from the

known Resistivity of Aluminum divided by the measured sheet Resistance,

Rs= $(\pi/\ln 2)(V/I)$.

These measurements are Calibrated by comparing to thickness measured using the Tencore P2

Rochester Institute of Technology Microelectronic Engineering

CVC 601 Sputter Tool

© July 13, 2014 Dr. Lynn Fuller

OXIDE COATED STARTING WAFERS

Rochester Institute of Technology

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

ALUMINUM COATED WAFER

Sputter Recipe 2000 Watts 5 mTorr 40 sccm Argon 20 minutes

Wafer Orientation is with the wafer flat out during sputtering and flat to the back left on the CDE resistivity mapper and to the front on the Tencore P2.

Rochester Institute of Technology Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

CDE RESISTIVITY MAPPER MOVIE

Rochester Institute of Technology Microelectronic Engineering Movie

© July 13, 2014 Dr. Lynn Fuller

CDE RESISTIVITY MAPPER DATA

Rochester Institute of Technology

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

ASML 5500/200

NA = 0.48 to 0.60 variable σ = 0.35 to 0.85 variable With Variable Kohler, or Variable Annular illumination Resolution = K1 λ /NA = ~ 0.35 µm for NA=0.6, σ =0.85 Depth of Focus = k₂ λ /(NA)² = > 1.0 µm for NA = 0.6

i-Line Stepper $\lambda = 365$ nm 22 x 27 mm Field Size

© July 13, 2014 Dr. Lynn Fuller

ETCHED ALUMINUM PATTERN

TENCORE P2

Picture of Tencore P2

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

COMPARISON OF TENCORE P2 AND CDE 4PT PROBE

RECIPE – AluminumCVC601

Water		×
Round Diameter 150 Round O Notch Flat Size 57		
C Rectangular XSize 125 YSize 125		
SHEET Cond. This For E	auctor 650 Um 💌	PutoSemplitik F
Probe Configuration: Dual Probe Probe #1 ThOffset 0 Probe Configuration: Single Select		
Circular Area C Rectangula	ar Area C Diameter	C Template
# Sites 49 • XI -55	Y1 55 Ande 0	Fie Name
#Sites/Band2 8 - Xuz 55	V. [55	Linused Y
StraddleNotch/Flat	RStart -/32	
Follow Flat	#Y 6 REnd 677	
Edge Excl 10	69,749 dR 6 5032	
Fotes		
Dete	[Rabo]	-0.92
Mode	-1, 10 + 100	Spectrat
Temperature P/N type ? Manual TCR 0.3 % C 0 LCL 0 UCL 10 Compensations:		
DataReject 3 Sigma RsA/RsB Ratio Reject		Reprobe All Rejects
Not Used ConditionProbeBeforeRe ConditionProbeBeforeRe		ConditionProbeBeforeReprobe
Mert V 0.1		
Motor 4pMot.prm Motion	Coord 4pMtCrd.prm	Probe 4pProbe.prm
PostProcess 4p_PostP.prm Run	n Title Al Thickness	
Manual Load Only ZProbeDeeper (+ >compression): 0 Cancel Save Recipe Skip Notch/Flat Find <-3,1> (- >thicker sample): 0 Cancel Save Recipe		
	© July 13, 201.	A Dr. Lynn Fuller

Change the value for the aluminum resistivity to improve the matching of the data measured by 4pt probe and by Tencore P2.

CALCULATION FOR CALIBRATION FACTOR

Sheet Resistance Rs = $(\pi/\ln 2)(V/I)$ ohm Thickness,W = Resistivity (ohm-m) / Sheet Resistance (ohm)

The resistivity for pure aluminum is 2.7E-8 ohm-m, from most references. The resistivity of alloys of aluminum can vary from 2 to 6 E-8 ohm-m. The resistivity of thin films is different than bulk resistivity and is a function of the film thickness, grain structure, etc.

CDE gives an equation for film thickness in Å, where the values 337 and -0.92 are used to fit the data in their equation.

W (Å)=337 (V/I)($\pi/\ln 2$)^ -0.92

Our calibration was made by comparing 4pt probe with Tencor P2 measurements. Empirically finding 616 and -0.92 to give good results. See recipe on the previous page.

CDE RESISTIVITY MAPPER DATA AFTER CALIBRATION

SHIELDS

Why are these shields all different shape?

Aluminum-1%Si

Moly

Titanium

© July 13, 2014 Dr. Lynn Fuller

SHIELDS

Shields are used to block some of the deposition with the goal of improving the uniformity at the expense of lowering the deposition rate slightly. The plasma density is not uniform because of the magnets under the target. The target erosion indicates that the aluminum is sputtered from a octagon shaped ring area of the target. Most of the center of the target is not sputtered. The wafers rotate over the target. As the target erosion increases the sputter uniformity may change

Rochester Institute of Technology

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

SUMMARY

The shields appear to be too narrow near the center of the tool giving thinner coating on the inside edge of the wafer. This was verified using the 3D map from the 4pt probe.

Periodic shield shape and location adjustments may be required to keep the uniformity as desired.

Using the four point probe gives accurate film thickness and uniformity information.

Using Kapton tape and Tencore P2 can give misleading and incomplete results.

Rochester Institute of Technology Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller

REFERENCES

- Dr. Lynn Fuller's Webpage
 <u>http://microlab.berkeley.edu/text/SarahIp.pdf</u>
- 3. CDE users manual

Rochester Institute of Technology

Microelectronic Engineering

© July 13, 2014 Dr. Lynn Fuller