ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

RIT's Advanced CMOS Process λ =0.25 µm, L_{poly}= 0.5 µm, L_{eff} = 100nm

Dr. Lynn Fuller Samarth Parikh, Chandan Amareshbabu

webpage: <u>http://people.rit.edu/lffeee/</u> Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 email: <u>Lynn.Fuller@rit.edu</u> microE webpage: <u>http://www.microe.rit.edu</u>

Rochester Institute of Technology

Microelectronic Engineering

8-17-2014 AdvCmos2014.ppt

© August 17, 2014 Dr. Lynn Fuller

OUTLINE

Introduction Advanced CMOS Process Details

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

INTRODUCTION

RIT is supporting two different CMOS process technologies. The older p-well CMOS and SMFL-CMOS have been phased out. The SUB-CMOS process is used for standard 3 Volt Digital and Analog integrated circuits. This is the technology of choice for teaching circuit design and fabricating CMOS circuits at RIT. The ADV-CMOS process is intended to introduce our students to process technology that is close to industry state-of-the-art. This process is used to build test structures and develop new technologies at RIT.

RIT p-well CMOS **RIT SMFL-CMOS** RIT Sub_µ-CMOS **RIT Advanced-CMOS**

 $\lambda = 4 \ \mu m$ $\lambda = 1 \mu m$ $\lambda = 0.25 \ \mu m$

 $Lmin = 8 \ \mu m$ $Lmin = 2 \mu m$ $\lambda = 0.5 \ \mu m$ Lmin = 1.0 μm $Lmin = 0.5 \mu m$

Rochester Institute of Technology

Microelectronic Engineering

Internal Channel Length, Lint =distance between junctions, including under diffusion Effective Channel Length, Leff = distance between space charge layers, Vd = Vs = 0Channel Length, L, = distance between space charge layers, when Vd= what it is Extracted Channel Length Parameters = anything that makes the fit good (not real)

INTRODUCTION

Advanced Processes Used: Shallow Trench Etch with Endpoint Trench PECVD TEOS fill and CMP Silicide TiSi2, Recipes for Rapid Thermal Processor Dual Doped Gate, Ion Implant and Mask Details Anisotropic Poly Etch 100 Å Gate Oxide Recipe with N2O Nitride Spacer, New Anisotropic Nitride Etch Plasma Etch of Contacts and Vias Aluminum Metal, W Plugs Deposition, CMP of Oxide Canon and ASML Masks Canon and ASML Stepper Jobs MESA Process, Products, Instructions, Parameters

Rochester Institute of Technology

Microelectronic Engineering

PROCESS CALCULATIONS

Built in Voltage: $\Psi_{o} = KT/q \ln (Na Nd/ni^{2})$ Width of Space Charge Layer: Wsc= $[(2\epsilon/q)(\Psi_0 + V_R)(1/Na + 1/Nd)]^{1/2}$ $E_{o} = - [(2q/\epsilon)(\Psi_{o} + V_{R})(NaNd/(Na+Nd))]^{1/2}$ **Example:** $\Psi_0 = 0.026 \ln (1E17 \ 1E17 / 1.45E10^2) = 0.82$ Wsc @ $0V = [(2(11.7)(8.85E-14)/1.6E-19)(0.82)(1/1E17 + 1/1E17)]^{1/2}$ $= 0.15 \ \mu m$ and $0.07 \ \mu m$ on each side of the junction Wsc @ $3.3V = [(2(11.7)(8.85E-14)/1.6E-19)(0.82+3.3)(1/1E17)]^{1/2}$ $= 0.33 \ \mu m$ and $0.16 \ \mu m$ on each side of the junction $E_0 = -2.5 E5 V/cm$ Gate Source at 0 V Drain at 3.3V $\epsilon = \epsilon_0 \epsilon_r = 8.85 \text{E} \cdot 12 \ (11.7) \text{ F/m}$ Leff Leff = $0.5 - 0.07 - 0.16 = \sim 0.27 \ \mu m$ © August 17, 2014 Dr. Lynn Fuller Page 7

ASML 5500/200

NA = 0.48 to 0.60 variable σ = 0.35 to 0.85 variable With Variable Kohler, or Variable Annular illumination Resolution = K1 λ /NA = ~ 0.35 µm for NA=0.6, σ =0.85 Depth of Focus = k₂ λ /(NA)² = > 1.0 µm for NA = 0.6

i-Line Stepper $\lambda = 365$ nm 22 x 27 mm Field Size

© August 17, 2014 Dr. Lynn Fuller

MULTI- LAYER ALUMINUM, W PLUGS, CMP, DAMASCENE OF LOCAL W INERCONNECT

Multi-layer aluminum interconnect with tungsten plugs, CMP, and damascene of local tungsten interconnect.

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

JOHN GALT CMOS TESTCHIP

MOSIS TSMC 0.35 2POLY 4 METAL PROCESS

General Information

About MOSIS Products Processes Prices Support User Group Events Job Openings News

Work with MOSIS

<u>Overview</u> <u>Getting Started</u> <u>Design and Test</u>

Requests

<u>Run Status</u> <u>Project Status</u> <u>Test Data</u>

Docs and Forms Documents Forms/Agreements Web Forms

Quick Reference

New Users Experienced Users Purchasing Agents Design and Test Academic Institutions Export Program Submit A Project

Search MOSIS

Search

http://www.mosis.com/Technical/Designrules/scmos/scmos-main.html#tech-codes

MOSIS SCMOS Technology Codes and Layer Maps SCN4M and SCN4M SUBM

This is the layer map for the technology codes SCN4M and SCN4M_SUBM using the MOSIS Scalable CMOS layout rules (<u>SCMOS</u>), and only for SCN4M and SCN4M_SUBM. For designs that are laid out using other design rules (or <u>technology</u> <u>codes</u>), use the standard layer mapping conventions of that design rule set. For submissions in GDS format, the datatype is "0" (zero) unless specified in the map below.

SCN4M: Scalable CMOS N-well, 4 metal, 1 poly, silicided. Silicide block and thick oxide option available only on the TSMC process.

SCN4M_SUBM: Uses revised layout rules for better fit to sub-micron processes (see MOSIS Scalable CMOS (SCMOS) Design Rules, section 2.4).

Fabricated on <u>TSMC</u>, <u>AMIS</u>, and <u>Agilent/HP</u> 0.35 micron process runs. See "Notes" section of layer map for foundry-specific options.

Layer	GDS	CIF	CIF Synonym	Rule Section			Notes						
N WELL	42	CWN		1	<u>.</u>				•				
ACTIVE	43	CAA		2	2								
THICK ACTIVE	60	CTA		<u>24</u>	Optional	for TSMC; not	available for Agilent/HP r	or AMIS					
POLY	46	CPG		<u>3</u>	<u>1</u>								
SILICIDE BLOCK	29	CSB		<u>20</u>	Optional for Agilent/HP; not available for AMI								
N PLUS SELECT	45	CSN		4	Ł								
<u>P PLUS SELECT</u>	44	CSP		4	Ł								
CONTACT	25	ccc	CCG	<u>5, 6, 13</u>	<u>l</u>								
POLY CONTACT	47	ССР		5	Can be replaced by CONTACT								
ACTIVE CONTACT	48	CCA		6	Can be replaced by CONTACT								
METAL1	49	CM1	CMF	7	2								
VIA	50	CV1	CVA	<u>8</u>	<u>1</u>								
METAL2	51	CM2	CMS	<u>9</u>	<u>)</u>		+						
VIA2	61	CV2	CVS	<u>14</u>	Ŀ	TSMC	0.35 micron	0.2	5	SCN4M			
METAL3	62	смз	CMT	<u>15</u>	i		2P4M (4 Metal						
VIA3	30	сүз	CVT	<u>21</u>	<u>.</u>		Polycided, 3.3						
METAL4	31	CM4	CMQ	22	2		V/5 V)						
<u>GLASS</u>	52	COG		<u>10</u>	<u>l</u>								
PADS	26	ХР			Non-fab	layer used to l	nighlight pads						
Comments		сх			Commer	its							

© August 17, 2014 Dr. Lynn Fuller

MOSIS TSMC 0.35 2-POLY 4-METAL LAYERS

MASK LAYER NAME	MENTOR NAME	GDS #	COMMENT
N WELL	N_well.i	42	
ACTIVE	Active.i	43	
POLY	Poly.i	46	
N PLUS	N_plus_select.i	45	
P PLUS	P_plus_select.i	44	
CONTACT	Contact.i	25	Active_contact.i 48 poly_contact.i 47
METAL1	Metal1.i	49	
VIA	Via.i	50	
METAL2	Metal2.i	51	

Rochester Institute of Technology

Microelectronic Engineering

MORE LAYERS USED IN MASK MAKING

LAYER	NAME	GDS	COMMENT
	cell_outline.i	70	Not used
	alignment	81	Placed on first level mask
	nw_res	82	Placed on nwell level mask
	active_lettering	83	Placed on active mask
	channel_stop	84	Overlay/Resolution for Stop Mask
	pmos_vt	85	Overlay/Resolution for Vt Mask
	LDD	86	Overlay/Resolution for LDD Masks
	p plus	87	Overlay/Resolution for P+ Mask
	n plus	88	Overlay/Resolution for N+ Mask

Rochester Institute of Technology

Microelectronic Engineering

OTHER LAYERS

MASK ORDER FORM

Rochester Institute of Technology Semiconductor & Microsystems Fabrication Laboratory Mask Making Order Request

Customer Information						
Name						
Company						
Department						
Street Address						
City, State and Zip Code	,					
Phone Number	() -					
Project Code						
E-mail Address						
Order Date	July 23, 2007					
Order Due Date						

Mask Information

RIT Mask order form is found at the following link:

http://smfl.microe.rit.edu/forms/Order_Request.dot

	SEE PAGE 2 FOR INSTRUCTIONS	S ON CREATING YOUR GDS FILE!				
	Design Name	. gds				
	Number of Design Layers in Layout					
	Number of Mask Levels					
	Cell Layout Size	X: µm Y: µm				
	Alignment Key (Center of Die is Origin)	X: µm Y: µm				
	Fracture Resolution	🗖 0.5µm 🗖 µm				
	Scale Factor	5X				
	Orientation	Mirror135				
	Rotation	None 🛛				
	Plate Size	5″×5″×0.090″ – Email for other sizes				
Rochester Institute of T	Number of Levels on Plate	1				
Microelectronic Engin	Array	None				
		Array with rows and columns				
	© August 17, 2014 Dr. Lynn Fuller	Page 16				

MASK ORDER CONTINUED

			<u> </u>	×						
1	\langle	STI	> 1	Active.i	43	(43 OR 81	OR 83 or 82	2) plus Tilir	Clear Field	
				alignment	81					
				active_lettering	83					
				nw_res	82					
2	\langle	NWELL	$\sum 2$	N_well.i	42	INVERT			Dark Field	
3	\langle	PWELL	> 3	N_well.i	42	none			Clear Field	
5	\langle	NVT	> 4	N_plus_select.i	45	(45 OR 85)	INVERT		Dark Field	
				pmos_vt	85					
		PVT	5	P_plus select.i	44	(44 OR 85)	INVERT		Dark Field	
				pmos_vt	85					
1		POLY	6	Poly.i	46	none			Clear Field	
4	1	PLDD	7	P_plus select.i	44	(44 OR 86)	INVERT		Dark Field	
				LDD	86					
	$\left \right $	NLDD	> 8	N_plus_select.i	45	(45 OR 86)	INVERT		Dark Field	
				LDD	86					
	\leq	N+DS	> 9	P_plus_select.i	44	(45 OR 88)	1		Clear Field	
				n plus	88	,				
		P+DS	10	N plus select.i	45	(45 OR 87)	1		Clear Field	
				p plus	87	,				
		CC	11	contact	25	(25 OR 48	OR 47) INV	ERT	Dark Field	
				Active contact.i	48					
				Poly contact.i	47					
	旪	METAL1	12	metal1.i	49	none			Clear Field	
╱╞╉┼┼┼┼	╪╪╪	VIA	13	Via.i	50	INVERT			Dark Field	
		METAL2	14	metal2.i	51	none			Clear Field	
		7								7

© August 17, 2014 Dr. Lynn Fuller

DATA PREP USING CATS

1µm

ADV-CMOS 150 PROCESS

ADV-CMOS Versions 150, Two level Metal

1. OX05--- pad oxide 500 Å, Tube 4 21. PH03 – level 5 – PMOS V_T adjust 41. CV02 – nitride spacer dep 61. ME01 – Aluminum 42. ET39 - sidewall spacer etch 62. PH03 - level 12-metal 2. CV02- 1500 Å Si₃N₄ Deposition 22. IM01 – 1.75E12, B¹¹, 60 KeV 3. PH03 – level 1- STI 23. ET07 – ash 43. PH03 – level 9 - N+D/S 63. ET15 – plasma Al Etch 4. ET29 - etch Nitride 24. ET06 – etch 500 Å pad oxide 44. IM01 – 4E15, P³¹, 60 KeV 64. ET07 – ash 25. CL01 – pre-gate oxide RCA clean 45. ET07 – ash 5. ET07 – ash 65. CV03 – TEOS 26. ET06 - etch native oxide 6. CL01 – RCA clean 46. PH03 – level 10 - P+ D/S 66. PH03 – Via 27. OX06 - 100 Å gate oxide, Tube 4 47. IM01 – 4E15, B¹¹, 50 KeV 7. OX04 – First Oxide Tube 1 67. ET26 Via Etch 28. CV01 – poly deposition, 4000 Å 48. ET07 – ash 8. ET06 – Etch Oxide 68. ME01 Al Deposition 29. PH03 – level 6 – poly gate 49. CL01 – RCA clean 9. $OX04 - 2^{nd}$ Oxide Tube 1 69. PH03 – Metal 2 50. OX08 - DS Anneal, Tube2,3 70. ET07 - Ash 30. ET08 – poly gate plasma etch 10. PH03 – level 2 N-Well 11. IM01 – 3E13, P³¹, 170 KeV 31. ET07 – ash 51. ET06 – Silicide pad ox etch 72. SI01 – sinter 52. ME03 – HF dip & Ti Sputter 73. SEM1 32. CL01 – RCA clean 12. ET07 – ash 33. OX05 – poly re-ox, 500 Å, Tube 4 53. RT01 – RTP 1 min, 650C 13. PH03 – level 3 – p-well 74. TE01 34. PH03 - level 7 - p-LDD 14. IM01 – 8E13, B¹¹, 80 KeV 54. ET11 – Unreacted Ti Etch 75. TE02 35. IM01 – 4E13, B¹¹, 50 KeV 15. ET07 – ash 55. RT02 – RTP 1 min,800C 76. TE03 16. ET19 – Hot Phos 36. ET07 – ash 56. CV03 – TEOS, P-5000 77. TE04 37. PH03 – level 8 – n-LDD 57. PH03 – level 11 - CC 17. OX06 – Well Drive, Tube 1 18. PH03 – NMOS Vt 38. IM01 – 4E13, P³¹, 60 KeV 58. ET06 – CC etch 39. ET07 – ash 59. ET07 – ash 19. IM01 – 3E12, B¹¹, 30KeV 40. CL01 – RCA clean 20. ET07 - ash 60. CL01 – RCA clean $L = 0.5 \ \mu m$

Rochester Institute of Technology

Microelectronic Engineering

 $L = 0.5 \ \mu m \\ V_{DD} = 3.0 \ V \\ V_{TN} = 0.75 \ V \\ V_{TP} = -0.75 \ V$

(Revision 11-24-11)

© August 17, 2014 Dr. Lynn Fuller

STARTING WAFER

P-type Substrate 10 ohm-cm

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

RCA CLEAN AND PAD OXIDE GROWTH

Pad Oxide, 500A Bruce Furnace 04 Recipe 250 ~45 min at 1000 °C

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

DEPOSIT SILICON NITRIDE

Recipe Nitride 810 Nitride, 1500A LPCVD, 810C, ~30min

Substrate 10 ohm-cm

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

SSI COAT AND DEVELOP TRACK FOR 6" WAFERS

SSI coat and develop track

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

ASML 5500/200

NA = 0.48 to 0.60 variable σ = 0.35 to 0.85 variable With Variable Kohler, or Variable Annular illumination Resolution = K1 λ /NA = ~ 0.35 µm for NA=0.6, σ =0.85 Depth of Focus = k₂ λ /(NA)² = > 1.0 µm for NA = 0.6

i-Line Stepper $\lambda = 365$ nm 22 x 27 mm Field Size

© August 17, 2014 Dr. Lynn Fuller

PLASMA ETCH TOOL

Lam 490 Etch Tool Plasma Etch Nitride (~ 1500 Å/min) SF6 flow = 200 sccm Pressure= 260 mTorr Power = 125 watts Time=thickness/rate

Use end point detection capability This system has filters at 520 nm (Channel 12) and 470 nm (Channel 13). In any case the color of the plasma goes from pink/blue to white/blue once the nitride is removed.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

LAM 490 END POINT

SELECTING LAM 490 END POINT PARAMETERS

EPD Total Film Etch (1483A Nitride, 460A Pad oxide)

© August 17, 2014 Dr. Lynn Fuller

FINALIZE STI ETCH RECIPE

- Process: Step 1 260mTorr; 0 watts 200sccm SF6, Max Time = 2 min Time Only
- Process: Step 2 260mTorr; 125 watts, 200sccm SF6, Max Time = 1min 40sec Endpoint and Time Sampling A (ch12 @ 520nm) Active during step 02 Delay 50sec before normalizing Normalize for 10sec Trigger at 85%

Process: Step 3 – 260mTorr; 125 watts, 200sccm SF6, Max Time = 50sec Endpoint and Time Sampling A (ch12 @ 520nm) Active during step 03 Delay 30sec before normalizing Normalize for 10sec Trigger at 115%

Process: Step 4 – 260mTorr; 125W, 200sccm SF6, Time Only, Max Time = 50 sec

Rochester Institute of Technology

Microelectronic Engineering

MEGASONIC RCA CLEAN, SRD & ASHER

© August 17, 2014 Dr. Lynn Fuller

RECESSED OXIDE GROWTH PROCESS FLOW

§ Grow 500A Pad Oxide (thermal)
§ Deposit 1500A Si3N4 by LPCVD

§ Level 1 Lithography to protect Active areas with photoresist

§ Etch Nitride (Plasma)

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

Page 36

Joe Corea 2011

Final oxide growth will give correct depth and thickness to achieve a phase shift, meet the previous pad oxide, and satisfy isolation criteria.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

Joe Corea 2011

© August 17, 2014 Dr. Lynn Fuller

HOT PHOSPHORIC ACID ETCH BENCH

- Include D1-D3
- Warm up Hot Phos pot to 175°
- Use Teflon boat to place wafers in acid bath
 - Etch rate of ~80 Å/min
- Rinse for 5 minutes in Cascade Rinse
- SRD wafers

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

BRUCE FURNACE RECIPE 11 ADV-CMOS WELL DRIVE

At the end of a run the furnace returns to Interval 0 which is set for boat out, 25 °C and no gas flow. The furnace waits in that state until someone aborts the current recipe or loads a new recipe.

CALCULATION OF NMOS AND PMOS VT ADJUST

Calculate using:

- 1. Hand Calculations
- 2. Silvaco Supreme (Athena)

Rochester Institute of Technology Microelectronic Engineering

Michael Latham, May 2005

© August 17, 2014 Dr. Lynn Fuller

NMOS CALCULATION

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

MOSFETVT.XLS 12/28/1995 FILE3B

CALCULATION OF MOSFET THRESHOLD VOLTAGE LYNN FULLER

To use this spreadsheet change the values in the white boxes. The rest of the sheet is protected and should not be changed unless you are sure of the consequences. The calculated results are shown in the purple boxes.

PMOS CALCULATION

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MOSFETVT.XLS 12/28/1995 FILE3B

CALCULATION OF MOSFET THRESHOLD VOLTAGE LYNN FULLER

To use this spreadsheet change the values in the white boxes. The rest of the sheet is protected and should not be changed unless you are sure of the consequences. The calculated results are shown in the purple boxes.

NMOS SIMULATIONS

© August 17, 2014 Dr. Lynn Fuller

NMOS Desired 0.75, with No Adjust 0.61 From SUPREM 3.0E12 @30 KeV Boron B11 From Hand Calculations 2.15E12

PMOS Desired -0.75, with No Adjust -0.31 From SUPREM 3.5E12 @ 60KeV Phosphorous P31 From Hand Calculations 1.8E12

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

RCA CLEAN AND GROW GATE OXIDE

Just Prior to Gate Oxide Growth Etch wafers in 50:1 HF, 1 min. Grow Oxide, 100Å, Dry O_2 Bruce Furnace04 Recipe 213

INCORPORATING NITROGEN IN THIN GATE OXIDES

In todays deep sub-micron transistors the pMOSFET normally has p+Poly for the gate material. The gate oxide is 100Å or less. The p+ dopant is normally Boron and Boron diffuses quickly (compared to Phosphorous) through oxides. Since the gate oxides are thin this could allow Boron to diffuse through the gate oxide and dope the channel causing the transistors to not function correctly. If some nitrogen is incorporated in the gate oxide the diffusion of Boron is much lower. This project involved developing a gate oxide recipe that will result in nitrogen incorporation in the gate oxide. The recipe included 30 min anneal in N2, 30 min oxynitride growth in N2O and 30 min oxide growth in O2, all at 900 °C. The gate oxides were evaluated at RIT using the ellipsometer (looking for index of refraction in between 1.45 (oxide) and 2.00 (nitride) and thickness near 100Å. The same wafers were also sent to Kodak for XPS analysis to give information on nitrogen content in the oxide.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

At the end of a run the furnace returns to Interval 0 which is set for boat out, 25 °C and no gas flow. The furnace waits in that state until someone aborts the current recipe or loads a new recipe.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

XPS Compositional Depth Profiles of SiO_XN_Y

LOCATION FOR MEASUREMENT OF GATE OXIDE

Measure gate oxide thickness (~100A) in any white active area

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

MEASURE GATE OXIDE ON SCA-2500

Login: FACTORY **Password: OPER** <F1> Operate **<F1> Test** Center the wafer on the stage Select (use arrow keys on the numeric pad (far right on the keyboard) space bar, page up, etc) **PROGRAM = FAC-P or FAC-N** LOT ID = HAWAIIWAFER NO. = C1 TOX = 250 (from nanospec) <F12> start test and wait for measurement <**Print Screen> print results** <F8> exit and log off <ESC> can be used anytime, but wait for current test to be completed

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

SCA MEASUREMENT OF GATE OXIDE

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

DRYTEK QUAD RIE TOOL

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

2 OF 4 CHAMBERS IN THE DRYTEK QUAD RIE TOOL

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

PLASMA ETCHING IN THE DRYTEK QUAD

ANISOTROPIC POLY GATE ETCH RECIPE

Anisotropic Poly Gate Etch Recipe

SF6 30 sccm, CHF3 30 sccm, O2 5 sccm, RF Power 160 w, Pressure 40 mTorr, 1900 A/min (Anisotropic), Resist Etch Rate 300 A/min, Oxide Etch Rate 200 A/min

Recipe Name:	FACPOLY	Step 2
Chamber	2	
Power	160 watts	
Pressure	40 mTorr	
Gas	SF6	
Flow	30 sccm	
Gas	CHF3	
Flow	30 sccm	Endnaint Cas Video
Gas	O2	Endpoint See video
Flow	5 sccm	http://people.rit.edu/lffeee/videos.htm
Poly Etch Rate	1150 Å/min	
Photoresist Etch Rate:	300 Ă/min	
Oxide Etch Rate:	200 Ă/min	

NITRIDE SIDE WALL SPACERS

Rochester Institute of Technology Microelectronic Engineering Nitride as a side wall spacer in deep sub micron transistor fabrication has some advantages over oxide side wall spacers. Nitride LPCVD is a more uniform and more conformal film than LTO. Nitride offers the possibility of end-point detection and higher selectivity during the plasma etch, while an oxide spacer does not.

	-
250 Watts	
40 mTorr	
30 sccm	
30 sccm	te
1250 A/min	
~ 4% *	
~ 950 A/min *	ad
~ 10% *	
1.3:1	
	250 Watts 40 mTorr 30 sccm 30 sccm 1250 A/min ~ 4% * ~ 950 A/min * ~ 10% * 1.3:1

© August 17, 2014 Dr. Lynn Fuller

NITRIDE SIDE WALL SPACERS

Poly thickness = 2300 AOxide thickness = 1000 ASpacer Height = 2300 ASpacer Width = 0.3 um

Special thanks to Dr. Sean Rommel for help in using the new LEO SEM

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

SIDE WALL SPACER ETCH IN DRYTEK QUAD

Anisotropic Nitride Etch Drytek Quad Recipe FACSPCR 30 sccm SF6 30 sccm CHF3 Power = 200 watts Pressure = 50 mTorr Etch Rate = 125 nm/min

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

BRUCE FURNACE RECIPE 284 – Adv-CMOS ANNEAL

At the end of a run the furnace returns to Interval 0 which is set for boat out, 25 °C and no gas flow. The furnace waits in that state until someone aborts the current recipe or loads a new recipe.

DS Implant Anneal, Oxide Growth

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

TiSi SALACIDE PROCESS

Forming a metal silicide helps reduce the resistance of the polysilicon interconnects and reduces the sheet resistance of the drain/source areas of the transistor. In deep sub-micron CMOS the nMOSFET transistor has n + poly and the pMOSFET has p + poly. Normally the poly is doped by ion implantation at the same time the drain and sources is implanted. In this case it is essential to form a silicide to reduce the sheet resistance of the poly and to connect n+ and p+ poly where ever they meet. SALICIDE is an acronym for self-aligned silicide and can be achieved with the following process. Ti (or some other metal) is sputtered on the wafer. It is heated in vacuum or N2 atmosphere to form TiSi where ever the Ti metal is in contact with silicon but not where it is in contact with silicon dioxide. The wafer is etched in sulfuric acid and hydrogen peroxide mixture which removes the metal from the oxide regions leaving TiSi self aligned on the silicon areas. Further heat treating at a higher temperature can convert TiSi to TiSi2 which is lower sheet resistance.

TiSi SALACIDE PROCESS

Sputtering of Titanium:

Dip in 50:1 HF, Spin Rinse Dry Just prior to metal deposition.

Ti Thickness = 1000Å

4" Target, 350 watts, 5 mTorr, 5 min pre-sputter, 10 min sputter, Rate = 100Å/min

8" Target, 750 watts, 5 mTorr, 5 min pre-sputter, 6 min sputter, Rate = \sim 176 Å/min

Rochester Institute of Technology Microelectronic Engineering Heater time, 20 min., 300 C Base Pressure <5E-6 Torr

© August 17, 2014 Dr. Lynn Fuller

TiSi SALACIDE PROCESS

Etching of Ti Metal:

Heat the Sulfuric Acid:Hydrogen Peroxide (1:2) mixture on a hotplate at 90°C (set plate temperature to 150°C)

Etch for 1 min 30 sec. This should remove the Ti that is on top of the silicon dioxide but not remove TiSi that was formed on the polysilicon and D/S regions. It also removes unreacted Ti metal over the TiSi on the poly and D/S regions.

Courtesy of SMFL

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

PECVD OXIDE FROM TEOS

TEOS Program: (Chamber A) Step 1 Setup Time = 15 sec Pressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 0 watts TEOS Flow = 400 sccO2 Flow = 285 scc Step 2 – Deposition Dep Time = 55 sec (5000 Å) Pressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 205 watts TEOS Flow = 400 sccO2 Flow = 285 scc Step 3 – Clean Time = 10 secPressure = Fully Open Susceptor Temperature= 390 C Susceptor Spacing= 999 mils RF Power = 50 watts TEOS Flow = 0 sccO2 Flow = 285 scc

© August 17, 2014 Dr. Lynn Fuller

DRYTEK QUAD ETCH RECIPE FOR CC AND VIA

Recipe Name:		FACC	UT	
Chamber		3		
Power		200W		
Pressure		100 m ⁻	Forr	
Gas 1	CHF3	50 sccm		
Gas 2	CF4	10 sccm		
Gas 3	Ar	100 sccm		
Gas 4	O2	0 sccm	l	
	could be c	hanged	to N2)	
TEOS Etch Rate	e	494	Å/min	
Annealed TEOS		450	Å/min	
Photoresist Etch Rate:		117	Å/min	
Thermal Oxide	Etch Rate:	441	Å/min	

Silicon Etch Rate TiSi2 Etch Rate

82 Å/min 1 Å/min

Rochester Institute of Technology Microelectronic Engineering US Patent 5935877 - Etch process for forming contacts over titanium silicide

© August 17, 2014 Dr. Lynn Fuller
FACCCUT RECIPE

© August 17, 2014 Dr. Lynn Fuller

CONTACT CUT ETCH RECIPE

Theory: The CHF3 and CF4 provide the F radicals that do the etching of the silicon dioxide, SiO2. The high voltage RF power creates a plasma and the gasses in the chamber are broken into radicals and ions. The F radical combines with Si to make SiF4 which is volatile and is removed by pumping. The O2 in the oxide is released and also removed by pumping. The C and H can be removed as CO, CO2, H2 or other volatile combinations. The C and H can also form hydrocarbon polymers that can coat the chamber and wafer surfaces. The Ar can be ionized in the plasma and at low pressures can be accelerated toward the wafer surface without many collisions giving some vertical ion bombardment on the horizontal surfaces. If everything is correct (wafer temperature, pressure, amounts of polymer formed, energy of Ar bombardment, etc.) the SiO2 should be etched, polymer should be formed on the horizontal and vertical surfaces but the Ar bombardment on the horizontal surfaces should remove the polymer there. The O2 (O radicals) released also help remove polymer. Once the SiO2 is etched and the underlying Si is reached there is less O2 around and the removal of polymer on the horizontal surfaces is not adequate thus the removal rate of the Si is reduced. The etch rate of SiO2 should be 4 or 5 times the etch rate of the underlying Si. The chamber should be cleaned in an O2 plasma after each wafer is etched.

Rochester Institute of Technology Microelectronic Engineering US Patent 5935877 - Etch process for forming contacts over Titanium Silicide

© August 17, 2014 Dr. Lynn Fuller

RCA CLEAN

© August 17, 2014 Dr. Lynn Fuller

LAM4600 ANISOTROPIC ALUMINUM ETCH

Step	1	2	3	4	5
Pressure	100	100	100	100	0
RF Top (W)	0	0	0	0	0
RF Bottom	0	250	125	125	0
Gap (cm)	3	3	3	3	5.3
O2 111	0	0	0	0	0
N2 222	13	13	20	25	25
BCI 333	50	50	25	25	0
CI2 444	10	10	30	23	0
Ar 555	0	0	0	0	0
CFORM666	8	8	8	8	8
Complete	Stabl	Time	Time	Oetch	Time
Time (s)	15	8	230	10%	15

Channel	В
Delay	130
Normalize	10 s
Norm Val	5670
Trigger	105%
Slope	+

Fuller, May 2010

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

PECVD OXIDE FROM TEOS

TEOS Program: (Chamber A) Step 1 Setup Time = 15 sec Pressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 0 watts TEOS Flow = 400 sccO2 Flow = 285 scc Step 2 – Deposition Dep Time = 55 sec (5000 Å) Pressure = 9 TorrSusceptor Temperature= 390 C Susceptor Spacing= 220 mils RF Power = 205 watts TEOS Flow = 400 sccO2 Flow = 285 scc Step 3 – Clean Time = 10 secPressure = Fully Open Susceptor Temperature= 390 C Susceptor Spacing= 999 mils RF Power = 50 watts TEOS Flow = 0 sccO2 Flow = 285 scc

© August 17, 2014 Dr. Lynn Fuller

TAKE SEM PICTURES OF RING OSCILLATOR

© August 17, 2014 Dr. Lynn Fuller

PE4400

© August 17, 2014 Dr. Lynn Fuller

SUMMARY - FOR SPUTTERING IN PE4400

- 1. Smoother films can be deposited at lower powers.
- 2. Thinner films are smoother.
- 3. To quantify the roughness/smoothness the Veeco Wyco Optical Surface Profilometer is useful.
- 4. The deposition rate is lower at lower powers.
- 5. Deposition times become many hours for low power and film thickness approaching 1 micron.
- 6. Moving the wafers closer to the target increases sputter rate and surface roughness. (The height is as close as possible now "C")
- 7. Rough films give problems for lithography and etching.
- 8. Surface roughness needs to be less than 10nm RMS for successful lithography and plasma etching.
- 9. Best conditions observed so far are, 300 watts, 5 mT, 40 sccm, to give a deposition rate of 37Å/min and surface roughness of ~11nm RMS for a film thickness of ~7500 Å. after 180 min sputter time.
 10. Non uniformity is 22%. Wafers are thinner toward the flat.

VEECO WYCO NT1100 OPTICAL PROFILOMETER

Used to measure RMS surface roughness

© August 17, 2014 Dr. Lynn Fuller

ALUMINUM ETCH USING LAM4600

© August 17, 2014 Dr. Lynn Fuller

LAM4600 ANISOTROPIC ALUMINUM ETCH

Step	1	2	3	4	5
Pressure	100	100	100	100	0
RF Top (W)	0	0	0	0	0
RF Bottom	0	250	125	125	0
Gap (cm)	3	3	3	3	5.3
O2 111	0	0	0	0	0
N2 222	13	13	20	25	25
BCI 333	50	50	25	25	0
CI2 444	10	10	30	23	0
Ar 555	0	0	0	0	0
CFORM666	8	8	8	8	8
Complete	Stabl	Time	Time	Oetch	Time
Time (s)	15	8	230	10%	15

В	
130	
10 s	
5670	
105%	
+	
	В 130 10 s 5670 105% +

Fuller, May 2010

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

MESA WIPTRACKING SYSTEM

The process is long and complicated and will take many months to complete each lot. A computerized record keeping system is required to provide instructions and collect data. MESA (Manufacturing Execution System Application) from Camstar, Inc. runs on our AS/400 computer.

Rochester Institute of Technology Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

SUMMARY

The process described can be used down to ~0.5 μ m gate length.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

2. The Science and Engineering of Microelectronic Fabrication, Stephen A. Campbell, Oxford University Press, 1996.

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller

HOMEWORK – RIT ADVCMOS2014

- 1. Why do we want the surface concentration under the shallow trench in the p-well to be above some given value?
- 2. Why are the well implant energies greater than 150 KeV?
- 3. When checking material thickness for the ability to block D/S implant, which implant type and which material is the most critical.
- 4. Why is a nitride spacer (instead of oxide) used.
- 5. What are the two main purposes of the silicide in this process?
- 6. Why is the gate doped N-type on the NMOS and P-type on the PMOS devices?
- 7. What is the poly sheet resistance?
- 8. What is the purpose of the N2O in the gate oxide growth recipe?

Rochester Institute of Technology

Microelectronic Engineering

© August 17, 2014 Dr. Lynn Fuller