ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

# **MEMS** Accelerometer Laboratory

# Dr. Lynn Fuller Dr. Ivan Puchades

Webpage: http://people.rit.edu/lffeee Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email: Lynn.Fuller@rit.edu Department webpage: http://www.microe.rit.edu

Rochester Institute of Technology

Microelectronic Engineering

3-26-2014 Accelerometer\_lab.ppt

© March 24, 2014 Dr. Lynn Fuller

# **OUTLINE**

Introduction **Cantilever Based Accelerometers** Analog Devices Inc., Accelerometers Analog Output Pulse Width Output Fabrication of RIT Accelerometers **RIT** Accelerometers **Test Fixture Example Calculations** Measured Results for ADXL203 Measured Results for RIT Devices Laboratory Assignment References

Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller



# **INTRODUCTION**

Acceleration (a) is the term given to the condition where and object experiences a change in velocity (v). Objects of mass (m) experience a force (F) equal to m times a. (F = ma)Earths gravity exerts an acceleration on objects creating a force. The acceleration due to gravity (g) has been found to be  $9.8 \text{m/s}^2$ . Acceleration, velocity and position (x) of objects are related by the following equation:

$$a = dv/dt = d^2x/dt^2$$

Rochester Institute of Technology Microelectronic Engineering Acceleration

| Earths Gravity                  | 1g         |
|---------------------------------|------------|
| Standing on the moon            | 0.16g      |
| Passenger Car in a Turn         | 2g         |
| Indy Car in a Turn              | <b>3</b> g |
| Bobsled in a Turn               | 5g         |
| Human                           | 7g         |
| Unconsciousness                 |            |
| Human Death                     | 50g        |
| Car Crash Survival              | 100g       |
| Mechanical Watch                | 5,000g     |
| <b>Electronics in Artillery</b> | 15,000g    |
| Haldron Collider                | 1.9E8g     |

© March 24, 2014 Dr. Lynn Fuller

# **INTRODUCTION**

An accelerometer is a sensor that can be used to measure acceleration. These sensors are used in systems for car air bag deployment, tilt sensing, and motion control. Most accelerometers are sensors that measure the force on a known mass (proof mass). The proof mass is supported by a spring, of spring constant (k), that will create a force equal and opposite to the force due to acceleration. The position is measured in response to changes in acceleration. There is also a friction or damping force.



# **INTRODUCTION**

One type of accelerometer is based on a cantilever beam (spring) with a mass (m) at the free end and integrated resistors (R) positioned to measure strain as the cantilever bends in response to acceleration.



**EQUATIONS FOR CANTILEVER BEAM** 

The maximum deflection is at the free end of the cantilever  $Ymax = F L^{3/3EI}$ 

where E = Youngs Modulus and  $I = bh^3/12$ , moment of inertia

The maximum stress  $(\sigma_{x=0})$  is at the top surface of the cantilever beam at the anchor where x=0

 $\sigma_{x=0} = F Lh/2I$ 

The resonant frequency  $(f_0)$  of the cantilever beam is

 $f_0 = 1/2\pi \{3EI / (L^3(m+0.236m_B))\}^{0.5}$ 

where  $m_B$  is the beam mass and m is end mass and E is Young's Modulus for beam material

> <u>Mechanics of Materials</u>, by Ferdinand P. Beer, E. Russell Johnston, Jr., McGraw-Hill Book Co.1981

© March 24, 2014 Dr. Lynn Fuller

FINITE ELEMENT ANALYSIS (FEA) OF CANTILEVER



# **SolidWorks**

Length =  $1500 \ \mu m$ Width =  $600 \ \mu m$ Thickness =  $20 \ \mu m$ Window ~  $300 \ x \ 300 \ \mu m$ 



Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# **RIT ACCELEROMETERS**



© March 24, 2014 Dr. Lynn Fuller

# **ADI ACCELEROMETERS**



© March 24, 2014 Dr. Lynn Fuller

### ANALOG DEVICES INC. (ADI) ACCELEROMETERS

15 years ago, Analog Devices revolutionized automotive airbag systems with its unique *i*MEMS® (integrated Micro Electro Mechanical System) technology. *i*MEMS accelerometers were the first products in an array of MEMS inertial sensor solutions to use innovative design techniques to integrate small, robust sensors with advanced signal conditioning circuitry on a single chip. Today, ADI offers the industry's broadest accelerometer portfolio, with products addressing a range of user needs including high performance, low power consumption, integrated functionality, and small size.





Rochester Institute of Technology Microelectronic Engineering

ADXL203 Dual Axis Analog Output

© March 24, 2014 Dr. Lynn Fuller

### ANALOG DEVICES INC. (ADI) ACCELEROMETERS

### ADXL278



# **Evaluation Board**



### http://www.analog.com



**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller



### ADXL203 ANALOG OUTPUT ACCELEROMETER

The ADXL103/ADXL203 are high precision, low power, complete single- and dual-axis accelerometers with signal conditioned voltage outputs, all on a single, monolithic IC. The ADXL103/ADXL203 measure...<u>More</u>

New! Tighter specifications on sensitivity, cross-axis sensitivity, and non-linearity.





# ADXL330 THREE AXIS ANALOG OUTPUT





🖨 <u>Print this Page</u> | 🛛 g

Close this Window

### ADXL330 Small, Low Power, 3-Axis ±3g iMEMS® Accelerometer

### **Product Description**

The ADXL330 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned voltage outputs, all on a single monolithic IC. The product measures acceleration with a minimum full-scale range of ±3 g. It can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion, shock, or vibration.

The user selects the bandwidth of the accelerometer using the  $C_X$ ,  $C_Y$ , and  $C_Z$  capacitors at the  $X_{OUT}$ ,  $Y_{OUT}$ , and  $Z_{OUT}$  pins. Bandwidths can be selected to suit the application, with a range of 0.5 Hz to 1600 Hz for X and Y axes, and a range of 0.5 Hz to 550 Hz for the Z axis.

The ADXL330 is available in a small, low profile, 4 mm × 4 mm × 1.45 mm, 16-lead, plastic lead frame chip scale package (LFCSP\_LQ).

Price ~ \$5.50 ea



Applications:

Cost-sensitive, low-power, motion- and tilt-sensing applications Mobile devices Gaming system Disk drive protection

© March 24, 2014 Dr. Lynn Fuller

ADXL213 PULSE WIDTH OUTPUT ACCELEROMETER



© March 24, 2014 Dr. Lynn Fuller

Page 15

04742-0-016

# TILT SENSING WITH ADXL213



### **PULSE WIDTH ACCELEROMETER MOVIE**





Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller



# MASKS





Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

### TOP HOLE BULK MEMS PROCESS FLOW

- 1. Obtain qty 10, 4" n-type wafers
- 2. CMP back side
- 3. CMP Clean
- 4. RCA Clean
- 5. Grow masking oxide 5000 Å, Recipe 350
- 6. Photo 1: P++ diffusion
- 7. Etch Oxide, 12 min. Rinse, SRD
- 8. Strip Resist
- 9. Spin-on Glass, Borofilm 100, include dummy
- 10. Dopant Diffusion Recipe 110
- 11. Etch SOG and Masking Oxide, 20min BOE
- 12. Four Point Probe Dummy Wafer
- 13. RCA Clean
- 14. Grow 500 Å pad oxide, Recipe 250
- 15. Deposit 1500 Å Nitride
- 16. Photo 2: for backside diaphragm
- 17. Spin coat Resist on front side of wafer
- 18. Etch oxynitride, 1 min. dip in BOE, Rinse, SRD 39. Photo 4, Contact Cut
- 19. Plasma Etch Nitride on back of wafer, Lam-490 40. Etch in BOE, Rinse, SRD
- 20. Wet etch of pad oxide, Rinse, SRD
- 21. Strip Resist both sides



**Rochester Institute of Technology** 

**Microelectronic Engineering** 

- 22. Etch Diaphragm in KOH, ~8 hours
- 23. Decontamination Clean
- 24. RCA Clean
- 25. Hot Phosphoric Acid Etch of Nitride
- 26. BOE etch of pad oxide
- 27. Grow 5000Å oxide
- 28. Deposit 6000 Å poly LPCVD
- 29. Spin on Glass, N-250
- 30. Poly Diffusion, Recipe 120
- 31. Etch SOG
- 32.4 pt Probe
- 33. Photo 3, Poly
- 34. Etch poly, LAM490
- 35. Strip resist
- 36. RCA Clean
- 37. Oxidize Poly Recipe 250
- 38. Deposit 1µm LTO

- - 41. Strip Resist
    - 42. RCA Clean, include extra HF
- 43. Deposit Aluminum, 10,000Å 44. Photo 5, Metal 45. Etch Aluminum, Wet Etch 46. Strip Resist 47. Deposit 1µm LTO 48. Photo 6, Via 49. Etch Oxide in BOE, Rinse, SR 50. Strip Resist 51. Deposit Aluminum, 10,000Å 52. Photo 7. Metal 53. Etch Aluminum, Wet Etch 54. Strip Resist 55. Deposit 1µm LTO 56. Deposit Aluminum, 10,000Å 57. Photo 8, Top Hole 58. Top hole aluminum etch 59. Diaphragm thinning option 60. Top hole Silicon etch
- 61. Test

62. Package and add solder ball

3-15-07

© March 24, 2014 Dr. Lynn Fuller

**TEST FIXTURE MOVIE** 

Accelerometer Test Fixture

> Dr. Lynn Fuller Ivan Puchades

Rochester Institute of Technology Electrical and Microelectronic Engineering Rochester, New York

Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# **STRAIN GAGE – POSITION SENSOR**



A strain gage is used to measure position. It is a foil resistor glued on the cantilever beam near the anchor. If the tip of the cantilever is moved up or down the strain well cause a small change in the resistance of the gage and a change in Vout.



# **VELOCITY SENSOR**

A coil in a changing magnetic field will generate a voltage.

Faraday's Law of Electromagnetic Induction

 $EMF = -\Delta \Phi/\Delta t = -N Area \Delta \Phi/\Delta t$ 



http://micro.magnet.fsu.edu/electromag/java/faraday2/

Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# EDDY CURRENT DAMPER

The copper pipe is a coil (one turn) and if placed in a moving magnetic field will generate a voltage and since the coil is a closed loop there will be an electrical current (eddy current). The current moving in a loop will create a magnetic field and the field will oppose the magnetic field that created it. The opposing force dampens the oscillations of the vibrating beam.



**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

**PICTURES OF RIT ACCELEROMETERS** 

### **RIT** made Accelerometers Pictures





5mm x 5mm chip

Rochester Institute of Technology Microelectronic Engineering One accelerometer with solde ball proof mass.

© March 24, 2014 Dr. Lynn Fuller



# **PACKAGED RIT ACCELEROMETERS**



Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# THE TEST FIXTURE



**EXAMPLE CALCULATIONS FOR TEST FIXTURE** 

The resonant frequency  $(f_0)$  of the test fixture

 $f_0 = 1/2\pi \ \{3EI \ / \ (L^3(m+0.236m_B))\}^{0.5}$ 

where  $m_B$  is the beam mass and m is end mass and E is Young's Modulus for the beam material  $I = b h^3 / 12$ , moment of inertia

Then we write an expression for the position of the end of the beam on the test fixture after deflecting the beam by Ao and releasing.

 $X(t) = -Ao \cos (2 \pi f_0 t)$ 

Taking the second derivative we write an expression for the acceleration experienced at the end of the beam on the test fixture.

$$a = d^2 X(t)/dt^2 = Ao (2 \pi f_0)^2 \cos (2 \pi f_0 t)$$



Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

**EXAMPLE CALCULATIONS FOR RIT ACCELEROMETER** 

The RIT accelerometer will experience a force at the end of the sensor cantilever beam equal to mass times acceleration.

 $F = ma = 4/3 \pi r^3 d Ao (2 \pi f_0)^2 \cos (2 \pi f_0 t)$ 

Using the maximum force we calculate the maximum stress

 $\sigma_{x=0} = F Lh/2I$ 

Next we calculate the maximum strain using Hooke's Law.

 $\epsilon = \sigma_{x=0} / E$  where E is Young's modulus for silicon

**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

**EXAMPLE CALCULATIONS FOR RIT ACCELEROMETER** 

The nominal resistance value is found to be:

 $R = rhos L/W = 60 ohms 1000 \mu m/50 \mu mm = 1200 ohms$ 

The resistance value at maximum strain, R', is approximately:

R' = rhos L(1+ $\varepsilon$ )/W

The accelerometer circuit output voltage is :

Vout = [12 R'/(R+R')] -6

**Rochester Institute of Technology** 

**Microelectronic Engineering** 



© March 24, 2014 Dr. Lynn Fuller

# **SPREAD SHEET FOR ACCELEROMETER CALCULATIONS**

6/13/07

accelerometer.xls

#### RUCHESTER INSTITUTE OF TECHNOLOGY

MICROELECTROMECHANICAL SYSTEMS Dr. Lynn Fuller, Burak Baylav

To use this spreadsheet change the values in the white boxes. The rest of the sheet is protected and should not be changed unless you are sure of the consequences. The calculated results are shown in the purple boxes.

#### Calculations for Cantilever Beam (Test Fisture)

Frequency of Oscillation:

Ca

|                                | The resonant frequency      | , f0 of the cantilever beam | 13.48    | hz     |
|--------------------------------|-----------------------------|-----------------------------|----------|--------|
|                                |                             | Beam Length, L              | 0.4      | m      |
| $fD = 1/2\pi \{3EI / (L^3)(m+$ | 0.236mB))}0.5               | Beam Width, b               | 0.025    | m      |
|                                | ,,,,                        | Beam thickness, h           | 0.003    | m      |
| $I = b h^3$                    |                             | End Mass, mB                | 0        | Kg     |
|                                | Density fo                  | r Material Selected Below   | 2.33     | gm/cm3 |
|                                | Beam M                      | ass = density x volume, m   | 69.9     | gm     |
|                                | Young's Modulus fo          | r Material Selected Below   | 1.90E+11 | N/m2   |
| Acceleration versus time       | e:                          |                             |          |        |
|                                |                             | Initial Deflection          | 2        | cm     |
| $a = d2X(t)/dt2 = Ao (2 \pi)$  | $(10)^{2} \cos(2\pi t 0 t)$ | Maximum Acceleration        | 143.34   | młs2   |
|                                | Ma:                         | imum Acceleration, in g's   | 14.63    | g's    |
| Iculations for RIT Acceleromet | er                          |                             |          |        |
| Force:                         |                             |                             |          |        |
|                                | Maximum force due t         | o proof mass, Fmax = ma     | 8.35E-05 | N      |
|                                | end mass on F               | IT accelerometer, m = d V   | 5.82E-04 | gm     |
|                                |                             | volume, V = $4/3\pi r^3$    | 6.54E-05 | cm^3   |
| F = Fmax cos(2"p"f0"t)         |                             | radius, r =                 | 250      | μm     |
|                                | • • • • • • • • •           |                             |          | _      |
|                                | © March 24, 2014 Dr. Ly     | nn Fuller 🗧                 | Page 31  |        |

# **SPREAD SHEET FOR ACCELEROMETER CALCULATIONS**

|                          | Accelerometer, cantilever beam bending Ymax: |                |                                           | 7.03E-01                     | μm           |       |  |
|--------------------------|----------------------------------------------|----------------|-------------------------------------------|------------------------------|--------------|-------|--|
|                          |                                              |                |                                           | L =                          | 2000         | μm    |  |
|                          | Ymax = F L^3/3El                             |                |                                           | b =                          | 200          | μm    |  |
|                          |                                              | $I = h h^{A2}$ |                                           | h =                          | 10           | μm    |  |
|                          |                                              | 1-011.5        |                                           | Young's Modulus, E =         | 1.90E+11     | N/m2  |  |
|                          | σ max = F L I                                | h721           |                                           | Max Stress,σ max:            |              |       |  |
|                          |                                              |                |                                           | 2.64E-08                     | րայիա        |       |  |
|                          |                                              |                |                                           |                              |              |       |  |
|                          | Resistor (                                   | Calculations   |                                           | 5400                         | ohms         |       |  |
|                          |                                              | Measured       | Measured Sheet Resistance, Rhos = 60 ohm: |                              |              |       |  |
| R = Rhos L/W             |                                              |                | Resistor Length, L =900 μr                |                              |              |       |  |
|                          |                                              |                |                                           | Resistor Width, W =          | 10           | μm    |  |
| R' = R + Rhos (L+ L's)/W |                                              | Resista        | Resistance under Max Stress, R' = 540     |                              |              |       |  |
|                          |                                              |                | Tdd=107                                   | Delta R = R' - R =           | 0.000142375  | ohms  |  |
|                          |                                              |                | Resternal                                 | Vdd = Vss =                  | 10           | volts |  |
|                          |                                              |                | Vox                                       | Rexternal =                  | 5400         | ohms  |  |
|                          |                                              |                |                                           | Nominal Vout =               | 0            | volts |  |
|                          |                                              |                | Ø                                         | Yout Max =                   | 1.31829E-07  | volts |  |
| Constants:               |                                              | Raccelerometer |                                           |                              |              |       |  |
|                          |                                              |                | V10=.10V                                  | Select Material Using 1 or 0 |              |       |  |
|                          | Youngs M                                     | lodulus(N/m2)  | Density (gm/cm3)                          | Fizture RI                   | l Acceromete | ſ     |  |
|                          | Silicon                                      | 1.9E+11        | 2.33                                      |                              | 1            |       |  |
|                          | Silicondiozide                               | 7.30E+10       | 2.19                                      | 0                            | 0            |       |  |
| $\overline{7}$           | Silicon Nitride                              | 3.85E+11       | 3.44                                      |                              | 0            |       |  |
|                          | Aluminum                                     | 6.80E+10       | 3.9                                       |                              | 0            |       |  |
|                          | Steel                                        | 2.00E+11       | 7.8                                       |                              | 0            |       |  |
|                          | Brass                                        | 1.10E+11       | 8.55                                      |                              | 0            |       |  |
|                          | Lead                                         |                | 11.34                                     |                              |              | _     |  |
|                          |                                              | -              | © March 24, 2014 Dr. L                    | ynn Fuller 🔤                 | Page 32      |       |  |
|                          |                                              |                |                                           |                              |              |       |  |

# **CALCULATED PLOT OF VOUT VS. TIME**



# 20 G ACCELEROMETER TEST SET UP



Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

**TESTING OF PRISM PROJECT ACCELEROMETERS** 



© March 24, 2014 Dr. Lynn Fuller

**RIT 100X DIFFERENTIAL VOLTAGE AMPLIFIER** 







### **INSTURMENTATION AMPLIFIER**



**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

**CONFIRMATION OF TEST FIXTURE RESONANT FREQUENCY** 

+5 Volts



-5 Volts

Vout near Zero so that it can be amplified

Rochester Institute of Technology Microelectronic Engineering



Strain gage output signal

Period ~ 70msec Thus frequency ~14.3 Hz

© March 24, 2014 Dr. Lynn Fuller

# ADI ACCELEROMETER ON PCB WITH R,C AND PINS





Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# ANALOG OUTPUT TYPE ACCELEROMETERS

Measured Output No Damping

We can describe the envelope of the oscillations with the following eqn.  $V_{out} = V_{max} e^{-\alpha t}$ where  $\alpha$  is the damping coefficient



ADXL78





Rochester Institute of Microelectronic Engin Microelectronic Engin Microelectronic Engin

© March 24, 2014 Dr. Lynn Fuller

**OUTPUT OF PULSE WIDTH TYPE ACCELEROMETER** 



# **TEST RESULTS FOR RIT ACCELEROMETER**



# **50 G ACCELEROMETER TESTER**



Rochester Institute of Technology

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

### SHAKER FOR TESTING SHOCK AND VIBRATION

### **Electro-Dynamic Shakers**



### Dynamic Solutions LLC Call Us Toll Free at 877-767-7077

mailto:aimmee@dynsolusa.com,steve@dynsolusa.com

©2003 Dynamic Solutions

### PERMANENT MAGNET SHAKERS

| Small Permanent<br>Magnet Systems     | VTS<br>40                                          | VTS<br>65 | VTS<br>80 | VTS<br>100 | VTS<br>150 |  |
|---------------------------------------|----------------------------------------------------|-----------|-----------|------------|------------|--|
| LOW COST, LOW FORCE VIBRATION SYSTEMS |                                                    |           |           |            |            |  |
| Peak Sine                             | 40 lbf                                             | 65 lbf    | 80 lbf    | 100 lbf    | 150 lbf    |  |
| Amplifier Cooling Fan                 |                                                    | INCLUDED  |           |            |            |  |
| Vibrator Cooling Fan                  | N/A                                                | INCLUDED  |           |            |            |  |
| Stroke (p-p)                          | .75"                                               | .75"      | .75"      | .75"       | 1.0"       |  |
| Velocity                              | 35 ips                                             | 70 ips    | 80 ips    | 100 ips    | 70 ips     |  |
| Max. Acceleration (bare table)        | 60g                                                | 100g      | 115g      | 150g       | 210g       |  |
| Armature Weight                       | .66 lbs                                            | .66 lbs   | .70 lbs   | .66 lbs    | .71 lbs    |  |
| Suspension Stiffness                  | 40 lbs./in (options available for larger payloads) |           |           |            |            |  |
| First Major Resonance                 | 4500 Hz                                            | 4500 Hz   | 7000 Hz   | 4500 Hz    | 5400 Hz    |  |
| Frequency Range                       | 2-6500 Hz 2-8500 Hz                                |           |           |            |            |  |

© March 24, 2014 Dr. Lynn Fuller

### RIT VIBRATIONS LAB – DR. MARCA LAM





Rochester Institute of Technology Microelectronic Engineering



Bruel & Kjaer Instruments Inc. Big Table Head Type 4813 & Exciter Body Type 4801

© March 24, 2014 Dr. Lynn Fuller

### LOW MASS ELECTRO-DYNAMIC SHAKER



f = 20 Hz Signal Generator = 2 Vpp Gain = 40

D = 8/32" A =  $(2\pi f)^2 D$ A = 10.23 g



Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller



p= 516

5.00kSa/

20.00ms/

LOW MASS ELECTRODYNAMIC SHAKER

# Low Mass Electrodynamic Shaker

Dr. Lynn Fuller Tal Nagourney Gray McPherson

Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

### **REFERENCES**

- 1. <u>Mechanics of Materials</u>, by Ferdinand P. Beer, E. Russell Johnston, Jr., McGraw-Hill Book Co.1981, ISBN 0-07-004284-5
- 2. "Crystalline Semiconductor Micromachine", Seidel, Proceedings of the 4th Int. Conf. on Solid State Sensors and Actuators 1987, p 104
- 3. Analog Devices Inc., Accelerometers, <u>www.Analog.com</u>

**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# HOMEWORK – ACCELEROMETER LAB

- 1. Determine the damping coefficient for the test fixture with no eddy current damping and with eddy current damping.
- 2. If the test fixture has an initial displacement of 3 cm, what is the maximum acceleration generated?
- 3. How can the test fixture cantilever beam resonant frequency be changed?
- 4. Under what conditions will the electrodynamic shaker generate 50 g's of acceleration?
- 5. What are the advantages of the pulse width output type of accelerometer compared to the analog output type of accelerometer?
- 6. Look up the price for some of Analog Devices accelerometers.
- 7. Describe the difference between the ADI Analog, digital, and PWM output accelerometers.

**Rochester Institute of Technology** 

Microelectronic Engineering

# HWACCEROMETER LAB: DAMPING

Measured Output No Damping

We can describe the envelope of the oscillations with the following eqn.  $V_{out}=V_{max} e^{-\alpha t}$ where  $\alpha$  is the damping coefficient



Rochester Institute of Technology Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller

# LABLES FOR TEST FIXTURE



# Accelerometer





Solenoid Velocity Sensor

Strain Gauge Position Sensor

**Signal Conditioning** 

**Rochester Institute of Technology** 

Microelectronic Engineering

© March 24, 2014 Dr. Lynn Fuller