|

76

ST 19

T"PACKARD JOURNAL

T
J

AUGI

HEWLET

Series Il General-Purpose Computer
Systems: Designed for Improved
Throughput and Reliability

A larger, faster memory system with error correction and
error logging, a faster central processor, an expanded in-
struction set, and a more efficient operating system are the
major technological advances. Benchmark studies rate the
new HP 3000 Series Il Computer Systems at two to four times

the throughput of earlier versions.

by Leonard E. Shar

IKE EARLIER VERSIONS OF THE HP 3000 Com-

puter System,! the new HP 3000 Series Il is a vir-
tual-memory, multilingual, multiprogramming com-
puter system capable of performing batch operations
and multiple-terminal on-line functions simul-
taneously. The Series I1 has the same basic architec-
ture and input/output hardware as its predecessors,
and software compatibility has been preserved. Vir-
tually everything else is new.

To the user, the principal difference is in perfor-
mance. Overall throughput has increased by a factor
of two to four for a “typical” job mix, and some pro-
grams have run as much as ten times faster (see page
14). A larger main memory address space is the reason
for most of the performance improvement, but there
are also operating system enhancements, added in-
structions, firmware improvements, and some hard-
ware changes.

Series Il main memory is all semiconductor, based
on 18-pin 4K RAM chips. An unusual feature is a new
fault control system that detects and corrects memory
errors with no reduction in speed. 3000 Series II ma-
chines automatically log each error corrected along
with the identity of the component that caused it.
Failing parts can be weeded out of the system to mini-
mize future errors and assure continuous operation.
Thus the Series II is expected to be much more re-
liable than earlier systems.

There are three compatible models in Series I,
ranging from the basic Model 5 to the highest-perfor-
mance Model 9 (Fig. 1). Model 7 is intermediate in
performance and cost. All three models can compile
and execute programs written in any or all of five lan-
guages: SPL, RPG, COBOL, BASIC, and FORTRAN.

About the HP 3000
To understand what's been done in the new Series
I, it's helpful to have some knowledge of HP 3000 ar-

chitecture. Here is a brief review.

There are two principal modes of operation of the
CPU. “User" mode is one in which all operations per-
formed are strictly checked by the hardware to ensure
that only the user's own data may be accessed. Any
code executed in user mode is completely safe in the
sense that it cannot affect the operation of other users
or of the Multiprogramming Executive operating
system (MPE). The other mode, called “privileged"’,
is reserved for the operating system only and by-
passes all the checking normally performed by the

Cover: Against a backdrop
photo of an HP 3000 Series I/
Computer System are a
Series 1l memory board and
an example of an Error Cor-
recting Memory Log Analy-
sis. The Series || memory
¢ corrects all single-bit mem-
B ory errors so they don't affect
normal operation. Errors are logged so that fail-
ing 4K RAM chips can be weeded out of the system.

In this Issue:

Series Il General-Purpose Computer
Systems: Designed for Improved
Throughput and Reliability, by Leonard
E. Shar .

An All-Semiconductor Memory with
Fault Detection, Correction, and
Logging, by Elio A. Toschi and Tak
Watanabe page 8
HP 3000 Series Il Performance Measurement

by Clifford A. Jager, page 14.

page 2

© Copr. 1949-1998 Hewlett-Packard Co.

s Il system, i
oriented system

concurrent ba

[termina

aoes

hardware.

Memory is logically divided into variable-size seg-
ments either of code (which cannot be modified) or of
data. The complete set of all such segments known to
the system constitutes the virtual memory. All seg-
ments reside on disc storage until required in main
memory. To execute code or access data, the relevant
segment must be present in main memory (sometimes
called real memory). Whenever a segment is refer-
enced the hardware checks to see whether it is in
main memory; if it is not, the operating system is in-
voked to bring it in. Thus the management of the vir-
tual memory is totally automatic and transparent to
the user, and the system can reference a virtual
memory space far larger than the real memory avail-
able,

Each user has a data stack that resides in a data seg-
ment with a maximum size of 32,768 16-bit words.
Only 15 bits of address are required to locate any one
of these words. The use of all 16 bits for indirect ad-
dressing and the 16-bit index register facilitate ad-
dressing to the byte level. All addressing is relative to
a set of registers set up automatically by the operating
system for each user prior to execution. Fig. 2 shows
this register structure.

Registers DL and Z delineate the area of data that the
user may access. Direct access (indexed or not) can be
relative to one of three other registers, DB, Q, or S. All
indirect access is relative to DB, the data base register.
The different addressing modes are a natural exten-
tion of the different types of variables used in a pro-

3

gram, and are automatically chosen in the most con-
venient way by the compilers so the user need not
know of their existence.

Two registers, PB and PL, delineate the particular
code segment being executed by the user. A third reg-
ister, P, is the program counter and may be con-
sidered to point to the next instruction to be executed,
although this is not strictly true in general because of
instruction look-ahead in the CPU. The hardware
does not allow an instruction to be fetched outside the
code segment, that is, outside the range PB to PL. The
only way to access another code segment is to call a
procedure in that segment. This is done via the PCAL
instruction, which sets up new values in the PB, PL,
and P registers. These values are derived from tables
maintained by and accessible only to MPE.

A user cannot access anything outside the area of
memory that MPE has set aside for him. Furthermore,
every access to memory is addressed relative to one or
more of the registers controlled solely by MPE. The
user does have control over certain local data regis-
ters, such as the index register, as well as implicit
control over the top-of-stack registers, which are in-
visible to the code. These local registers and the en-
vironment registers are saved automatically by the
hardware when the user is interrupted. Therefore the
user can be stopped at any time and his data and/or
code areas can be moved to another location in
memory without any effect on the user. Thus a user
cannot find out about anything outside his areas (ex-
cept what he can get from special carefully protected

© Copr. 1949-1998 Hewlett-Packard Co.

Information About
the Process Available
DL = Only to MPE «PB
P
DB
-Q Increasing
Memory
Addresses
Code PL
- Segment
Stack Data
Segment

Fig. 2. Basic HP 3000 register structure. Memory is divided
into variable-size segments of code and data. DL, DB, Z, Q,
S, PB, PL, and P are registers that delineate various areas of
the code and data segments.

procedures in MPE); in particular, he is unaware of
his physical location in memory or even the size of
real memory on his system. However, the size of real
memory has a significant effect on overall throughput
and the response time observed by the user.

Expanding Memory

In increasing the available real memory on the sys-
tem, the major constraint was that all user code that
previously ran on the HP 3000 would have to run on
the expanded memory system; at most recompilation
could be required in some cases. All current users
would then be able to upgrade their systems without
difficulty, and it would still be possible to use the
large quantity of software already developed. To ful-
fill this requirement it was essential that all user
mode instructions have the identical effect on the
user’s data on both machines; this precluded any
change to the addressing modes allowed to the user.
New instructions could be added but none could be
changed.

This proved relatively easy to do because of the ele-
gant structure of the HP 3000. Since a user is unaware
of where in memory his program is executing it was a
simple matter to add memory beyond the 64K words
normally addressable by 16 bits. This was done by
dividing main memory into four banks of up to
64K words each. Each memory location can be
uniquely specified by a bank number and its address
within that bank. So long as no code or data segment
can cross bank boundaries, all addresses within each
segment can be calculated in the normal way using as
a base only the 16-bit address within the bank; after
this calculation (and bounds check) the bank number
is appended to the left of the address to provide the
unique address of the required location. This extend-
ed address is used to select the location within the
correct memory module. Since the user cannot
modify the data or code base registers it was possible

4

to extend these registers beyond 16 bits. The bank
structure guarantees that for any legal address calcu-
lation there will never be any overflow out of the 16
low-order bits, so the user need not even know about
the excess bits. The only instructions that cannot use
this mechanism to access memory are certain privi-
leged instructions that do absolute addressing. Since
this access method is so consistent with the existing
instruction set all user code remains valid. Only the
operating system had to be modified since it is the
only code that is aware of the existence of the larger
memory and the bank number.

A set of new privileged instructions were added to
allow MPE to access absolute memory beyond the
previous 64K word limit. It was also necessary to
change the existing privileged instructions that deal
with registers inaccessible to the user. Furthermore,
the operating system has another privileged mode of
operation in which it is allowed to switch the DB reg-
ister to point to some data segment other than the cur-
rently executing stack; for complete generality it is
necessary to allow the stack and the extra data seg-
ment to reside in different banks. Three new bank reg-
isters in the CPU make it possible for the HP 3000
Series Il to support any addressing mode, user or
privileged, and at the same time allow any segment to
be in any bank. The three bank registers are designa-
ted DB bank, stack bank, and PB bank (see Fig. 3).

A further constraint on the design of the extended
memory HP 3000 was that as little peripheral hard-
ware be changed as possible. To meet this objective it
was desirable to be able to use all existing input/out-
put interfaces. This also simplifies and reduces the
cost of upgrading existing installations. However, it
is essential that /O be possible to or from any area in
memory—if for no other reason than that the memory
management system must be able to transfer seg-
ments between virtual and real memory. There are

PB Bank

Non-
Linked
Memory Increasing
Memory

Addresses |-z

Stack Data
Segment

Bank 1 Bank 2

Fig. 3. Modified register structure of the HP 3000 Series II.
Memory is divided into four banks of up to 64K words each
Three bank registers (shown at top) allow code and data
segments in different banks to be used simultaneously.

© Copr. 1949-1998 Hewlett-Packard Co.

three hardware modules on the HP 3000 that are in-
volved with /O to and from memory, and only these
(the /O processor, multiplexer channel and selector
channel) had to be modified to allow access to the ex-
panded memory. Once again, changes are minimized
by ensuring that no segments can cross bank bounda-
ries. Since all I/O transfers take place on a segment
basis, it is only necessary to set up the correct bank at
the beginning of the transfer and then request the
transfer to take place in the normal manner. A new
“set bank" instruction preceding the standard chan-
nel programs permits the standard device controllers
to access the extended memory. This instruction is in-
terpreted within the channel where the bank number
is stored and is appended to the memory address of all
transfers for that device.

Software Memory Management

MPE divides main memory into two areas. The
first, fixed memory, contains only the tables and code
that the operating system requires to be memory resi-
dent. These include the interrupt handlers, the
memory manager, and the scheduler. The remainder
of memory is designated linked memory, and con-
tains all other code and data. User and operating
system segments are brought into this area by the
memory manager as they are required. The architec-
ture allows most of the operating system, including
the file system, the command interpreter, the spooler,
and even much of the I/O system, to be shared by all
users without being memory resident. In fact, only 8%
of MPE code is required to be in fixed memory, and
the total size of fixed memory on the Series Il can be as
low as 25K words. This is only a little larger than on
previous HP 3000 systems, so the expansion of linked
memory on the Series 11 is far greater than the fourfold
expansion of real memory. Measurements have veri-
fied that the overall performance of the system in a
multiprogramming environment is determined by
how well linked memory is used.

The greatly enlarged linked memory presents an
opportunity for the operating system to do a much
better job at keeping the “right’’ segments in memory.
Basically the memory manager’s job is to attempt to
maximize the probability that a segment will be in
real memory when it is needed by a process. A pro-
cess is the basic executable entity; it consists of a stack
data segment (see Fig. 3) that contains the data
local to that process, at least one code segment (pos-
sibly shared with other processes), and possibly some
extra data segments. Note that the “user’” described
earlier is really just an instance of a process, and in
fact the subsystems and even parts of the operating
system itself are other instances of processes. Each
process is essentially independent of every other.

The dispatcher is the module of MPE that sched-

5

ules processes for execution. Each process has a
dynamically changing priority number, and the dis-
patcher keeps a list of active processes (those request-
ing execution) ordered by priority. This is called the
ready list. The dispatcher manipulates the priority
number so a process gets service appropriate to its
creation parameters. The basic scheduling algorithm
is to attempt to run the highest-priority active pro-
cess. If that process is not in memory the dispatcher
requests the memory manager to make enough of that
process’s segments present in memory to allow it to
continue.

As a process runs it may require another code or
data segment. If the segment is not present in main
memory the hardware traps out (a segment trap is said
to have occurred) to the memory manager, which
schedules a request to bring in that segment before
that process is allowed to continue. While waiting for
the completion of that transfer some other process in
memory may be run. It is clear that a process will run
best when all the segments it references are in main
memory. However, all the segments for all the pro-
cesses will not fit in main memory, and this extrava-
gance is unnecessary anyway because most of the
code in any program is executed infrequently. This
is the well documented concept of locality.”?
Thus it is more efficient for the memory manager to
bring in segments as they are required on an ex-
ception basis.

If the memory manager can ensure that the process
has enough segments in main memory so that it seg-
ment faults infrequently then the process will run ef-
ficiently and the overhead for virtual memory will be
low. This gives rise to the concept of a working set,
which is the set of segments required to be in memory
for a process to run well. The problem is to determine
what that working set is for each process. Very often
even the programmer cannot guess what it is likely to
be because it changes dynamically during execution.
MPE uses a ‘“‘segment trap frequency” algorithm to
determine which segments belong to each process’s
working set. This algorithm is highly efficient® A
working set list is maintained for each process and
the size of this working set is expanded or contracted
in an attempt to arrive at a constant interfault time for
each process. This is in effect a negative feedback
control mechanism. MPE keeps track of the interfault
time very accurately on a per-process basis with the
help of a special process timer built into the CPU.

When a process implicitly requests an extra segment
the memory manager will bring that segment into
main memory after it has found space for it. At this
time an important decision must be made: should
this process have its working set expanded to include
this segment or should one of its older segments be re-
moved from its working set? This decision is based on

© Copr. 1949-1998 Hewlett-Packard Co.

the CPU time used by that process since the previous
segment trap. The decision is important because if the
working set is expanded too much this process will
tend to control more than its share of main memory,
thus degrading the performance of other processes.
On the other hand, if the working set is too small the
process itself will run inefficiently even though it has
little effect on any other processes. We use a time
between segment faults of 100 ms to assure both ef-
ficiency within each process and overall system
efficiency.

When segments are to be removed from the work-
ing set they are merely delinked from the list associ-
ated with that process and linked onto a single sys-
tem-wide overlay selection list. Although this list
will be used later to find segments to be overlayed, at
this point the segments remain in main memory. For a
data segment an anticipatory write operation is in-
itiated to update the virtual memory image of that
segment. If there is more main memory on the system
than is required to support all working sets of current-
ly active processes, it is especially advantageous to
leave the segments in main memory at this point. For
example, if only one process is active it is conceivable
that all the segments it has ever referenced will ac-
tually be in main memory (because no other process
has requested any memory) even though only a small
percentage of them will be in its working set. In this
way a process can use main memory far in excess of
its working set, but only to the extent that there is
extra unused memory available at that time.

Another important memory manager decision is
which segments to remove from main memory (i.e.,
overlay) when space is required to satisfy a new re-
quest for a segment. The memory manager looks for a
segment to overlay if no free area of the required size
is found by searching the list of free areas. If there
are any segments on the overlay selection list these
will be overlayed one at a time until a space has been
created that is large enough to satisfy the request.
Overlaying a segment involves ensuring that the
segment has been copied back to virtual memory if
necessary, releasing the space it occupied in main
memory, and coallescing the free space created with
any adjacent free spaces that might exist. Special
dummy links are provided at bank boundaries to
appear busy to the memory manager, so that free areas
will never be able to span banks; it is this simple
mechanism that ensures that any segment will always
be wholly contained within a bank. If another free
area is found to be separated from the newly created
one by one small movable segment then that segment
will be physically moved in main memory to allow
for combination of the two free areas. If the overlay
selection list becomes exhausted before a large
enough free space is found the memory manager

6

must turn elsewhere for help in predicting which
segments in main memory will not be used in the
near future. At this point it is known that all seg-
ments in memory are actually required by some pro-
cess for it to run well. The memory manager now has
no choice but to remove one of the processes from
main memory temporarily, A communication me-
chanism has been set up with the dispatcher to assist
in predicting which process is least likely to run in
the near future.

When the dispatcher puts a process to sleep it de-
cides, knowing the reason for suspension of the pro-
cess, whether that process is likely to wait for a long
period before reactivation. If a long wait is likely, the
dispatcher links that process to the end of a list called
the discard list. The memory manager knows that a
process on this list is taking up main memory but is
unlikely to need it soon. Processes are discarded by
selecting them from this list one at a time and overlay-
ing each segment in their working sets starting with
the least recently used. This procedure is carried out
until enough space has been released to satisfy the re-
quest on which the memory manager is working. If
the discard list is exhausted before enough space is
found the memory manager can, as a last resort, scan
the dispatcher’s ready list and discard processes start-
ing with the one having the lowest priority. In this
way working sets of the processes highest on the
ready list will remain in memory; these are precisely
the processes the dispatcher will schedule next, and
thus the memory manager is actually using some fore-
knowledge of the near future to assist in its predic-
tions. Of course this knowledge is not perfect in an in-
terrupt-driven system like the HP 3000, where pro-
cesses can be moved onto the ready list at any time.
The best that can possibly be achieved in predicting
the future is to maximize the probability of being cor-
rect, using information from the recent past.s Perfor-
mance measurements of the system under a typical
load show that the strategy used is indeed efficient.
The cost of having memory managed completely by
the operating system varies, depending on the
amount of real memory available, from less than
5% of the CPU time on the larger configuration to
about 12% of the CPU time on the smallest system.

Other Changes

Since the availability of Schottky TTL had im-
proved and the CPU had to be changed anyway the
microprocessor was redesigned for increased speed.
This was achieved by speeding up access to memory
operands, and by modifying the pipeline!® to mini-
mize time spent waiting for the pipeline to empty
when a microcode jump occurs. This change did not
affect the normal (unbranched) operation of the pipe
and so the microprocessor still takes advantage of the

© Copr. 1949-1998 Hewlett-Packard Co.

inherent parallelism of the pipe. In addition, a deci-
mal arithmetic circuit was added to the microproces-
sor to assist in the execution of the new decimal in-
structions that were added. The overall effect of these
changes and the faster memory is to increase the
average number of instructions executed per second
by 50%.

As aresult of extensive performance measurements
on the previous system a number of new privileged
instructions were added to assist the operating
system in improving its efficiency. This includes a set
of instructions for moving data between data seg-
ments without having to alter any of the registers.
There are also instructions for manipulating system
tables while eliminating the multiple memory refer-
ences previously performed explicitly by the software.

Another class of new instructions that has had a
major effect on the overall performance of the Series Il
consists of process handling instructions added to
facilitate the control of process switching. These in-
clude instructions to disable, enable, and invoke the dis-
patcher. One instruction, IXIT, now performs all the
functions previously performed by the most common
path through the dispatcher. After an interrupt has
been processed it is necessary to dispatch a process.
Previously lhe dispatcher had (o be invoked lo do
this. On the Series II the interrupt handler need only
execute the IXIT instruction to redispatch the inter-
rupted process. If the interrupt was important enough
(e.g., a higher-priority process becomes active) a DISP
instruction is issued prior to the 1XIT; this invokes the
dispatcher to decide which process to run next. These
instructions, combined with a redesign of the dis-
patcher and its scheduling mechanism, have resulted
in a dramatic reduction in the time required to switch
processes. A full dispatch, consisting of terminating
one process, invoking the dispatcher, updating the
CPU time used for that process, determining which
process to run next, setting up the environment for
that process, and finally launching it takes less than a
millisecond.

Further reductions in operating system overhead
have been achieved by a redesign of the software in-

put/output system. The changes minimize the num-
ber of process switches required to perform an /O
operation in addition to optimizing the code itself.
The result is an extremely efficient /O structure re-
quiring little CPU processing for /O transfers. The
most apparent effect of this improvement is that it is
now possible to run spoolers at higher priority than
users. This means that the Series Il can continuously
spool output to the fastest line printer with no notice-
able impact on the performance of the system. In ad-
dition, character interrupts from asynchronous ter-
minals can now be processed three times faster than
before, which increases the number of terminals that
can be supported by the system.

Acknowledgments

A product of this complexity can be a success only
with the contributions of many good people. Con-
tributing to the hardware design of the HP 3000 Series
II were Rick Amerson, Bill Berte, Wally Chan, Don
Jenkins, Elio Toschi, Tak Watanabe, and Steve
Wierenga. John Sell and Ron Kolb were mainly
responsible for the microcode. Joel Bartlett, Larry
Bierenbaum, Russ Blake, Tom Blease, Hank Daven-
port, John Dieckman, Tom Ellestad, Pete Gragiano,
Mike Green, Bob Heideman, Alan Hewer, Ron Hoyt,
Jack MacDonald, Dennis McEvoy, Chuck Robinson,
and Karel Siler worked on various aspects of the
operating system.£

References

1. Hewlett-Packard Journal, January 1973,

2. W.W. Chu and H. Oderbeck, "The Page Fault Frequency
Algorithm,” Proc. FJCC 1972, pp 597-609.

3. P.J. Denning, “Virtual Memory,”” Computing Surveys,
Vol. 2, No. 3, September 1970, pp 153-188.

4. G.S.Grahamand P.]. Denning, ““Multiprogramming and
Program Behavior,” Sigmetrics Symposium on Measure-
ment and Evaluation, 1974, pp 1-8.

5. L.A. Belady, “A Study of Replacement Algorithms for a
Virtual Storage Computer,” IBM Sys. Journal 5,2, 1966, pp.
78-101.

6. J.V. Sell, “Microprogramming in an Integrated Hard-
ware/Software System,"” Computer Design, 1975, pp. 77-83.

INFORMATION
HP 3000 Series || Computer Systems

HP 3000 Seties || Systems include three standard configura-
tions. each designed to fuffill specific performance and applica-
tions reguirements. Any of the standard models may be up-
graded by adding line printers. card readers. terminals, and
tape and desc units. All three models are complately compatibie
with each other

Model §
As the basic system in the Senes 1l tamily, mrsam
for small and L]
This configuration is an excellent cholce for dedicated, stand-
alone applications of 10 serve as a satellite processing system
tied into a central EDP operation. s concurrent balch and fer-

faull control memory. 15-megabyte disc, 1600 bp magnenic
tape unit, system console, and & 16-port esynchronous ter-
minal controfler.

Model 7

Model §
The most p standard in the Series Il tam-
wmmmmnwma‘mﬂ“pﬂﬂm
ing ial. industrial. sducati
mllsmbmhmdw-ﬂm

Configured to handie small-to-medium-scale data p
pbs mumshnmndloabmadwmolmwual

app grated concurrent termi-
naé the system's app y for
on-line processing. IMAGE data tase managsmaent mm
plus COBOL and RPG are supplied with the system. Model 7
consisis of a 192K-byte lault control memory. two 47-maga-
byle disc units, 1500-bp« magnatic tape unit, system console,

1. Model 8 comas with five programming
wwmmemmmlmu
Componenis of the system are a 320K-byte fault control mem-
ory, two 47-megabyle disc units. 1600-bpi magnedic tape unit
system conscle. and a 18-port asynchronous terminal
controiler

PRICES IN U.S.A : Mode! 5 prices start a1 $110,000 Model 7
prices stan at $150.000. Mode! @ prices stan al $180.000

minal access give it the Nexibiiity and pe and & 16-port asy terminal co MANUFACTURING DIVISION: GENERAL SYSTEMS DIVESION
1o adapt 1o a varie unuu Modal 5 mmnmm 5303 Stevens Creex Boulevard
DA Santa Clara. Cabiomia 95050 U S A

© Copr. 1949-1998 Hewlett-Packard Co.

An All-Semiconductor Memory with Fault
Detection, Correction, and Logging

by Elio A. Toschi and Tak Watanabe

ESIGN OBJECTIVES FOR THE HP 3000 Series I]

memory system included high speed, low cost,
small size, high reliability, and low maintenance. The
speed, size, and cost goals were met by using a
4096-bit N-channel metal-oxide-semiconductor
random access memory, commonly called a 4K MOS
RAM, as the fundamental building block. Fault detec-
tion, correction, and logging were added to further
improve reliability and reduce maintenance require-
ments.

Memory Organization

Memory subsystems in HP 3000 Series Il Computer
Systems are independently functioning modules.
There are one or two memory modules per computer
system. Each memory module consists of three types
of printed circuit boards:
= one memory control and logging board (MCL)
» one fault correction array (FCA)
= one to four semiconductor memory arrays (SMA).
The MCL contains bus interface logic, data and ad-
dress registers, timing and refresh logic, and fault cor-
rection and logging logic. The FCA contains Ham-
ming code generators, address and data drivers, and
four 32K-word x4-bit MOS RAM arrays. The four
arrays on the FCA supply most of the additional bits
per word necessary for fault correction. The SMA
contains a 32K-word x17-bit MOS RAM array, and
address and data drivers. The FCA and the SMA to-
gether form the 21-bit memory words. Each word con-
sists of 16 data bits and five check bits.

Fig. 1. 736 18-pin 4K RAMSs on each HP 3000 Series Il mem-
ory board provide 32,768 17-bit words of semiconductor
memory capacity, four times the capacity of the same-size
board with core memory. Series Il memory is 50% faster and
less than one-third as costly as the older core memory.

8

The memory module is expandable in 32K-word
increments. There can be up to four SMA boards per
module and up to eight SMA boards per computer
system. Along with the two memory modules, the
memory system contains a fault logging interface
(FLI) board that interfaces the logging logic on the
two MCL boards to the 1/O system.

Why Semiconductor Memory?

Several aspects of the 4K MOS RAM make it attrac-
tive for main memory. Among these are low cost, high
speed, high density, and good long-term reliability.
Cost. Core has been used in computers for some 20
years and breakthroughs in cost seem unlikely.
The ratio of the cost/bit of core to that of semiconduc-
tor RAM is approximately 3 to 1 today.! Since 4K
RAM manufacturers are still on the steep part of the
learning curve this ratio should continue to increase.
Also, many of the necessary overhead circuits
(drivers, decoders, timing) are incorporated within
the 4K RAM, so fewer external overhead circuits are
needed. Reduced external circuitry means reduced
manufacturing costs and ultimately cost savings to
the user. Series Il memory costs less than one-third
of the core memory previously used in the HP 3000.
Performance. In the Series II, an overall 30% im-
provement was achieved in memory system access
and cycle time over the previous HP 3000 core mem-
ory (access 300 ns vs. 525 ns, cycle 700 ns vs. 1050 ns),
These speed improvements include the overhead
time necessary for fault detection and correction.

Infant | Random | Wear-Out
Mortality Failure I Region
Region I Region |
e | '
e I |
s | l
2 | |
i I |
| | |
' | |
| |
¥ j —
—I Time
Fig. 2. 4K RAMSs follow the well-known reliability life curve

Error correction reduces the effects of memory failures on
system performance in all regions of the curve

© Copr. 1949-1998 Hewlett-Packard Co.

High density, Using the same printed circuit board
format as the core memory (see Fig. 1), the board word
capacity was increased by a factor of four using 4K
RAMs. The result is a substantially higher-capacity
memory in basically the same volume as the older
Core memory.
Reliability. The goal was to make the new memory
subsystem significantly more reliable than the older
HP 3000 core memory. This was achieved in several
ways. First, by taking advantage of the fact that much
of the overhead logic is incorporated in the 4K RAM
and by using MSI (medium scale integration) logic
wherever possible, the parts count was greatly re-
duced. The 256K-word semiconductor memory in-
cluding error correction requires approximately 25%
fewer components than the 64K-word HP 3000 core
memory. Second, error correction logic was added to
maximize and stabilize 4K RAM reliability.

4K RAMs follow the well known reliability life
curve (see Fig. 2). In the early stages of their life there
is a high-failure-rate region known as infant mortality.
Accelerated aging (at high temperature) and stringent
testing are used to weed out most of the failures and
weak 4K RAMs in this region before shipment of the
computer. But it still takes time to reach the random
failure region where failure rates are very low and
stable. Error correction minimizes system crashes
caused by memory failures in the infant mortality re-
gion. Once past the infant mortality region (1000 to
1500 hours), memory with error correction should be-
come extremely stable, since the random failure region
is estimated to last from tens to hundreds of years.?
Volatility. One undesirable aspect of semiconductor
memory is volatility, that is, unless power is con-
tinuously applied to the 4K RAMs, stored data is lost.
In the Series II, critical voltages to the 4K RAMs are
backed up with a battery. When ac power is lost the
sensors in the power supplies force the computer
into a power-fail routine. Upon completion of the
power-fail routine the memory goes into a protected
mode and all critical voltages are switched to battery
power. When ac power is restored the computer auto-
matically restarts and the battery is switched to a
rapid recharge mode, returning to 90% of full ca-
pacity within 1% hours.

How Error Correction Works
Error correction requires that redundant informa-
tion be added to the data word. The minimum num-
ber of additional bits required for single-error correc-
tion is governed by the equation:
28 = m+K+1
where m = number of data bits, and K = number of
Hamming parity bits or check bits.? Solving the equa-
tion for K where m = 16, a minimum of five check

]

bits are needed for single error correction when there
are 16 data bits.

In the Series II, when a word is written into main
memory, five additional bits called the check bit
field are added to the word. These five check bits are
derived from a parity generator called a Hamming
generator, which constructs the check bit field from
selected fields of the word. Check bit field generation
is shown in Fig. 3.

Check bit field generation takes place in three dif-
ferent boards: MCL, FCA, and the accessed SMA
board. The data path is shown in Fig. 4. As the data
is written into the RAMSs of the SMA board it is also
presented to the FCA board where the Hamming
generator calculates the check bit field. Four of the
check bits are stored on the FCA board. The remain-
ing bit is stored on the SMA board.

When a word is read from memory the data and
the check bit field are used to compute an error code.
If the error code is 0's then there are no detectable
errors in the 21-bit word. If the five bits of error code
are other than zeros an error exists, and the error code
uniquely pinpoints the bit in error (see Fig. 5).

The error code is stored and decoded on the MCL

Write
Check Bit
Data Bits Field
o/1/2/3lals/6]7]8/a]10111112{13}1415AB|C|D|E
ololo/1/1/0/1]{of/1/1]/0f1/1|1/0/0/1/1/1/0/0| Word
== mmw s
elelele eloje .
- - . . .= .
. wl o . ol .
L] L - LN - . -
Read
Check Bit | Error
Data Bits Field Code
ol1]2]3als]6[7/8]9l1011/121131415 A|B|C|D|E
ololol1l1|ol1]1i1]11]0f1]1[1]0]jOj{1])1]1]/0]|0
NOnnonnn 1A
eieiele LI . 0B
- == =lm LA - 0|C
. ole . . 0|D
- s |® 00 "= s 1E
= Even Parity * Odd Parity

Fig. 3. For error correction, five redundant bits, the check
bit field, are added to each 16-bit data word when it is wriften
into memory. The five check bits are generated as even or odd
parity bits for various data fields. For example, in the word
shown, there are three data ones In bits 0-7 and even parity
(an even number of ones) is required, so check bit Ais a one.
Check bit B is a one because there are four ones in bits 0-3
and 8-11 and odd parity is required. When the word is read
from memary an error code is caloulated. If it is other than
all zeros an error has occurred. Here data bit 7 has been read
incorrectly.

© Copr. 1949-1998 Hewlett-Packard Co.

board. If the code points to a data bit, that data bit is
complemented by an EXCLUSIVE OR gate, thus chang-
ing its sense.

An example is shown in Fig. 3 of how error cor-
rection works. For the data word shown, the check
bit field is 11100. The check bit field is stored along
with the data at the same address. As that location is
read, the data and check bit field are used to compute
an error code of 10001. In this case bit 7 was stored
as a 0, but read out as a 1. By decoding 10001 using
Fig. 5 we see that data bit 7 is in error and should
be complemented.

Detecting and correcting errors does not increase
the access time or the cycle time of the memory system.

Error Logging

When an error is detected during a read cycle, a one
is written in the logging RAM at the address derived
from the error code concatenated with the five most
significant bits of the main memory address. The
1024 locations of the logging RAM have unique phy-
sical significance. All single-bit failures can be traced

down to a board, a 4K RAM row, and a bit. All other
failures can be traced to a board or boards and a 4K
RAM row. Fig. 5 is a map of the logging RAM show-
ing the result of detecting the error described above
with the example carried a step farther to include
address information and bit location.

The logging RAM consists of one 1024 x1-bit chip
on the MCL board. It provides enough locations for all
the memory associated with one MCL (128K words).
Error logging is accomplished simultaneously with
the normal memory cycle operation and requires no
additional time.

Under MPE (the Multiprogramming Executive
operating system), the HP 3000 Series Il I/O system
may interrogate the lower logging RAM (for the lower
128K words of memory) or the upper logging RAM
(for the upper 128K words of memory). The logged in-
formation is copied into another 1024 x 1 RAM used
for temporary storage. Any 1's in this RAM act as error
flags. If a flag is detected the RAM address (fault data)
is read by MPE. The fault data is tabulated and is
printed out as the Error Correcting Memory Log

Address

Register

Select

Data
Register

Generalor/
Recelver

1 of 4 Boards
1 of B Rows

16 Bits x32K x4Boards

17

Select
1 of 4 Sections
1 of 8 Rows

Hamming
Generator

3
™

5 Bits x32K x4

1024 Bit

Logging
RAM

By, Ag — Ay

~— Read Path
— = Logging RAM Address
—— Address Path

e e Write Path

Fig.4. Check bit field generation takes place in three memory-module boards: MCL, FCA, and
the accessed SMA board. The Hamming generator on the FCA board does the calculations
Four check bits are stored on the FCA board and one on the SMA

© Copr. 1949-1998 Hewlett-Packard Co.

Memory and Fault Loceter for 1708 Worde
EBemiconducior Memary Arrey Sosraw

1 1
| BMA OxistBemd | SMA feiv Ssard | SMA 0-dew Bowrs | SMA n-mm'l
I] [] t o | 1
1lolylelsfolvliesfalmfofaln
[T 1T NEERERENEE
W ITTINTTT

t]alslalalalelol tJalalalels]s[a] 1]ala[als]a]7

e
e
o e

I P iy

Fauft Occurreg in Periphessl Cirgults
T 8 10 O Y !
T TTT

Fig. 5. The error code pinpoints the bit in error for ail single-
bit errors, as shown at left. All single-bit errors are corrected
automatically and logged in a 1024-bit RAM, as shown here
for the example of Fig. 3.

Analysis (Fig. 6).

The fault-logging RAMs are interrogated periodi-
cally (about once per hour). Very little CPU time is
used.

Types of RAM Failures

The effectiveness of the error correction logic de-
pends on the failure modes of the 4AK MOS RAM. Error
correction is most effective if all errors are single-bit
failures with no address sensitivity (that is, minimum
multiple-bit failures). Data gathered by RAM manu-
facturers and by Hewlett-Packard indicate that a large
majority, approximately 75% to 80%, of 4K RAM fail-
ures are single-bit.4

There are two types of single-bit failures. The first
is a hard failure, in which a memory cell is “dead"".
Although this type of failure is a potential problem for
error correction because it fails every time it is ad-
dressed and increases the probability of a double-bit
failure, it is easily located and removed. The other
type of single-bit failure, the soft failure, is far more
difficult to locate. These failures tend to be nonre-
peatable or occur very infrequently. Soft failures are
caused by chip susceptibility to noise, voltage and
temperature variations, data patterns, timing, and
read/write sequencing. For example, if a 4K RAM

11

is sensitive to a particular data pattern, it will fail only
when that pattern is present in the RAM. That partic-
ular pattern may be very difficult to reproduce. This is
why one of the most difficult tasks in semiconductor
memory design is devising effective diagnostics.

With error detection and logging, diagnostics
become inherent in the memory design. When a fail-
ure occurs during nermal operation it is automatical-
ly logged. This does not mean that memory diag-
nostics are no longer necessary, but that single soft
failures are no longer a critical failure mode. Also,
soft single-bit failures do not reduce the effectiveness
of error correction to the same degree that hard
failures do.

Multiple-cell failures within a 4K RAM are poten-
tially most hazardous to the effectiveness of error
correction. The least desirable multiple-cell failure
is a totally “dead’ 4K RAM. Fortunately, this type of
failure occurs very infrequently and is easily detected
and repaired.

Reliability Improvement with Error Correction

The reliability of a semiconductor memory subsys-
tem is typically a direct function of the number of 4K
RAMs in that subsystem. Hence as the memory size
increases, memory reliability can become the limit-
ing factor on the overall computer system reliability.
Also, the reliability of 4K RAMs varies from maker to
maker and even between lots from a given manufac-
turer because of process and circuit changes. Ideally,
one would like to design a memory subsystem that
has a reliability independent of memory size and 4K
RAM reliability. Error correction does much to
achieve this goal.

The following definitions are necessary for a quan-
titative discussion of reliability.
m Failure rate (A) is the average percentage of all
devices that can be expected to fail per unit of time.
Failure rates are usually expressed in percent per
thousand hours. Semiconductor devices exhibit
changing failure rates with time, so a time frame
is usually specified along with a failure rate.
Mean time between failures (MTBF) is the recipro-
cal of failure rate.
Mean time to repair (MTTR) is the average time
required to fix a system once a failure is detected.
The effective failure rate of an error-corrected 4K
RAM array is the rate of multiple-bit failures, since all
single-bit failures are corrected. A multiple-bit failure
might consist of two 4K RAMs failing at the same sub-
system address. Totally dead 4K RAMs contribute
most to increasing the multiple-bit failure rate while
single-bit failures contribute least.

Separating the failure rates for the 4K RAMs and for
the peripheral logic we have for the non-error-cor-
rected memory:

© Copr. 1949-1998 Hewlett-Packard Co.

AtskraMm T AtLocic = ANEcsys
where Arycpay = failure rate of 4K RAMs in sub-

system
ALocic = failure rate of logic ICs in subsystem
Angcsys = failure rate of total subsystem with-
out error correction.
For the error-corrected memory,

Arskram|| Aecskram+AecLocic+ AtLocic = Aecsys

where Agcykram = failure rate of error correction
path 4K RAMs
Aecrocic = failure rate of error correction logic
ICs

Apcsys = failure rate of total subsystem with
error correction,

The error correction RAMs are redundant and can be
thought of as forming a parallel path with the data
RAMs. The 4K RAM has 4096 addresses. A single-
bit failure is considered to be a failure in any one of
those addresses. The multiple-bit failure rate is
dependent on the frequency with which one repairs
single-bit failures (MTTR) and the number of cells that
fail in a 4K RAM when a failure occurs. Using statisti-
cal data gathered by 4K RAM manufacturers and by
HP the multiple-bit failure rate in percent per 1000
hours is plotted against MTTR (single-bit) for a 128K-
word 4K RAM array in Fig. 7. The parameter in these
curves is the basic failure rate, A;xpam, Of a single
4K RAM. For example, assuming that detected single-
bit failures can be repaired within one month, or 720
hours, MTTR (single-bit) = 720. If A ;xgan = 0.1% per 1000
hours, then from Fig. 7, Arskram || Aecixram = Aecram
= 0.17%/1000 hours (or MTBF = 67 vears) for a
128K-word array. This figure is much smaller than
AtLocic + AecLocic. That is:

Aecrocic + AtLocic = Agcsys-

Thus it can be seen that error correcting tends to
stabilize the memory subsystem and make it rela-
tively independent of the 4K RAM failure rate.

The improvement of memory subsystem reliability
with error correction is Aygcsys =A pesys. By knowing
the A for each part and the part count we can tabu-
late an improvement factor.

Memory Size
64K 128K 256K
AaKRAM Improvement
0.05%/khr 3 4 +
0.2%/khr 9.8 15 15

Data gathered at HP and by IC manufacturers indi-
cates that Ayxpan after a few thousand hours of opera-
tion is between 0.05% and 0.2% per 1000 hours, mak-
ing the overall memory subsystem between 3 and 15
times more reliable than a system without error
correction,

From Fig. 7, MTTR directly affects the percent fail-
ure per 1000 hours. This is a parameter over which we

12

can exercise complete control. During the first few
thousand hours of operation the failure rate for the
4K RAMs is high, but it is possible to compensate for
the higher rate by decreasing MTTR. Since the system
keeps track of all errors, error logging can work as a
feedback mechanism whereby fewer errors will re-
quire less maintenance or more errors require more
frequent maintenance. The result of constantly moni-
toring the system can be used to calculate the MTTR
required to achieve the desired low probability of
ever getting a multiple-bit failure. For example, using
a mature failure rate of 0.05%/1000 hours for the
4K RAM, as might be expected after a few thousand
hours of operation, and an MTTR of one month, Fig. 7
indicates a multiple-bit failure rate of 0.04%/1000
hours or an MTBF for multiple-bit failures of 285 years
for the RAMs of the memory subsystem. The rest of
the memory subsystem will have an MTBF deter-
mined by its IC logic.

Low Maintenance

Since fault correction essentially prevents a com-
puter from failing even though a 4K RAM has failed,
memory maintenance can be postponed and per-
formed at a normally scheduled time or at a time that
is more convenient for the user. When memory main-
tenance and repair is necessary the customer engi-
neer, who services the computer, will find his task
much easier.

Since every fault that is detected is logged and tab-
ulated by the operating system, very accurate data on
the failing devices is maintained. The customer en-
gineer can use this data in several ways. First, without
running elaborate diagnostics, he immediately
knows all the detected failures that occurred in the
memory subsystem under the user’s operating envi-
ronment. Second, he knows which 4K RAMs are po-
tential troublemakers, since logging tells him how
many times each failure was logged. The failure
count is important because not every failure requires
replacement of a 4K RAM. For example, if a 4K RAM
fails only once in a month it probably would not have

EREOS CORRECTING MEMORY LOG ANALYSIS

LOGGING STARTED - DATE:
FIKST EBROR LOGGED - DATE:
LAST ERRDA LOGGED - DATE:
LAST LOG UPDATE = DATE?

T/ 2478
T7 2778
1 2776
Tr 2/76

TIME :
TIME:
TIME
TIME:

8153
B8:53
LH 1
Fi04

ADDRESS 1 ERROR TYPE 1 ERROR

mEMoRY 1 LOC I ROW I TYPE BIT BOARD CHIF 1 COUNT

7
&

SMA
SHA

urio 1 23
usT 1 1

- | b | e

BANK 0 T UMK | 21 Data
1 1 & 1 Data

Fig. 6. 3000 Series |l Systems log all corrected errors. The
printed error log helps the customer engineer weed out
4K RAMs that tail too often.

© Copr. 1949-1998 Hewlett-Packard Co.

1400 — Askpam=
0.05%/
1000 Hours 0.1%/
1200 - 1000 Hours 0.15%/
1000 Hours
1000 -+
| 0.2%/
1000 Hours
H 800
g
E
= 600
400
200
0 0.2 0.4 0.6 0.8 1.0
Aecrram = “Failure/1000 Hours for Multiple Bit Failure
Typical 128K-Word System

Fig. 7. The expected multiple-bit failure rate depends on the
failure rate of individual 4K RAMs and the mean time to repair
single-bit tailures (MTTR)

to be replaced, but if a unit fails, say, 10 times in a
month it probably should be replaced because it will re-
duce the effectiveness of fault correction. Third, the log
tells the customer engineer exactly which 4K RAM to
replace (see Fig. 6). This eliminates human errors in
interpreting the data. Fourth, after the customer en-
gineer repairs the memory by replacing any defective
4K RAMs, he leaves the user with a more reliable sys-
tem, that is, the reliability of the memory improves
because the weak RAMs are gradually being weeded
out of the system. Because memory boards are repaired
on site, the user retains a computer with known mem-
ory reliability instead of a computer with an exchange
board of unknown age and unknown reliability.

Acknowledgments

We would like to thank all of the people who con-
tributed to the success of this project. The design
team included Slava Mach, Bob Heideman, Ron Kolb,
Barney Greene, Don Jenkins, Ron Hoyt, and John Sell.
Printed circuit layout was done by John Bruno, Pat
Mansfield, Barbara Martin, Butch Zottoli, Lois Ghan,
and Marianne Miller. Production engineering was
done by Curt Gee, Paul Chang, and Dan Mathias.

Special acknowledgments go to Bill Berte for his
contributions as a member of the design team and to
Rick Amerson for his technical advice, &

13

References

1. R.J. Frankenberg, “Designer’s Guide to Semiconductor
Memories—Part 3,"” EDN, 1975.

2. W. Pascoe, '2107A/2107B N-Channel Silicon Gate MOS
4K RAM,"” Reliability Report RR-7, September 1975.

3. W.W. Peterson, “Error Correcting Codes,” M.I.T. Press,
1961.

4. T.L. Palfi, “MOS Memory System Reliability,” IEEE

1075 Semiconductor Test Symposium,

Leonard E. Shar
By the time this is printed, Len
Sharexpects to be in Australiaon
the first leg of a trip around the world.
Before going on leave, he was pro-
ject manager for HP 3000 operat-
ing systems. A native of Johannes-
burg, South Africa, Len received
his BSc degree in electrical
engineering from the University of
the Witwatersrand in 1968, and
his MS and PhD degrees in com-
puter science from Stanford Uni-
versity in 1970 and 1972 He's
: beenwith HP since 1972, is a

- / member of IEEE, and has taught
logic design at Stanford Forrelaxation, he likes hiking, bi-
cycling, reading, and music.

Tak Watanabe

With HP since 1970, Tak Wata-
nabe was a principal designer of
the original core memory and the
new semiconductor memory for
the HP 3000. Tak attended the
University of California at Berkeley.,
graduating in 1966 with a BSEE
degree. He designed missile sys-
tems for three years, and in 1970
he received his MSEE degree from
San Jose State University. Born
in Lone Pine, California, he's
single and now lives in Sunnyvale,
California. His hobbies are
photography and designing high-

Elio A. Toschi

Elio Toschi, one of the principal
designers of the HP 3000 error
correcting memory, has been de-
signing computer hardware for HP
since 1965. After receiving his BS
degree In electrical engineering
from San Jose State University in
1957, and before coming to HP,
he designed avionics equipment
for eight years. He's a member of
IEEE. Elio was born in San Jose,
California and still lives there
He's married and has two children,
and he loves skiing of any variety,
snow or water

© Copr. 1949-1998 Hewlett-Packard Co.

HP 3000 Series II Performance Measurement

by Clifford A. Jager

The HP 3000 Series |l hardware, firmware and software were
designed to provide increased performance and capabilities
over the HP 3000CX product ling. Measurements of these new
performance |levels have been conducted to confirm Series ||
design objectives and to better define Series || performance. Of
course, because of the great number of operational variables in
the use of a general-purpose multiprogramming computer sys-
tem such as the HP 3000 Series II, the full extent of its perfor-
mance capabilities cannot be defined precisely

Early Measurements

Preliminary measurements made a year ago confirmed the
objective of increasing the general instruction set speed by
about one-third. The average instruction time during an SPL (HP
3000 System Programming Language) compilation went from
4.08 microseconds to 2.57 microseconds. This meant that the
Series |l had an increase in throughput capacity of 50% without
considering the main pertormance enhancing factor, that is, up
to four times the amount of main memory.*

As Series || hardware and software became increasingly reli-
able, measurements were made involving many users and vari-
ous memory sizes. In single-subsystem measurements using
the COBOL compiler and BASIC interpreter improvements of as
much as 10 to 1 were seen in throughput and response time

TEPE

The Teleprocessing Event Performance Evaluator (TEPE)
System' was used to conduct these early measurements and
the others discussed below. It was developed at HP's Data
Systemns Division and consists of a program that runs on an HP
2100 Computer-based system and simulates up to 32 terminal
users. TEPE and the driven system, in this case a 3000 Series |1,
are hard-wired together and each terminal user's actions are
prescribed by a script. All messages that pass between TEPE
and the driven system are time-stamped and recorded on

*If an arhitrary amount of work W is completad in 1/3 less time T and the onginal throughput is
defined as the rate of doing work. W/T, then the new throughput is W/T (1-1/3) whichis 152 WIT,
or @ 50% increase.

T Model 7 Model 9 COBOL
/\ (Compilations)
6T SORT
(10,000 Records)
% 81 / RPG
§ / (Compile and Execute)
%_ 4T Process Seconds
5 / IMAGE
83T (Records Processed)
=
2--
7 // _EDITOR
- (All Interactions
for 3 Sessions)
0 + + {
192 256 320 384 448 512

Memory Size (KB)

Fig. 1. Relative throughput of HP 3000 Series /| modsis 7
and 9 using several measures of throughput. The base is a
model 5 system with 128K-byte memory

magnetic tape that is later processed by data reduction prog-
rams.

TEPE can simulate terminals of various speeds by sending
delay messages to the driven system to simulate user typing
and impose user think time between transactions. In the mea-
surements described below all users, bath batch jobs and in-
teractive sessions, were administered by TEPE. All were run
using simulated 2400-baud terminals. Input to the Series |l was
delayed 0.3 seconds per character to approximate typing.
Inter-event user think time for jobs was a constant 1 second,
while sessions used a random think time exponentially distri-
buted from one to 94 seconds with a mean of 22 seconds.? All
job output that would normally go to a line printer was directed
there via a FiLE command.

New Scripts

The COBOL and BASIC scripts used in the early measure-
ments were useful indicators but would probably not be consi-
dered typical by a potential user, Therefore several new scripts
were devised with the aim that they address a general applica-
tion area, be reasonable, and represent work loads that could
run on all standard Series || configurations so as to differentiate
their capabilities ? Since these scripts were designed to run on
all Series || configurations, they do not represent the maximum
workload for any Series |l configuration. No script was contrived
or tuned and no program was optimized

Three scripts were constructed, one for each of the following
user environments:

User Total No. No. Batch No. Interactive
Environment Users Jobs Sessions
Timesharing 15 2 13
Scientific 10 4 6
Commercial 7 4 3
User Event
No. Type Unit Completions
12 | Standard
BASIC Mix > RUN 127
? Data 636
= Add
Statement 535
> ust 27
Statements 133
> GET 68
> SAVE! 57
> RENAME 70
© BASIC 68
> PURGE 56
= EXIT 56
1 | Compiled
BASIC
Program RUN 7
1 | Interpreted
BASIC
Program > RUN 5
1 List 23-
Chain BASIC
Program Listings 55

Fig. 2. Absolute throughput in one hour on a 512K-byte
modef 9 for the timesharing script.

14

© Copr. 1949-1998 Hewlett-Packard Co.

The scripts had several features in common. Each was a
mixture of jobs and sessions, used several Series |l subsystems,
and generated spooled output to a line printer. Each was used
to measure response time and relative and absolute throughput
In these scripts, no user's activity ever ceases; as a cycle
completes it starts again.

The configurations tested were the standard models 5, 7 and
9. No optional configurations or additional equipment were used
except that all optional memory sizes were measured. All mod-
eis nad extended instruction set (EIS) firmware. The model 5
had one HP 7905A disc drive and the models 7 and 9 had two
HP 2888A disc drives. Memory sizes tested were 128K, 192K,
and 256K bytes on the model 5, 192K and 256K bytes on the
model 7, and 320K, 384K, 448K, and 512K bytes on the mode! 9.

Definition of Terms

Response time is the time from the initiation of a request until the
system Is ready 1o accept the next request. In other words, it is
the time from the carriage return terminating one request until
the prompt beginning the next. Response time does not include
user think time or delays to simulate typing. It does, however,
include the time for all responses to a given request.

Throughput is the rate of doing work. The units of work and time
may be somewhat arbitrary. In the early COBOL measurements,
the unit of work was a compilation and the unit of time was an
hour. Compilations, in this case, were a useful measure of
work since they occurred frequently with respect to the duration
of the measurement and they were homogenous across all
users. When events become infrequent or dissimilar they are
not quite so useful for measuring the throughput of a system.
Therefore, a common unit of work, the process second, will
also be used to describe throughput. Process time is that time
when any process operates on behalf of an individual user
whether he is doing computation or inputioutput operations. It
does not include system overhead for administering muiti-
programming or pause time when no user is able to run. The
sum of process seconds allocated to all users in an elapsed
hour will be used to describe throughput.

User Event
No. Type Unit Completions
3 Standard
Basic Mix > RUN 32
? Data 164
>Add
Statement 133
>ust 27
Statements 33
> GET 18
> SAVE! 15
> RENAME 18
- BASIC 18
> PURGE 15
> EXIT 15
3 EDITOR All 398
1 Compiled
BASIC
Program : AUN 5
1 Interpreted
BASIC
Program > AUN 4
1 BASIC Compile
and Run : BASICGO 0
1 FORTRAN Compile
and Run : FORTGO 22

Fig. 3. Absolute throughput in one hour on a 512K-byte
model 9 for the scientific script.

User Event
No. Type Unit Completions
1 coBOL
Compile . coBoL 7
1 SORT 10K Records 1"
3 EDITOR All 338
1 RPG Compile
and Run : RPGGO 5
1 IMAGE Input
Records 826

Fig. 4. Absolute throughput in one hour on a 512K-byte
model 9 for the commercial script.

Fig. 1 is an attempt to describe relative throughput for the
commercial script using several dissimilar events. Results are
relative to the number of events completed in one hour on a
model 5 with minimum memory.

The events completed by the three editor sessions remain
constant since they have high priority, require little proces-
sor time, and are essentially think-time bound. It appears that
COBOL and RPG made no improvement between 384K and
44BK bytes, but the fractional part of the next event completed is
unknown. In general the throughput for COBOL, SORT, and
RPG is probably overstated because of even greater error in
fractional parts of the base configuration. Process time (i.e.,
process seconds) then, is one convenient way to combine these
dissimilar activities nto a single representation with very little
error. It solves the problem of the partially completed event and
the surmming of unlike events.

Results

Figs. 2, 3. and 4 show throughput for the three scripts in
absolute terms for the model 8 with 512K-byte memory. Figs. 5.
6, and 7 show relative throughput and response time for all three
models. The precision or repeatability of the various experi-
ments was checked at several points. Throughputs measured
by process seconds agreed within 1% while mean response
times agreed within 5%.

The results for the three scripts are quite similar, showing that
relative throughput ranges from 1 to 312 or 4 with an accompany-
ing improvement (decline) in response time as the memory size

|
|
|
%‘.3-
EE 24 Model 9
=8
i
£ ———

1281 192 256 320 384 448 512
Memory Size (KB)
Fig. 5. Relative throughput and response time for models
5,7, and 9 for the timesharing script. Response time is based
upon statement entry and modification for 12 BASIC sessians
in & standard mix of operations.

© Copr. 1949-1998 Hewlett-Packard Co.

|
|
P
g =
g 3+ £
35
- Model 5
5%2“ ope P Model 9
%7 ¥y, “>Model 7
B o
E e 1+ i e
N
£3 —
e ——+ } f + —
128 192 256 384 448 512

Memory Size (KB)

Fig. 6. Relative throughput and response time for models
5, 7, and 9 for the scientific script. Response time is based
upon all events in three EDITOR sessions.

increases. An exception is that throughput and response time
favor the model 5 over the model 7 for equivalent memory sizes.
This is because of their disc configurations. The model 7, which
is designed for commercial users of moderate size, has six
times the disc storage space of the model 5, but slower disc
drives, access speed having been sacrificed for capacity.

Among the conclusions that may be drawn from these exper-
iments is that performance of the Series |l begins approximately
where that of the 3000CX ends and exceeds it by as much as an
order of magnitude in special cases. In the general case a
nominal figure of two to four or more times the performance of
the 3000CX is potentially available on the Series ||

Acknowledgments

Thanks go to Chris Wilson and Mas Suto for their efforts in
preparing scripts and conducting the many hours of measure-
ment in such a timely fashion.
References
1. J. Hawkes, "TEPE, Time-Sharing Event Performance Evaluator User Guide,”
Hewlen-Packard Data Systems Division Repon, June 9, 1975
2 N Mack and L E Shar, "A Supersystem for Basic Timasharing, ' Hewlett-Packard
Journal, Gecember 1974

T
ln

| od

0

,ga“ p Model 9
11l Se S
i% “uodous< g o
£ Model 7

351«- //

£

128 192 256 320 384 448 512
Memory Size (KB)
Fig. 7. Relative throughput and response time for models

5, 7, and 9 for the commercial script. Response time is based
upon all events in three EDITOR sessions.

3 N, Benwell, “Benchmarking Computer Evaluation and Measurement,” Hemis-
phere Publishing Corporation. 1975

Clifford A. Jager
Clift Jager graduated from the
University of California at
Berkeley in 1958. He holds a BA
degree in economics, but his
- career focus has been computer
systems. He's done systems pro-
gramming, BASIC timesharing
development, and performance-
measurement development and
consulting. Since joining HP in
1973 he's been doing perfor-
mance measurements on the
HP 3000 and now manages that
effort. Cliff is married, has three

1 ‘e ‘e children, and lives in Castro
Valley, California, just a few miles from QOakland, his birthplace

Hewlett-Packard Company, 1501 Page Mill
Road, Palo Alto, California 94304

HEWLETT-PACKARD JOURNAL

Bulk Rate

US Postage
Paid
Hewlett-Packard
Company

Z0BLOTJOHNAAABLACAAA 165

MR C A BLACKBURN
JOHN HOPKINS UNIVERSITY
APPLIED PHYSICS LAB
JOHNS HUOPKINS KD
LAUREL

MO 20810

CHAN G E OF ADD R ESS , To change your address or delete your name from our malling list please send us your old address label (it pesis off),
. Send changes to Hewlett-Packard Journal, 1501 Page Mill Foad, Palo Alto, California 94304 U.S.A. Allow 60 days.

© Copr. 1949-1998 Hewlett-Packard Co.

	Series II General-Purpose Computer Systems: Designed for Improved Throughput and Reliability
	An All-Semiconductor Memory with Fault Detection, Correction, and Logging
	HP 3000 Series II Performance Measurement

