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Square Wave and Pulse Testing 
of Linear Systems 

A>J arbitrary input wave, when transmitted 
through even an ideally linear system, can 

be altered in a number of ways. Such a wave 
can be altered, for example, in size, shape, and 
time of occurrence. There is, however, one class 
of waves or functions â€” the sinusoids â€” that a 
linear system can alter in only two ways. The 
response of any linear system to a sine wave is 
another sine wave differing from the original 
at most in amplitude and phase. This cardinal 
fact gives sine waves their unique position in 
communication theory and further gives physi 
cal significance to Fourier analysis and to the 
whole concept of frequency spectra. Since any 
input can be represented as the sum of a num- 

Diagrammatic representation of steps necessary to calcu 
late how a time function is modified by a linear system's fre 
quency characteristic. Direct calculation involves fewer steps 
but is often more difficult. 

ber of sinusoids, the output from a linear sys 
tem will consist of these same sinusoids modi 
fied only in amplitude and phase. Each will be 
transmitted by the system as if it alone were 
present (superposition). The simple sum of the 
output sinusoids will be the output wave. 

The way that the system modifies sine waves 
of all frequencies (the system amplitude and 
phase characteristic) thus constitutes a com 
plete description of the system in that it enables 
the output to be computed for any input. The 
procedure for such a computation can be rep 
resented graphically as shown at left. 

If not already known, the spectrum of the 
input wave is found by evaluating the Fourier 
transform (A to B in the diagram). The system 
multiplies the input spectrum by the transmis 
sion (amplitude and phase) characteristic <Â£(<") 
to give the spectrum of the output (B to C). 
The inverse Fourier transform of the output 
spectrum is the output time function (C to D). 

Although the above method of computing is 
an indirect method, it is often actually easier 
than the direct method. The direct method in 
volves evaluation of the convolution integral 
(often called the superposition or duHamel's 
integral): 

h ( t ) Â « f f ( T )  ^ ( t - i - ) d r .  ( 1 )  

<#>(T) is the impulse response of the system. 
</>(*-T) is therefore this same function reversed 
left to right and displaced by an amount /. 
What (1) says is that, to find the output, the 
product of the input and this reversed, dis 
placed impulse response must be integrated. 
The result will be a function of the displace 
ment, /. In other words, the input wave must 
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b e  s c a n n e d  w i t h  t h e  r e v e r s e d  i m  
pulse response. 

Equation (1)  is  easy to derive by 
considering the successive ordinales 
of f (t) to be a succession of impulses 
and applying the superposition theo 
rem. Equation (1) is also easy to eval 
uate on occasion, but more often it is 
d i f f i cu l t .  By  con t r a s t ,  r a the r  com 
plete  tables  of  t ransforms exis t ,  so  
tha t  ge t t ing  f rom A to  B and  f rom 
C to D often involves merely using a 
t ab le .  The  in t e rmed ia t e  s t ep  f rom 
B to  C  i s  accompl i shed  mere ly  by  
multiplying the input spectrum F(o>) 
by the system's transmission charac 
teristic <Â¿>((o). The situation is analo 
gous to the use of  logari thms when 
r a i s i n g  a  n u m b e r  t o  a  p o w e r .  T o  
compute  7^,  for  example ,  involves  
looking up the logari thm of  7(A to 
B),  mult iplying by i r  (B to C),  and 
l o o k i n g  u p  t h e  a n t i l o g  f o r  t h e  a n  
swer (C to D). 

Even more impressive is the case 
where  f ( t )  and  h( t )  a re  known and  
the system frequency characteristic 
and  impulse  response  a re  des i red .  
The direct solution involves solving 
(1)  as  an integral  equat ion.  But  by 
the  ind i rec t  t r ans form method  the  
answer is simply 

<j>(t)  is  then the inverse transform 
of <Â£(Â«>). 

T h e  a b o v e  h a s  s h o w n  h o w  a  
knowledge of the steady state (sine 
wave) characterist ic of a system en 
a b l e s  t h e  o u t p u t  w a v e f o r m  t o  b e  
c o m p u t e d  f o r  a n y  k n o w n  i n p u t  
waveform.  Even  i f  the  exac t  input  
waveform is not known, however,  a 
knowledge  o f  the  s t eady  s t a t e  pe r  
fo rmance  o f  t he  sys t em enab le s  a  
picture to be gained of how the sys 
t em wi l l  t r ansmi t  t he  inpu t  wave .  
All that may be known, for example, 
is that the input may contain all  fre 
quencies  over  a  cer ta in  band (e .g . ,  
speech or music) and that the system 
must be able to transmit  this whole 
c lass  of  inputs  wi thout  d is tor t ion .  
Th i s  r equ i r e s  t ha t  t he  ou tpu t  be  a  
repl ica  of  the  input  except  for  pos  
s i b l e  c h a n g e s  o f  s i z e  a n d  d e l a y ;  

t h a t i s :  h ( t )  = K  f ( t - t 0 )  

where K is a constant and t0 is a per 
missible delay.  In the frequency do 
ma in  th i s  r equ i res  tha t  the  ou tpu t  
s p e c t r u m  b e  t h e  i n p u t  s p e c t r u m  
modif ied  only  by a  constant  ampl i  
t u d e  f a c t o r  K ,  a n d  a  l i n e a r  p h a s e  
shift, </> = â€” w t0; that is 

H  ( w )  -  K  F ( ( j )  6  i \  ^  z  

The system frequency characteristic 
must  therefore  be  f la t ,  wi th  l inear  
phase over  the band of  frequencies  
to be transmitted: 

< i ( u j )  -  K  6  1 ^  ^  2  

R E S P O N S E  O F  L I N E A R  
S Y S T E M S  T O  I M P U L S E S  

While steady state measurements 
are  very  useful  for  the  reasons  d is  
cu s sed  above ,  t hey  a r e  a l so  qu i t e  
t ime consuming to make.  For many 
purposes  the  t rans ient  response  of  
the system to certain particular types 
of  input  waves may provide al l  the 
information necessary. In fact, if the 
input wave is properly chosen, such 
a  t r ans i en t  measuremen t  p rov ides  
exac t ly  the  same in format ion  as  a  
s t eady  s t a t e  measu remen t  bu t  p ro  
vides it in a different form. 

Cons ider ,  fo r  example ,  the  case  
where the input ,  i ( t ) ,  is  an impulse 
of negligible duration and, say, unit 
a r ea .  The  spec t rum o f  such  an  im  
pulse contains al l  f requencies.  The 
frequencies all have the same ampli 
tude and are all in phase in the sense 
tha t  they  a l l  add  a t  t  =  0 .  In  o ther  
â€¢words the spectrum of such an im 
pulse is a constant F(w) = 1.  

Now from the superposit ion theo 
rem, it makes no difference whether 
a l l  f requencies  are  in t roduced one  
after another, as in steady state test 
ing,  or  s imultaneously by applying 
an  impulse .  In  e i the r  case  any  f re  
quency will be modified in the same 
way by the  l inear  sys tem.  Impulse  
t e s t i n g  t h u s  m i g h t  b e  s a i d  t o  b e  
e q u i v a l e n t  t o  a n  i n s t a n t a n e o u s  
steady state test. They both give the 
s ame  in fo rma t ion ,  bu t  t he  r e su l t s  
must  be  in terpreted in  e i ther  case .  
When  the  inpu t  i s  an  impulse ,  the  
input spectrum is F(Â«) = 1 and the 
output spectrum is H(o>) = 4>M. In 

other words, the response of a linear 

n e t w o r k  t o  a n  i m p u l s e  i s  a  p u l s e  

whose spectrum is the amplitude and 

phase characteristic of the network. 

Obvious ly ,  the  in te rpre ta t ion  of  
impulse tests involves a familiari ty 
wi th  the  spec t ra  assoc ia ted  wi th  a  
wide var ie ty  of  t ime funct ions  and 
v ice  versa .  A Table  of  Transforms  
published in these pages some time 
ago illustrated a number of time func 
t ions with their  associated spectra.  

Impulse  tes t ing  has  advantages ,  
but  i t  a lso has two severe disadvan 
t a g e s .  F i r s t ,  t h e  i m p u l s e  m u s t  b e  
sho r t  compared  wi th  t he  du ra t i on  
o f  t h e  f i n e s t  d e t a i l  o f  t h e  o u t p u t  
transient which is to be reproduced 
accurately.  In other words the spec 
trum of the impulse must be flat over 
t h e  e n t i r e  f r e q u e n c y  r a n g e  o f  t h e  
device under test. To get appreciable 
response ,  then ,  of ten  requi res  tha t  
the impulse be so large in amplitude 
that  the device under test  is  driven 
out of i ts range of l inear operation. 

The second disadvantage is  that ,  
when testing wide band devices, the 
low frequency effects are hard to ob 
serve. This is because only an insignif 
icant amount of the wide input spec 
trum is deleted by the low frequency 
cutoff of the device under test. 

R E S P O N S E  O F  L I N E A R  S Y S T E M S  
T O  S T E P  F U N C T I O N S  

The disadvantages of impulse test 
ing are avoided by vising step func 
t ions.  With a step the r ise t ime can 
be as  shor t  as  desi red wi thout  a  re  
sulting increase in amplitude. Since 
the spectrum of a unit step is F(o>) = 
I/jo), more energy is concentrated at 
the  low end  o f  the  spec t rum.  Low 
frequency effects are thus placed on a 
more nearly equal footing with high 
frequency effects. 

A unit step is the integral of a unit 
impulse. The step function response 
of  a  system might  thus be obtained 
in  any of  the  three  ways  indica ted  
in  the  d iagram.  Par t  (a )  o f  the  d ia  
g ram shows  a  s t ra igh t forward  tes t  
wi th  a  s t ep  func t ion  genera to r .  In  
(b) the step generator is replaced by 

*B.  M.  Ol ive r .  "Tab le  o f  Impor tan t  Trans  
forms," Hewlett-Packard Journal ,  Vol.  5,  No.  
3-4, Nov. -Dec., 1953. 
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Three possible test arrangements for obtaining a system's step-function response. 

a combination of an impulse genera 
tor and an integrator. In (c) the in 
tegrator has been interchanged with 
the system under test. Since both are 
linear systems the output is unaf 
fected. (c) illustrates the important 
fact that the step junction response 

of a linear system is the integral of 

the impulse response. Further, the 

spectrum of the step function re 

sponse is 1/jia times the steady state 

amplitude and phase characteristic 

of the system. 

Conversely, the impulse response 
is the derivative of the step response. 

S Q U A R E  W A V E  T E S T I N G  
The accompanying table (I) shows 

the step function responses for some 
typical common networks. If the 
condition stated below is met, these 
responses will also be the response to 
the (positive) step of a square wave, 
because a square wave can be consid 
ered to be a succession of alternate 
positive and negative steps. The 
table includes a few explanatory re 
marks with each response. 

In order for the response to each 
step of the square wave to be identi 
cal with a system's step function re 
sponse, the square wave frequency 
must be low enough so that the in 
dividual transients do not overlap. 
In other words the square wave fre 
quency must be less than l/2t, where 
t is the time required for the step 
response to reach a constant value 
within the desired accuracy. Cases 

*Assuming either a match at all junctions or 
frequency insensitive mismatch. 

where long duration square waves 
should be used are where sharp ir 
regularities exist in the frequency 
characteristic. Typical cases of sharp 
irregularities are low end cutoffs or 
sharp resonances anywhere in the 
pass band. 

If high-end cutoffs are being ob 
served, a relatively high repetition 
frequency with its widely-spaced 
spectral lines is usually permissible. 
The reason for this is that high-end 
cutoffs are relatively broad frequency 
effects (consume only a short time 
in the time domain). 

Sharp mid-band effects may be ex 
plored even with high repetition 
frequencies if  the repeti t ion fre 

quency is variable. Sweeping the 
repetition frequency will always 
cause some harmonic of the square 
wave to coincide with a sharp mid- 
band effect and thus produce an ob 
servable transient. In fact, long dur 
ation resonances that are scarcely 
visible in the step function response 
because of their low amplitude will 
become quite prominent when the 
proper frequency square wave is 
vised. The reason for this is that the 
proper frequency square wave will 
cause the successive excitations of 
the resonance to reinforce preceding 
excitations with the result that a 
much larger amplitude oscillation is 
produced. 

The complete step function re 
sponse of a system having a low fre 
quency cutoff is only displayed if the 
repetition frequency is much less 
than the frequency of the cutoff. 
Since it is often inconvenient to use 
such a low frequency, it is customary 
to use a frequency such that the tran 
sients from the successive positive 
and negative steps do not vanish 
completely but rather overlap con 
siderably. In such cases the square 
wave response needs to be inter 
preted. Table II shows some typical 
overlapped low frequency responses. 

-B. M. Oliver 

T A B L E  I I  
E F F E C T S  O F  T Y P I C A L  L O W  E N D  D I S T O R T I O N S  O N  S Q U A R E  W A V E  

( A )  
LOW FREQUENCY PHASE LEADING LOW FREQUENCY PHASE LAGGING 

( 0  

LOW FREQUENCY AMPLITUDE 

(D) 
L O W  F R E Q U E N C Y  A M P L I T U D E  

(E)  
L O W  E N D  S I M P L E  R C  C U T O F F  ( A S D )  

(F)  
R E S U L T  O F  P H A S E  C O M P E N S A T I N G  E  
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