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The recent detection of vibrational excitations in monochromated electron energy-loss spectroscopy 

recorded from scanning transmission electron microscopes has opened up new opportunities for 

nanoscale materials characterization [1].  The enhanced energy resolution has the greatest impact on the 

low-loss EELS and it is now possible to probe vibrational and electronic excitations at the nanometer 

level. For example, localized bandgap mapping and detection of interband states is now possible 

providing a new tool to correlate optical properties with atomic structure [2,3]. Vibrational 

spectroscopy allows hydrogen containing species to be identified and correlated with materials structure.  

Detection of water and OH species on nanoparticle surfaces is important for developing a fundamental 

understanding of solar water splitting catalysts. The delocalized nature of the low-loss spectrum also 

makes it possible to use the aloof beam spectral acquisition mode (i.e. with the electron probe 

positioned outside the sample) dramatically reducing electron beam damage. To investigate the 

feasibility of OH detection, a series of hydroxide and hydrates have been investigated. 

Samples of Ca(OH)2, H3BO3 and Ni(NO3)26H2O were prepared for TEM by crushing the powders and 

dispersing over holey carbon films. Spectra were recorded from these samples using a Nion UltraSTEM 

fitted with a monochromator, an aberration corrector and a Gatan Enfinium spectrometer.  The 

microscope was operated at 60 kV and the typical energy resolution was between 15 – 30 meV (the 

larger resolution was sometimes employed to increase the signal to noise in the spectrum) with a typical 

dwell time of 30 – 60 s.  Spectra were acquired in both transmission mode and in aloof beam mode.  In 

some cases, linescans were recorded in which a series of spectra were recorded as the beam was moved 

from the vacuum into the bulk.   

The OH stretch mode at 452 ± 2 meV was easily detected from Ca(OH)2 using aloof beam EELS as 

shown in Figure 1a.  The peak full width half maximum (FWHM) was around 24 meV and the linescan 

(Figure 1b and c) shows that the OH signal is maximized when the probe is positioned just outside the 

sample and falls to less than 10% of its maximum when the probe is 35 nm away from the surface. The 

vibrational signal also falls off rapidly as the probe moves into the sample due mostly to electrons being 

elastically scattered outside the spectrometer entrance aperture and possibly radiation damage.  The OH 

stretch was also observed in H3BO3 (Figure 1d) at an energy of about 453 ± 2 meV with a FWHM of 20 

meV. (A smaller peak at around 350 meV may be due to hydrocarbon contamination). The aloof beam 

mode is also useful for minimizing radiation damage for valence-loss spectroscopy. Figure 2a shows 

the low-loss spectrum from the Ca(OH)2 recorded in aloof mode (beam 6 nm outside sample) and in 

transmission mode (beam 10 nm inside sample).  Both spectra show a bandgap of approximately 6.5 eV 

but the aloof mode spectrum shows prominent peaks at 7.3 and 8.4 eV which do not show up in the 

transmission spectrum. The leading tail on the edge of the conduction band in the transmission 

spectrum is consistent with a large number of defects introduced as a result of beam damage.  
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Figure 2b shows the OH vibrational fingerprint for Ni(NO3)26H2O.  The peak center at around 430 

meV is almost 25 meV below the corresponding stretch for the hydroxides.  It is also asymmetric and 

much broader with a FWHM of around 80 meV suggesting a variation in the molecular environment 

around the OH species. The sample was in the microscope high vacuum system of 10
-9

 Torr for several 

days and there may have been selective loss of water from the surface region probed which is primarily 

probed by aloof beam EELS. During the presentation other factors influencing the detection of OH 

species especially on oxide surfaces will be discussed. The ultimate goal is to detect hydroxide species 

locally on the surface of water splitting catalysts.    
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Figure 1: a) Aloof mode spectrum showing OH vibrational peak at 454 meV from Ca(OH)2. b) Z-

contrast image and c) OH peak intensity as a function of position from Ca(OH)2. c) OH peak recorded 

in aloof beam mode from H3BO3. 

Figure 2: a) Low-loss spectrum from Ca(OH)2 recorded 6 nm outside the sample (blue) and  in 

transmission mode (red). b) OH vibrational peak from Ni(NO3)26H2O. 
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