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The progress in the development of fs-structural probes during the last twenty years has been 
tremendous. Current ultrafast structural techniques provide the temporal and spatial resolutions required 
for the stroboscopic observation of atoms in motion. In regards to femtosecond electron sources, 
different compression approaches and ultra-compact designs have made possible the generation of 
ultrashort and ultrabright electron pulses. With an effective brightness only one hundredfold below that 
of fs-hard X-ray Free Electron Lasers, ultrabright femtosecond electron sources have revealed 
unprecedented results in the study of photoinduced ultrafast structural dynamics [1, 2]. A brief overview 
of field along with a recent femtosecond electron diffraction (FED) study of the photoinduced insulator-
to-metal phase transition of organic charge-transfer salt (EDO-TTF)2PF6 [3] will be presented. Here, we 
implemented a low repetition rate (10 Hz) and ultra-bright femtosecond electron source in order to avoid 
cumulative heating effects, and obtain a movie of the relevant molecular motions driving this photo-
induced insulator-to-metal phase transition. We were able to record time-delayed diffraction patterns 
that allow us to identify time-dependent changes over hundreds of Bragg peaks (see figure 1). Model 
structural refinement calculations indicate the formation of a transient intermediate structure (TIS) in the 
early stage of charge delocalization (during the initial 2 ps). The molecular motions directing the 
formation of TIS were found to be distinct from those that, assisted by thermal relaxation, convert the 
system into a metallic-like state on the 100-ps timescale.  
 
In terms of design engineering, ultra-compact femtosecond electron diffraction setups still offer the most 
convenient and economic means to obtain 100-fs electron pulses with an areal electron density similar to 
that achievable by DC-RF compression schemes (≈ 5 e-/µm2) [4-6]. The most compact and simplest 

1207
doi:10.1017/S1431927615006820 © Microscopy Society of America 2015

Microsc. Microanal. 21 (Suppl 3), 2015
Paper No. 0603Paper No. 0603

1207
doi:10.1017/S1431927615006820 © Microscopy Society of America 2015

Microsc. Microanal. 21 (Suppl 3), 2015



FED setup is comprised of a photocathode, an anode aperture and a cylindrical magnetic lens that is 
placed right after the sample [7]. N-body simulations show that the extracting DC electric field strength 
(E) plays a major role. There is a great reduction in the electron pulse duration when going from E = 10 
MV/m to E = 20 MV/m. Reaching a DC field strength of 20 MV/m is challenging but possible [8], and 
under this condition such ultra-compact setup would enable sub-100 fs (FWHM) temporal resolution . 
 
The presented findings illustrate the potential of ultrabright femtosecond electron sources for capturing, 
with atomic resolution, dynamical processes of relevance for the understanding of chemical reactions, 
phase transitions, and protein structure-function correlations. 
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Figure 1. a) Top left panel: HT-LT denotes the difference between the diffraction pattern of high-
temperature (HT) phase and that of the low-temperature (LT) phase. The rest of the panels show the 
difference between the diffraction patterns of the photoinduced and the initial LT phases as a function of 
the time delay between the optical excitation and electron probe pulses. b) Relative intensity changes for 
a few selected Bragg reflections. This figure was adapted from reference 3. 
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