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The concentration of sulfur in diesel is becoming regulated to increasingly lower levels.1-3 Thus, 
new catalytic systems are necessary to effectively address this challenge. To effectively develop 
these new materials, it is important to better understand the complex nanostructures existing in 
the current hydrodesulfurization (HDS) catalysts.4-11 This study looks into that issue by using ex-
situ TEM time-temperature-transformation (T-T-T) data to follow the development of the active 
phase in a Ni-promoted Mo-rich HDS catalyst.  
 
Oxide particles were first crushed into fines using an agate mortar and pestle. The fines were 
dusted onto standard, 200 mesh, holey-carbon-coated TEM grids. The grids were transferred into 
a Philips CM200F where the oxide particles were imaged in the bright field TEM mode at an 
accelerating voltage of 200 kV.  The locations of the oxide particles on the grid were “mapped” 
during the TEM examination so that those same particles could be re-located and re-examined 
with subsequent thermal treatments. A fixed bed reactor designed specifically for ex-situ TEM 
studies12 was used to treat the grid.  
 
Examination of the fresh oxide agglomerates revealed numerous structures (Figure 1a). The 
metal oxide crystallites are represented by the darker phase, while a binder phase is presented by 
the light gray, mottled structure. The TEM grid holding the oxide crystallites was then treated at 
200 °C for 8 h under a 10% H2S/H2 environment.  An examination of the same crystallites 
revealed a significant difference in the material. While the binder phase did not change, newly 
formed particles were apparent (Figure 1b). Elemental analysis of these particles indicated that 
they were enriched in Ni and S. This provided visual evidence of the low temperature Ni phase 
partitioning that can occur during the sulfidation process and is thus consistent with open 
literature studies discussing the formation of detrital Ni and Co sulfide particles during the 
sulfidation of Mo-based catalysts.4,5,7,9,10 
 
The grid was given a final sulfidation treatment at 375 °C for 4 h under a 10% H2S / H2 
environment and then returned to the TEM for re-examination. Significant changes were again 
evident within the agglomerate (Figure 1c). First, the Ni sulfide particles observed in Figure 2b 
continued to growth with time and temperature. Second, distinct layered structures became 
evident. The presence of the layered features clearly indicated the Mo-rich sulfide particles had 
formed within the system. It is well known that the Mo-rich sulfide particles must be decorated 
with the promoter atoms to be fully active.13 Thus, these data indicate the importance of an 
overabundance of Ni in the oxide in order to have sufficient Ni remaining to coat the exterior of 
the Mo-rich sulfide particles and allow catalysis to occur. 
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Figure 1:  BF TEM image showing: (a) oxide crystallites (dark phase) and binder (lighter gray 
phase with mottled texture) , (b) original crystallites after a 200 °C, 8 h treatment in a 10% H2S / 
H2 environment, and (c) original crystallites after a 375 °C, 4 h treatment in a 10% H2S / H2 
environment. Arrows indicate the same region in each image. Solid arrow shows region of binder 
that does not change with sulfidation, while broken arrow presents region of significant phase 
partitioning with sulfidation. 
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