Dynamic Observation of Tunnel-driven Lithiation Process in Single Crystalline α -MnO₂ Nanowires

Yifei Yuan¹, Anmin Nie², Gregory Odegard², Kun He^{1,3}, Dehua Zhou⁴, Sunand Santhanagopalan⁵, Dennis Desheng Meng⁵, Robert Klie⁶, Christopher Johnson⁴, Reza Shahbazian-Yassar^{2*}

^{1.} Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Dive, Houghton, Michigan 49931, United States

² Department of Mechanical Engineering-Engineering Mechanics, Michigan

Technological University, 1400 Townsend Dive, Houghton, Michigan 49931, United States

³ Department of Materials Science and Engineering, Shandong University, 17923, Jingshi Road, China.

^{4.} Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue,

Argonne, Illinois 60439, United States

^{5.} Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, 500 West 1st Street, Arlington, Texas 76019, United States

⁶ Department of Physics, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, United State

Manganese dioxide (MnO₂) possess various allotropic forms such as α -, β - and γ -phases, which are constructed by combination of octahedral [MnO₆] building blocks to exhibit various tunneled structures. These unique structures are believed to account for the various characteristics of MnO₂ when it is employed as electrode material in lithium (ion) batteries ^[1-2]. There is, however, lack of direct proof demonstrating the role of tunneled structure during electrochemical lithiation/delithiation of MnO₂.

In this work, by applying aberration-corrected scanning transmission electron microscopy (ACSTEM) to single α -MnO₂ nanowire along both axial and radial directions, the tunneled structure is clearly shown and characterized in Figure 1. The α -MnO₂ nanowire is single crystalline and grows along [001] direction. Cross-sectional ACSTEM shows that the nanowire has a squared cross section and 2×2 tunnels align parallelly along its growth direction [001], matching very well with simulated crystal structure. An open cell design inside TEM for dynamic observation of MnO₂'s lithiation/delithiation process is also demonstrated. It is found that upon lithiation, the α-MnO₂ nanowire shows different orientation-sensitive morphologies. That is, α -MnO₂ unit cell expands asynchronously along [100] and [010] directions, resulting in macroscopic difference under [010] and [100] zone axes observations. Electron Energy Loss Spectroscopy further confirms such an asynchronous expansion property via quantification of Mn valence during lithiation. DFT simulation demonstrates that the asynchronous essential originates from the specific Li-occupancy sequence at Wyckoff 8h sites inside α -MnO₂'s 2×2 tunnels. Following the theory, the predicted morphology of one partially lithiated nanowire and the experimental observation are shown in Figure 2, where both match very well. These findings provide fundamental understanding for stepwise potential variation during the discharge of Li/α-MnO₂ batteries as well as the origin for low practical capacity and fast capacity fading of α -MnO₂ as an intercalated electrode.

Figure 1 (a,b) TEM image of a single α -MnO₂ nanowire and its SAED along <010>; (c,d) HAADF image of the same α -MnO₂ nanowire and the atomic model structure along <010> direction; yellow spots indicate Mn atoms, while pink represents K and red indicates O atoms. (e) TEM image of an α -MnO₂ nanowire cross section and the corresponding SAED along [001] direction; (f) [001] atomic resolution HAADF showing K (pink) atomic columns and Mn (yellow) columns forming 1×1 and 2×2 tunnels; scale bars in c and f are both 1 nm; two inserts: the green line indicates EDS scan to distinguish Mn and K columns; the model shows [001] atomic configuration.

Figure 2 Left: 3D model showing the asynchronous expansion of a partially lithiated K⁺-stabilized α -MnO₂ nanowire; Right: Schematic [010] and [100] zone axes observation under TEM and the experimental TEM results. The color code (black, red, blue and green) indicates the corresponding zones observed in-situ.

References:

- [1] Chen K. et al, The Journal of Physical Chemistry C 117 (2013), p.10770.
- [2] Xun Wang, Y. L., Journal of the American Chemical Society 124 (2002), p.2.