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Decision Support Systems (DSSs) are utilized to support a users decision process. 
One generally required characteristic of a DSS is that it be an interactive system. 
Generally the degree of interaction between the human and the system is such that 
one can view the information processing activity as being performed by the 
human-computer information processor. Although DSSs are fairly commonly used, 
there has been very little work done to develop a formal basis for the design of such 
systems which take into account the interactive nature of problem solving. In this 
paper we propose a formal model for analysing the human-machine information 
processor. The model takes into account cost of performing information-gathering 
actions, communication costs and time constraints. We illustrate the application of 
the mode1 within the domain of categorization. A special case of the categorization 
problem called the “only-correct-guesses-count” problem is defined and analyzed 
within the context of the model. 

1, Introduction 

Decision aids such as Decision Support Systems (DSSs) are designed to function in 
an interactive mode with the user. The interaction between the human and the 
system could take several forms. A situation in which the user types in a request, the 
system responds and the user leaves with the results, would correspond to the no 
interaction case. In most cases before the final results are obtained, there is an 
exchange of information between the human and the computer. The interaction 
could be user directed, i.e. the user obtains some results from the system and 
queries it further for more information, requests alternative solutions or directs the 
system’s problem-solving approach. On the other hand there are systems, for 
example expert systems, in which the interaction is largely directed by the system. 
One could also have a combination of user directed and system-directed interaction. 
Systems such as Symbiotic Decision Support Systems (SDSS) (Manheim, 1989) and 
Active DSS (Mili, 1989) can be considered to function along these lines. 

In addition to the nature of interaction, a critical factor in the design of a DSS is the 
time and cost involved in performing relevant information-gathering actions while 
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solving the problem. Most problems have to be solved within a finite time 
constraint. For example, placing a bid in a sealed-bid action, requires the bidder to 
obtain information and place a bid before the deadline specified by the auctioneers. 
Solving a decision problem typically implies a net positive payoff to the decision 
maker. Given the speed and storage capabilities of the computer, one rationale for 
its use in decision making is to increase the number of information-gathering actions 
performed before making a decision. However, there are problems (e.g. NP 
complete problems) which in spite of the speed of the computer could take a 
phenomenal amount of time to solve completely. Often in such cases rather than 
obtain precise solutions, heuristics are utilized to obtain good solutions, with the 
precision of the solution dependent on factors such as time, assumptions made and 
information required to execute the algorithm. In such cases it is necessary to 
balance the cost vs. benefits of the solution approach. Thus, in utilizing the 
information-gathering action, i.e. an algorithm, in the process of solving the decision 
problem, one needs to consider its cost and execution time. 

Given the interactive nature of problem solving, the question arises can one 
develop a formal model of decision making, incorporating the idea that problem 
solving has to be viewed in a human-machine context, while at the same time 
considering cost of information gathering and time constraints. In this paper we 
propose such a model. The underlying concepts of the model draws on decision 
theory. A special case of the categorization problem called the “only-correct- 
guesses-count” problem is analyzed using the model. 

The paper is organized as follows: the features of the model are discussed in 
Section 2 of this paper. In section 3, the categorization problem is defined within the 
context of the decision-making model and problem-solving strategies for the only 
correct guesses count problem are defined. The conclusions and extensions to the 
work are discussed in Section 4. The appendix contains a formal analysis of the 
only-correct-guesses-count problem and the nature of the optimal solution for the 
problem. 

2. A model of decision making 

The model proposed here is an extension of the mod:1 presented in Moore and 
Whinston (1986, 1987). Various characteristics of the extended model are con- 
sidered in Jacob, Moore and Whinston (1989). Here we relate the approach to 
interactive problem-solving and discuss its application within the context of 
categorization. In defining the decision problem we consider several factors: 

1. Given a state space the goal of the problem-solving activity is seen as 
determining the “true state”. 

2. In general one knows something about the problem and this is reflected in the 
probability density function which is assumed to be known. 

3. If the true state were known the set of possible final decisions corresponding to 
it are known. 

4. One performs information-gathering actions to determine the true state. The 
information-gathering actions could include such activities as execution of an 
algorithm. 
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5. Given the fact that there are two information processors, the information- 
gathering action could belong to either the human or the computer. 

6. Performing an information-gathering action by either the human or computer 
is going to incur some cost, as well as take time. 

7. The problem needs to be solved within a deadline or in other words there is 
time pressure to complete the problem. 

The decision problem is formally defined by nine elements: 

where 

D = (X, $7 D, w*, A, {M, 1 a EA), c, t, 2-j 

X is the set of possible (mutually exclusive) states. The generic notation “x” is 
used to denote elements of X. 
C$ X-t [0, l] is the probability density function. C# defines the probability 
distribution function it: P(X)-, [0, l] by: 

n(Y)= C, G(x) for YGX, 
XCY 

where “P(X)” denotes the power set of x. 
D is the set of available (final) decisions. 
o*: X x D+ R is the payoff function. 
A is the set of “initial” (information-gathering) actions, or experiments, available. 
Ma is the information structure associated wtih action a E A. (Each Ma is a 
partition of x, as will be explained in more detail below.) 
c: A-, R, is the cost function; c(u) is the cost of utilizing action a E A. 
f: A-+ R, is the time function; t(u) is the time taken to perform action a E A. 
T is the total time available in which to perform the information-gathering 
actions. (T could represent the time beyond which the state changes. It could also 
represent the time after which the payoff is negligible or zero.) 

Within the above context we also assume that: 

1. The state space, X, the set of decisions, D and the action set, A are all finite. 
2. The true state f E X does not change while the decision problem is being 

solved. Alternatively one could view T as the time beyond which the state 
changes. 

3. Given there is the human and the computer involved the action set A is made 
up of information gathering, and communication actions from the two 
information processors. A, therefore is defined as: 

where, 

A =A, UA2 

Al=A;UA; 

A*=A;UA; 

The subscript 1 refers to the human information processor and the subscript 2 
refers to the computer. The superscript e denotes the information-gathering or 
experimental action set and the superscript c denotes the communication 
action set. 
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The decision problem solving activity is seen as performing information-gathering 
actions which partition the state space. The definition below formalizes the concept 
of an information structure on a set B. 

DEFINITION 1 

Let B E X be non-empty. A family of subsets of X, B, is an information structure on 
B iff: 

i. (VB’EB):B’#@. 
ii. B is a partition of B (That is, the sets in B are pairwise disjoint, and their union 
equals B). 

Given the above definition of an information structure, we can now describe the 
result of performing an information-gathering action. Associated with each a E A:, 
s = 1, 2 is a set of information signals, Y,, and a function r,r* :X+ Y,. Each Y, is 
assumed to contain a finite number, n(a), of different signals, so that, without loss 
of generality Y, can be written as 

Y, = (1, 2, . . . ) n(a)}. 

It is also assumed that a = 0 is the null information action and n(0) = 1. 
For a given x E X, there is a single signal receivable from each of the it 

information signal sets. Thus the information is viewed to be obtained determinis- 
ticaly (i.e. noiseless information). Thus, if the information-gathering action a E A:, 
s = 1, 2, is performed and the signal y E Y, is received, it is known that the true state 
f, is an element of the set MIIy defined by: 

May = {x E X 1 q@(x) = y} = q;‘({y}) for a = 0, 1, . . . , n, y = 1, . . . , n(u) 

Notice that M, defined by 

M,, = {M,,, . . . , Ma,,,,,} for u = 0, 1, . . . , n. 

will be a partition of X. After action a is performed, one will know to which of May 
the true state belongs. It should also be clear that, Vu E A; U A;, Ma is an 
information structure on X (by Definition 1). Ma is referred to as the information 
structure associated with (or induced by) a. A communication action results in the 
communication of some B c X from one processor to the other. However, as far as 
the processor which is sending the message is concerned the communication action 
does not partition its state space as the information-gathering does, therefore, one 
can view for a E Ai U A;, M, = {X}. 

DEFINITION 2 

Let B 2 X be non-empty, and let a E A. The information structure induced on B by 
a, L(B, a), is defined as: 

B n M,z, . . . , B n Kn,,,) \ ($1 if ueA;UAs 

ifuEAFUA$ 

DEFINITION 3 

Let B c X be non-empty, and let B be an information structure on B. An action 
function on B is a function CY : B + A. 
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In general, the goal of performing actions is to refine an information structure or 
in other words further partition a set. The next definition formalizes the notion of 
refinement. 

DEFINITION 4 

Let B E X be non-empty, let B = {B,, . . . , Bk} be an information structure on B, 
and let (Y: B-A be an action function on B. The refinement of B by a, R(B, a), is 
defined by: 

DEFINITION 5 

Let B E X be non-empty, and let B1 and B2 be information structures on B. B1 is 
said to be as fine as B2 (or that B1 is a refinement of BJ, and written as B, 2 B2, iff: 

(VB’ E B,)(ZB” E B2) : B’ E B”. 

Note that if B is a non-empty subset of X, B is an information structure on B, and 
CY is an action function on B, then R(B, a) is (an information structure on B and is) 
a refinement of B. 

So far we have considered the issue of partitioning the state space using 
information-gathering actions. The issue arises if there is a time constraint how 
many information-gathering actions can be taken before a decision has to be made. 
The next definition specifies the maximum number of actions that can be taken 
given a time constraint. 

DEFINITION 6 

Let a * E A’, where A’ indicates the set of experimental actions other than the null 
information action, be such that 

Vu EA’ 

t(a) 2 t(a *). 

If we then define 

T 

r= t(a*) I-l 
r is the maximum number of information-gathering actions possible in a strategy. 

It is obvious that the number of actual information-gathering actions performed 
along any path in a strategy will generally be some r’ < r. However, since both the 
cost and time taken to perform a null information-gathering action are assumed to 
be zero (i.e. c(0) = 0 and t(0) = 0), therefore, it is assumed that exactly r actions are 
performed along any given path, with r - r’; of them being the null information- 
gathering action. 

A two processor strategy for D, 0, is defined as: 

o= ([(B,, 41, W:, &), (B:, &)I> . . . > KB:, d), (BP, a?)], [@;+I, 41) 
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satisfying: 

1. Bi = {X} 
2. a. $:BT+A,forj=2,.. . ,r;s=l,2 

b. a;:B;+AI 
c. B;+l = R(B,“, aj) for j = 1, 2, . . . , r; s = 1, 2. 

3. &B;+p D. 

A strategy is viewed as being composed of two parts 

i. the information-gathering strategy: 

a = ([@I, a,)], W:, d), (B:, &)I, . . . , [(B;, a-t), (B:, a;)]>, 
ii. the decision strategy, (B:,,, S). 

Within this context we make the following assumptions about the behaviour of the 
human and the computer: 

1. The decision problem originates with the human, who initiates the problem 
solving and the final decision is made by the human. 

2. Each processor can perform only one action at a given time, i.e. communica- 
tion or information-gathering. Note that communication is used to denote the 
combined operation of sending and receiving information. 

3. The computer is assumed to have the capabilities of a DSS. The communica- 
tion actions performed by the humans are, therefore, non-programming 
actions (i.e., actions not involving writing programs). This also implies that the 
computer can perform multiple information-gathering actions if necessary 
before responding to the human. 

In creating a dual processor strategy we are in effect attempting to design an 
interactive system, deeping in mind that the two processors have very different 
capabilities and that decision-making has to be viewed as a combined effort between 
the two processors. Given the context of decisionmaking, it is natural to use an 
expected payoff measure of determining, “how good an interactive information- 
gathering strategy really is.” This will also provide a comparative measure for the 
design of interactive systems. The next definitions allow us to define the expected 
net payoff of a strategy. 

DEFINITION 7 

If 

o= ([@I, 41, I@;, a:), (B%, &I, . . . 7 WC, dh (Bk d)l, [(#+I, WI> 
is a feasible strategy for D, and q E (1, . . . , r), the sequence (B;(B)) 

K lJ . . * ’ 

q) for each B E B”, (as well as for B E B:,, and j = 1, . . . , r) is defined 

@(B)=that B’~B~suchthat BsB’ s = 1, 2. 

p;(B) is referred to as the predecessor of B at j, the superscript indicates whether 
the predecessor results from an action done by the human or the DSS. 
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DEFINITION 8 

Let 

be a feasible strategy for D, and let q E (2, . . . , r}. For each B E 43:’ a”,(B) is 
defined as the sequence (of length q - 1) of actions taken by the strategy u along the 
path that yields B. Thus: 

a”,(B) = (~“(1, B), . . . , a”(q - 1, B)), s=1,2 

where “as(j, B)” denotes the action taken at step j (j = 1, . . . , q - 1) along the path 
that yields B, i.e., 

as(j, B) = a@;(B)] for j = 1, . . . , q - 1. 

Note that the above definition also holds for B E B:,,. 
In a given realization of the decision problem, the application of a strategy, will 

result in the determination that f, the true state, is an element of some B E B,+l. 
The cost of determining that .f E B will be the sum of the costs of all the actions 
taken along the path yielding B, and will therefore be given by: 

C(B) = ,gl +‘(i, WI + i cb*(i, WI. 
j=l 

The expected informational cost of strategy o is therefore given by: 

I-(a)= c n(B)C(B). 
BeB!+, 

Given a strategy for D, u, the gross expected payoff for o is denoted by “Q(a)” is 
given by 

Q(a) = AE;;+, XB dJ(x)w*h W)l. 

The expected net payoff of executing a particular strategy is given by: 

Q*(a) = Q(a) -r(a) 

The goal, therefore, is to determine the best strategy for solving the problem, or in 
other words to find the strategy which maximizes the expected net payoff. 

Given that the computer has the capabilities of a DSS, from the perspective of 
designing an interactive system, the communication action points are assumed to be 
preset. Although one might view this as a restrictive assumption, it is not completely 
unfounded. Clearly the design of an interactive system assumes certain capabilities 
on the part of the two processors. The system can perform certain information- 
gathering actions such as execution of models or accessing data from a data base, at 
the same time the system may need information obtained by the human as a result 
of performing information-gathering actions on the environment. The system would, 
therefore, query the user for the required information whenever necessary. 
Although one may argue that the user could provide a substantial amount of 
information at the outset of the interaction, this will be inefficient as the human 
would perform information-gathering actions and generate information which the 
system might not utilize. Thus, in designing systems which take an integrated 
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approach to decision problem solving one needs to take into account when the two 
processors should communicate. 

DEFINITION 9 

The set of communication points, Q c (1, . . . , r} is defined by: 

Q = {j E (1, . . . , r} ( (3s E {1,2}, B E B;, 4(B) EA:}. 

If Q is not empty, we shall denote it by: 

Q = (41, qz, . . . ) qJ 

where lsq,<qZ<-.-<qpsr. 
Given the human-computer structure of the problem-solving endeavour, the 

following features of the interaction is assumed: 

1. The first communication is performed by the human and until that occurs the 
computer does not perform any information-gathering actions. 

2. At the instant the human (computer) communicates to the computer (the 
human), it (he/she) is not performing any actions pertaining to the problem at 
hand. In other words the human cannot instruct the computer about the 
problem while it is in the process of performing an information gathering 
action or when it is providing information to the human. Conversely if the 
system provides the human with information while the human is performing an 
information-gathering action, he/she will address it only after he/she has 
completed the action which was being performed. 

3. It is assumed that after the computer responds to the users request, it does not 
perform further information-gathering actions until requested to do so again by 
the human. 

4. A communication action does not partition the communicator’s information 
structure, but partitions the information structure of the processor to whom 
the information was communicated. 

DEFINITION 10 

Let Be = {B;, B;, . . . , Bze}, and B. = {By, Bz, . . . , Bz,,}. Then n(B,, B,) is de- 
fined as 

n(B,, B,) = {B; fl By, B; fl B;, . . . , Bf rI BO,,, 

B;.B; ,..., B;r-IBO,, ,..., 

Be,<n By,. . . 7 B’,<n B:,N$+ 

Based on the characteristics discussed earlier we will define a feasible dual 
processor strategy. 

DEFINITION 11 

A dual processor strategy. 

u= ([@I, a:)], W:, d)(B% &I, . . . , [(B;, d)(B:, d)], [(B;,,, S)]) 
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is called viable iff either: 

A) Q = Cp, in which case 

Bf = {X} and af:Bf-, (0) for j =2, 3, . . . , r. 

Or 

B) There exists a positive integer k such that 

#Q=p=2k 

where #Q indicates the number of elements of Q 

and 

1) For each i E (1, . . . , p} one has: 
a) If i is odd then c$,:B~,-,A~, BA,,, = Bii, 

~t$:B~~4 (0) and Bz,,, = n(Bt,, Bi,). 

b) If i is even then 

&B;,+ (01, Bti+, = n(B;,, B:,). 

o/“,, : B;,4 A; and BG,,, = Bi,. 

a) If q, > 1 then BT = {X} and 

(u~:B~+{O} for j=2, . . . ,q,. 

b) If i is even, i <p and qi + 1~ qi+i, then 

Bf=Bii and c$:Bf~{O) for j=qi-tl,. . . , qi+l 

c) If p < r then BT = BzP and 

CY~:B~~+{O} for j=qP+l,...,r 

3) For each jE (1,. . . , r}\Q, one has, 

aj:BS*A: and Bq+I= R(Bj, c$) for s= 1,2. 

The above definition formalizes. the assumptions made earlier about the form of 
the interaction between the human and the computer. Since there is a time 
constraint which has to be satisfied before a strategy can be considered feasible, the 
next definition establishes the constraining time between a communication action by 
the human and the response of the computer. 

DEFINITION 12 

ForeachhE(l,...,~)andeachBeB:+i, r,(B)isdefinedas 

th(B) = max lj=?!:+, t(a’(jt B)), ‘gl t(a2(jt B))} 
j=qu-,+I 

9zz+1-1 

+ @‘h-l, 3) + t(a*b,, B)) + 2 @*(i, WI, 
j=qu+1 
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where qr+, = r + 1, and 

.I;:, t(a’(j, B)) = 0 
7 

if qul + 1= q2h+l. 
A feasible strategy can now be defined in the dual processor case. 

DEFINITION 13 

A dual processor strategy 

A feasible strategy can be classified into one of four categories namely, 
independent, sequential, concurrent or mixed strategies. A strategy is called 
independent if only one processor performs information-gathering actions, thus 
within our context, either the human solves the problem by him/herself or the 
system solves the problem by itself. A strategy is called sequential if at any given 
time only one processor is performing information-gathering actions. Thus, during 
the problem-solving process, the two processors exchange information periodically 
and the exchanged information forms the basis for a processor to continue with 
performing information-gathering actions. A concurrent strategy has only the 
human performing a communication action at the start of the strategy after which 
both processors perform information-gathering actions till the last action where the 
computer communicates back to the human. Finally any strategy which does not 
belong to either one of the above categories are called mixed. We formally state this 
as follows: 

DEFINITION 14 

A feasible strategy CT is called: 

1) independent if it satisfies condition A of the viability definition (Definition ll), or 
Q=(l,r)andai:Bj-*Oforj=2 ,..., r-l, 
a::B:+Ai, and tx~:B~-+A~ 

cuf:BT+A;forj=2 ,..., r-l, 

2) sequential if Q # $I and for 1 I i ‘p - 1 and i odd then, 

~j:Bf+{0} for j=qi+l,. . . ,qi+l, 

3) concurrent iff Q = { 1, r} and for j = 2,3, . . . , r - 1 

LY;:B+A; 

All other strategies are referred to as mixed strategies. Notice that a mixed 
strategy may be mixture of concurrent and sequential strategies, in that for i odd, 
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there may be situations in which between qi and qi+lp both the human and the 
computer are performing information-gathering actions. However, in other situa- 
tions only the computer may be performing information-gathering actions while the 
human waits for the results. 

The set of feasible strategies under the dual processor framework would include 
independent, sequential, concurrent and mixed strategies. From this set of feasible 
strategies one can define a subset of strategies called efficient strategies. A feasible 
information-gathering strategy to be efficient has to satisfy the following conditions: 

3. 

If 

Given a B s X, if an experimental action is performed to partition it, then the 
information structure induced on B by the action should have at least two 
elements. Formally, for each j E { 1,2, . . . , r} \Q and s E { 1,2} and each 
B E B;; if 4(B) = d.# 0 then #L(B, 6) 2 2. 

Clearly if this condition does not hold we have incurred a cost without any 
gain, and as such any strategy for which this does not hold will be strictly 
dominated. 
No further information gathering actions should be taken on B, if the best 
decision one can take for all the elements of the information structure 
generated as a result of performing an information-gathering action on B is the 
same. Formally: 
If BA’ is the finest information structure possible, i.e. if all the information- 
gathering actions are taken the information structure resulting from it is BA’. 
Let D*(B) be the set of best decisions for B, i.e. 

Let BA(d) = {B E BA’ 1 d E D*(B)} and X, = UBsBAcd) B. 
Then for each j E { 1,2, . . . , r}andeachB~BT;ifforsomed~D, B~X~,then 

a If s = 1, or 
b. s=2, andforsomehE{l,... ,p/2} 2h<jr2h+l, we have crt(B)=O, 

forq=j,j+l,.. . ,r. 

If the human performs a communication action, one expects the computer to 
further refine the information structure. That is, if qi and qi+l E Q are such that 

&B;,-*A; 

and 

4,+, :B:,+,-+A; 

then 

Bi,+,+, >Bi,+, and Bi,+,+l >BG;+, 

this condition is not met by a strategy, then we have a strategy for which the 
of communication is not warranted by the results. Additionally this strategy 

would be dominated by another strategy, which is identical to the first except for the 
communication. 
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4. For each B EB~+~, 6(B) E D*(B), . 1.e. we take the best decision given B. 

The set of efficient dual processor strategies can be defined as 

Z(D) = Z’(D) u P(D) u P(D) u P(D) 

where 

Z’(D) = set of all efficient independent strategies for D. 

xc(D) = set of all efficient concurrent strategies for D. 

Z”(D) = set of all efficient mixed strategies for D. 

Z’(D) = set of all efficient sequential strategies for D. 

The optimal strategy would be a member of the set Z(D). In general one needs to 
consider strategies satisfying the efficiency conditions for further analysis. In the 
next section we discuss the application of the model to the categorization model. 

3. The categorization problem 

The categorization problem deals with the issue of classifying the current state as 
one of n categories. In many problem domains classification forms the core problem, 
whose solution paves the way for further analysis of the problem, medical diagnosis, 
fault diagnosis, chemical analysis of an unknown substance and forecasting are 
examples of areas in which solving the classification or categorization problem is the 
first step towards a complete solution of the problem. 

Since categorization problems are encountered in practically every field, class- 
ification has been studied closely by researchers in Artificial Intelligence (Chandra- 
sekaran, 1983; Clancey, 1984). The prevalence of categorization problems has 
resulted in a number of expert systems, in diverse problem domains, being 
constructed to solve classification problems. Table 1 lists a few of these systems. 

Here we consider the problem within the context of human-computer informa- 
tion processing framework. In addition to the assumptions made in defining the 
model in Section 2, the categorization problem is defined by the following 
assumptions. 

1) The final decision set can be written in the form: 

D = (0, 1, 2, . . . , P>, where p 2 1 is a positive integer 

2) There exists a partition of X, {X,, X1, . . . , X,} such that w takes the form 

w(x, d) = 
w>o ifxEXd 
o 

otherwise 

where, 

w,, Xl, -. * 9 X,} represents an exhaustive set of categories to which the true 
state f may belong. 
Thus in the formulation, the payoff is a constant (constant over categories) i3 if f 
is categorized correctly otherwise the payoff is zero. 
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TABLET 

Expert systems for classifcation problems 

Expert system Problem domain 

Dendral Determines molecular structure 
(Buchanan & Feiganbaum, 1978) of unknown compound from mass 

spectral and nuclear magnetic 
response data 

CRIB 
(Hartely, 1984) 

DART 
(Bennet & Hollander, 1981; 
Genesereth, 1984) 

Location of computer hardware 
and software faults 

Diagnosing faults in computer 
hardware systems 

DIPMETER ADVISOR 
(Davis et al., 1981) 

PROSPECTOR 
(Gashnig, 1982) 

ABEL 
(Patil et al., 1981) 

Determines subsurface 
geological structure 

Determines likelihood of 
finding mineral ore deposits 

Diagnosis of acid-base and 
electrolyte disorders in 
medicine 

CASNET 
(Szolovitz & Parker, 1978) 

INTERNIST 
(Pople , 1982) 

MYCIN 
(Shortliffe, 1976) 

Diagnoses disease status 
related to glaucoma 

Diagnoses in general internal 
medicine 

Diagnoses and suggests therapy 
for patients with bacteremia, 
meningitis and cystitis 
infections 

The only correct guesses count problem is defined by adding the following 
assumptions to the categorization problem, 

1) The function rj~ : P(X)-, [0, l] is defined by 

q(B) = max {Id(B fl X,) 1 d e D} for B 5 X, 

2) If X = {X,, xi, . . . ) X,) 

3) There exists a positive integer m Zp + 1, satisfying: 

(VB E BA’) : q(B) = l/m, 

In order to simplify the analysis we make the following assumptions regarding the 
state space, cost and information structure of the information-gathering actions. 
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1) The cost of performing information and communication actions are assumed to 
be constant as follows: 

and 

and 

2) 

and 

3) D satisfies 

Vu E A;, c(a) = cl 

Vu E A’,, c(a) = c2 

VaEAEUA& c(a) = c 

VaeA~:n,=#M,=k, 

VaeAz:n,=#M,=k, 

ii, 
(k, - l)--cc, 

m 

and 

lh 
(k2-I)---zc2+2c 

m 

Vu E A:, t(a) = f,; 

Vu’ E A’,, t(a’) = t2; 

Vu” E Af U A& t(a”) = t3; 

x = kl, Xl, . . . , xp> 
,,,+-& 

Under these conditions, one would like to take as many information-gathering 
actions as possible, we can prove that the optimal solution in this case is a 
concurrent strategy (see Appendix 1). 

4. Conclusions 

In designing DSSs a factor one has to keep in mind is the sequence of 
information-gathering actions performed by the DSS and the nature of interaction 
between the system and the human. The sequencing of actions is important when 
there is a time constraint and the cost of these actions have an impact on the final 
payoff. These actions may be actually performed by the DSS or may be actions 
suggested by the DSS for the human to perform on the environment. Within this 
context one needs to develop analytical techniques for the design for such systems. 
As a first step in this direction, in this paper we discussed a formal model of decision 
making which takes into account the fact that problem solving has to be considered 
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from a human-machine perspective. Additionally the cost of information-gathering 
actions and time is incorporated into the model. 

In general the nature of the problem and the characteristics of the problem would 
determine the type and form of the information-gathering strategy. Here we have 
considered a special case of the categorization problem called the only correct 
guesses count problem and within the context of the assumptions made about the 
problem we have shown that a concurrent information-gathering strategy is optimal. 
The underlying decision theoretic approach have been applied in areas such as 
auditing (Fernandez, 1988), networking (Balakrishnan et al. 1990) and file search 
(Moore, Richmond & Whinston, 1988) and expert system development (Hall, 
Moore & Whinston, 1986). 
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Appendix 1 

Given the characteristics of the problem discussed in Section 3, we formally discuss 
the nature of the final partition obtained in an information-gathering strategy and 
prove that the best strategy is a concurrent strategy. The definitions below present a 
convenient representation scheme to analyse the problem. 

DEFINITION 15 

If u is a feasible strategy, then for each B E l?; where S E { 1, 2}, a&, B) is defined 
as follows, 

dg,B)= ’ l if a’@, B)eA;\{O} 
0 otherwise 

a&, B) = ’ 
if a*@, B)cA;\{O} 

0 otherwise 

Additionally, 

dz, B)= ' 
if u’(g, B) E A; 

0 otherwise 

+c(g,B)= ' I 
if u*(g, B) E A; 

0 otherwise 

DEFINI’lTON 16 

Given an efficient information gathering strategy for D, 

a= ([(&, 4)1, [(& &), (S, &I, . . . > [W, &I, m, d)l)t 

$‘, where h E {1,2, lc, 2c) is defined as follows: 

$:B;+{1,2,...,r+l}by 
j-1 

G(B)= c u,&B),BE B; 
g=l 

where s E { 1, 2). Additionally, 

MB) = 6’+*(B), B l B;+, 
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PROPOSITION 1 

If CT is an efficient strategy for D then (note that I?:+, is denoted as B,+1 as it is 
assumed that the human makes the final decision). 

T(a) = c Jr(B)[t,1(B)c, + Q(B)C* + (T&(B) + t,@))c] 
Bdc+1 

= r(c, + c2 + c) - c Jc(B)[r(c, + c2 + c) 
BE&+1 

- (t,l(B)cl + t,4B)c2 + (%4B) + v4~)kN. 

Proof 

where 

Since 

we have 

Similarly, 

and 

C(B) = i: c[a’(i, B)] + i c[a2(i, WI 
j=l j=l 

,$ 4a2(it WI = t,z(B)c2 + z,z(B)c 

It follows, therefore, that 

r(a) = BEz,+, Jr(B)[t,@3)cI + W(B)G + (G4B) + ?x4~))cl 

Since 

2 n(B)[r(cl+c2+c)]=r(c1+c2+c) C n(B) 
BE&+1 BE&*1 

and 

it also follows that 

r(a) = r(q+ c2 + c) - c JWWc1+ c2 + c) 

BEi?,+ 

- ((~c&W~ + ~#3)~2 + (u(W + w4O)~))l. 

We now consider the conditions under which a E Zc is optimal is considered. 
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DEFINITION 17 

Let o be an efficient strategy for D, then we define the following, 

T - 2t, 
r, = I J and 

1, 

and 

r’ = max {rl, r2} 

Lemma 1. If 

is an efficient and non-trivial concurrent information-gathering strategy for D then 

#B,+i 5 (Q-2)(&2-2) _ &-2 c [k:+r!@) _ l] 
BEB!. 

_ k:-2 2 [k~-2--S?‘(B) _ 11 

BEB!. 

+ c [@-2--t!@) _ 

BEB:. 

l] BTB!, [k:-2-TF@) - 11. 

Proof. Since communication occurs at the first step, the maximum possible number 
of non-null information gathering steps which can be taken by the human is r, - 2 
and by the computer is r2 - 2 at r’. By Proposition 5.1.6 (Moore & Whinston, 
(1986), which states that for a single processor #B,+i I k’ - CBEB,+, [krmrrtB) - l] we 
have 

and 

#B;, 5 k:-2 c [k:+-T!@) _ 1) 

BEB:. 
(1) 

#Bf, 5 @-2 2 [Q-2-“?@) _ 1) 
B6Bf. 

(2) 

Since the computer communicates back to the human at r’, 

Bit+, = n {B:, B;,}; 
and thus 

#B;,+, 5 k:-‘_ c [k:+-r!@) _ 

BEB:. 

l]] x [k:-2 - c [k;-2-+(B) - l]]. 
BEB:. 

This implies that 

#B;,+, 5 (k:-2)(k?-2) - k2”-2 c [k;l-2-s!@) - l] 
BEE:. 

_ Q-2 c [kF-2-r?,(B) _ 11 

BeB:. 

+ C [q-2-~!,(B)_ 1) 

BEB$ 

x 2 [&-2-+(B) _ 11 

BEB:. 
(3) 
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Since V B E Bf,,,, a,!(B)=0 and VBEBF,,~, a;(B)=0 where j=r’+l,. . . , r we 
also have 

#B,+, = #B;,+, 

PROPOSITION 2 
If 

o = (LB,, Q:], P:, d), (Bk &I, . . . , 1% a;], [B;, d)]) 
is an efficient and non trivial concurrent information gathering strategy for D then 

#B,+l 5 (k:-2)(kT-2) 

- Rz,+, [kp-Q@) - l] 

- c [/q-2-W) - 11 
BE&+, 

- -& [&l--2--rm3) - 1][jp-e3) _ 11 

_ c [(k;‘-2-SP’(Bf)(k;2-2-~~*(B)) _ 11. 

BE&+1 

Proof. 

Let 

B;. = {B;, . . . , BA,} and B?. = { Bf, . . . , B&}. 

This implies that 

B;,+, = {B;,+,(B:), . . . , Bt,+,(B:,)) 

and 

B:.,, = W:+,(B:), . . . 9 B?+,(B:,)l 

where for B E Bj, B,(B) is defined as the successor of B at j E {1,2, . . . , r} and 
B,(B)={B’EB,IB’~B=c#J}~~~~=~,..., r + 1. Note that the relation holds for 
both the human and the computer and BF,, = Bz. 
For any BE Bi,,,, there exists a unique i E { 1, . . . , n,} and j E { 1, . 
that 

. f 9 n2} such 

and thus 

B E BF.+,(B:) and B E B$+,(Bf) 

B=BfflB;. 

We see then that, for each i E (1, . . . , nl}: 

B$+,(B:)={BfnB: ,..., Bi’nB:,}\@. 

Therefore for each B E BF,, 

#B:,+,(B) I #B:; 

and since r’ is a communication action, for each Bi E B,.+,(B) we have 

TV, = Tf,+,(Bi) = t,l(Bi) 

(1) 

(2) 
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Similarly we have for each B’ E B?,, 

#Bf,+,(B’) I #B,‘.; (3) 

and for each Bj E IIf,+, 

T;,(B) = t:,+,(Bj) = taz(Bj) (4) 

Now, we have 

c [ky-=d~) - 11 = c 2 [&l-*-~!m _ 11; 

BEE!.+, BEE!, BEI?!.+, 

and thus it follows from (l), (2) and Lemma 1 that: 

2 
BEB!.+, 

[@-*-**I@) - 115 (#B:) & [4++(B) _ 11 

BzF, [k~-2-"!"Bj) - 11) 
I 

x c [@-*-r!,(h) _ l] 

BieB!. 

5 Q-2 c [ky*--r!,(Bi) _ 11 

B,eB!. 

- 2 [k;2-*-=@i) _ 11 c [k:-*-%,(h) _ 11. 

B, EL+. BisB!. 

This implies 

c [k~-*-%(B) _ 11 + 2 [@-*-k(Bj) _ 11 x c [k~-*-%,(Bs) _ 11 

B&3!.+, B&. B,eB;. 

5 &-* BzL, [ky-*-%(Bi) - 11 

This can be rewritten as 

-k!j-* c, [k:-*-=dBi) - 115 _ x [k:--2--T&‘) _ I]_ C [k~-‘-“2(8j) _ 11 

B+B!. BEB$+, Bj’Bf. 

x 2 [k;‘-*-%,(%) _ 11 (5) 

BieB!. 

Similarly from (3) and (4) we have 

2 [@--2-k@) _ 11 5 k:-* c [&r*-k(Bj) _ 11 

BeB$+, BpB$ 

_ Bz, [k;l+%(B,) _ 11 

I ! 

)( c [&2-2-Q(B) 
’ -11, 

Bj&. 

this inequality can be rewritten as 

-k’l’-* c [k~-2-==-z(B,) - 115 _ c [k~-2-Tm2(B) _ 1] 

B,EB$ BEB$+, 

- .z!, [k:-*-r,,(Bt) _ 11 

x BTBF, [k;‘-*-‘@(4) - l] 

I 

(6) 
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Substituting (5) and (6) into the conclusion of Lemma 1, 

#B’ ,,+* 5 (k:-2)(kfj-2) - c [k:-2-rdB) - 1) 
BEB:.+, 

_ c [kT+-rm@) _ 1) 
BEE!.+, 

_ c [k:+%,(h) _ 11 
R,E& 

x & [k;2-2-roz@J) - l] (7) 
I 

Since #Btr+l ES (#B,‘.) (#B$,), and using (2) and (4), the following holds, 

c [&+~!‘@i) _ I] 2 [ka-2-“‘@,’ _ 11 
&El?!, B,eBf 

> Bz,,, [k:-2--rdB) - l][,4;Z-2-rdB) - 11 (8) 

Thus, using (8), (7) can be written as 

#B;.+, I (k:-2)(kT-2) - c [k:-*-=,l@) - 11 
BE@+, 

_ c [&r--r&B) _ 11 

LX&+, 

_ c [k~-%#) _ l][&+~o,(B) _ 11 

BE@+, 

5 (k;‘-*)(@-*) - 2 {[k:-*-%(B) - 11 

BE@,, 

+ [&z-2-k(B) _ 11 

_ (k:-‘-“~,‘B’)(k;2-2-td2(B)) 

_ (&r*-“m,(B)) _ (k;2-kdB)) + I} 

5 (&i-‘)(@-2) _ 2 {(@-*-Gd4) 

BEE!.+, 

x (kp-*-W)) - 1) 

PROPOSITION 3 

If there exists an efficient concurrent strategy 

CJ* = WL a:)], [(B:, &)(B;> &)I, . . , [(B;, d)(B;, d)], [@;+I, a)]) 

such that, 

#B,+l = K:-2k?-2 

then the expected net return from CJ* is 

I) Q*(cJ*) = (k:-2ka-2); - [2c + (rl - 2)c, + (r2 - 2)c2] 

and 

2) CT* is optimal for D. 
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Proof. Corollary 5.1.7 in Moore and Whinston (1986) states that, if 

#B,+1 > k(k’-’ - 1) + 1 then VB E B,+l : t,(B) = r. 

Along each path to arrive at r’ the number of information gathering actions taken 
(including null information gathering actions) is r’ - 2 since the first action taken is 
the interaction action. However here if 

#IS;, > kJQ-3 - l] + 1 

where s E {1,2} then 

(VB E Bs.) : t,(B) = r, - 2 

Consequently since /c’-* > k(F3 - 1) + 1, and, since at r’ we have an interaction 
action, hence we have VB E B,,+l, 

t,,(B) = r, - 2 

t&B) = r2 - 2 

q+(B) = 1 

t&B) = 1. 

This implies 

Since 

r(a*) = 2c + (r, - 2)c, + (r2 - 2)c2 

a(a*) = #B,+1 t ) 

we see that 

Q*(a*) = (k:-*)(kT-*) i - [2c + (rI - 2)c, + (r, - 2)c2] 

Proof of Optimal@ 

Let (I be any other efficient strategy for D, then by Proposition 2, 

#B,+, 5 (&4)(&4) - 2 [(k:-*-~~“(B))(k~-*-r~z(B)) - 11. 
BE&+1 

Letting 

p = c [(k:-*-~,,(B))(k;Z-*-~~‘2(8)) - 11 > 0, 
BE&+1 

we have, 

#&,I 5 (k:-*)(@-2) - p 

This implies Q(a) I [(ky-*)(k;2-*) - p] f , and since by Proposition 1, 

r(o*) = 2c + (r, - 2)cI + (r2 - 2)c2 - c n(B){[(r, - 2)cI + (r2 - 2)c2 
BE&+1 

- r,l(B)c, - w(Bk21) 
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we have: 

Q(a*) - r(a*) - [&J(a) - r(a)] zp; + c, Jr(B)[rpl(B)cl + r&B)c* 
BE&+1 

- @I - 2h - (r, - 2)c2] 
Define for each B E B,, 1, 

,E(B) = [(k:-2-~o,(B))(k;2-2-T,*(B)) _ 11; 

+ JwMB)cI + w(Bk2 
- @I - % - k* - %I 

Letting B E B,+, be arbitrary, we distinguish three cases: 

Case 1. If Q(B) = rr - 2 and t,*(B) = r2 - 2 then 

S(B)=Il-l]~-n(B)xO=O. 

Cu.re 2. r,l(B) = r, - 2 and t,z E { 1,2, . . . , r’ - 3). Here 

(1) 

(2) 

= (&;2-mm _ 1); 

- J4W[(r2 - 2) - ?x,Wlc2 

However, since k2 12, we have for all q = 1, 2, . . . , r2 - 3 

k?- 1 
-rk2- 1; 

4 

](W2--raZ(B) - 1)] 4 ~ (k2 _ 1) ? . 
rz - 2 - r,z(B) m m’ (3) 

and 

c2 2 n(B)c,. 

Using (3), (4) and assumption 3 made in the definition of the problem: 

E(B) = (kT-2-ruZ(B) - 1) E - ~r(B)[r~ - 2) - r,,(B)]c2 2 0 
m 

(4) 

Case 3. r&B) E (1, 2, . . . , r2 - 3) and r&B) = r2 - 2. By an argument symmetric 
with that used in case 2, we can establish that g(B) 2 0 here as well. 

Case 4. r&B), r&B) e (1, 2, . . . , r, - 3). It is easy to see that (cf Proposition 2), 

E(B) = [k:-2-rwl(B) - 1) ; - x(B)[(r, - 2) - r&B)]c, 

+ [@--2--a&) _ 11; = n(B)[(r, - 2) - r,z(B)]c2 

+ [k;l-2-%(B) _ l][&-Q(B) _ 110 
m (5) 
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Since we obviously have 

and the arguments for case 2 and 3 respectively show that the first and second terms 
on the right hand side of (5) are non-negative; it follows that 

S(B) 20 

in this case as well. 
Reviewing the four possible cases, we see that for each B E B,+l, we have 

E(B) 2 0 

Consequently using (1) we see that 

Q*(a*) 2 Q*(a) z c g(B) 2 0; 
BE&+1 

and it follows that cr* is an optimal strategy for the set Xc. 
In a sequential of mixed strategy with p > 2 communication points, the maximum 

number of information gathering steps possible for each information processor is, 

From Definition 17, and the definition of a concurrent strategy the maximum 
number of information-gathering steps possible for a concurrent strategy is r, + r,. 
From (6) and (7) and the definition of a mixed and sequential strategy it is obvious 
that the maximum number of information-gathering steps possible in these two cases 
is less than ri + r;. From (l), (2) and Definition 17 we have 

rl+r2>r;+r$ (8) 

Now, if there exists a concurrent strategy satisfying the condition in the statement of 
Proposition 3, then as a result of assumption (3) of the problem definition and the 
inequality specified in (8) above, the concurrent strategy will dominate all strategies 
in Z’, Zs and Z”. 


