Quantum interference of large organic molecules

Stefan Gerlich¹, Sandra Eibenberger¹, Mathias Tomandl¹, Stefan Nimmrichter¹, Klaus Hornberger², Paul J. Fagan³, Jens Tüxen⁴, Marcel Mayor⁴,⁵ & Markus Arndt¹

The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. Our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 Å, masses up to $m = 6,910$ AMU and de Broglie wavelengths down to $\lambda_{\text{dB}} = \frac{h}{mv} \approx 1$ pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.

¹ University of Vienna, Vienna Center for Quantum Science and Technology, VCQ, Faculty of Physics, Boltzmanngasse 5, Vienna 1090, Austria.
² Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Street 38, Dresden D-01187, Germany.
³ Central Research and Development Department, E. I. DuPont de Nemours & Co. Inc., Experimental Station, PO Box 80328, Wilmington, Delaware 19880-0328, USA.
⁴ Department of Chemistry, University of Basel, St Johannsring 19, Basel CH-4056, Switzerland.
⁵ Karlsruhe Institute of Technology, Institute for Nanotechnology, PO Box 3640, Karlsruhe D-76021, Germany. Correspondence and requests for materials should be addressed to M.A. (email: markus.arndt@univie.ac.at).
n many discussions on the foundations of physics, single-particle diffraction at a double slit1,4 or grating12-13 is regarded as a paradigmatic example for a highly non-classical feature of quantum mechanics, which has never been observed for objects of our macroscopic world. The quantum superposition principle has become of paramount importance also for the growing field of quantum information science11. Correspondingly, research in many laboratories around the world is focusing on our understanding of the role of decoherence for increasingly complex quantum systems and possible practical or truly fundamental limits to the observation of quantum dynamics14-15.

Here we report on a new leap in quantum interference with large organic molecules. In contrast to earlier successful experiments with internal molecular wave packets,16 our study focuses on the wave evolution in the centre of mass motion of the molecule as a whole, that is, pure de Broglie interference. We do this with compounds that have been customized to provide useful molecular beams at moderate temperatures17-18. Figure 1 compares the size of two perfluoroalkylated nanospheres, PFNS8 and PFNS10, with a single C\textsubscript{60} fullerene19 and it relates a single tetraphenylporphyrin molecule (TPP) to its complex derivatives TPPF84 and TPPF152. We demonstrate the wave nature of all these molecules in a three-grating near-field interferometer20-21 of the Kapitza-Dirac-Talbot-Lau type22-23, as shown in Figure 2.

Results

Experimental setup. The particles are evaporated in a thermal source. Their velocity is selected using the gravitational free-fall through a sequence of three slits. The interferometer itself consists of three gratings G\textsubscript{1}, G\textsubscript{2}, and G\textsubscript{3} in a vacuum chamber at a pressure of $p < 10^{-4}$ mbar. The first grating is a SiN\textsubscript{x} membrane with 90-nm wide slits arranged with a periodicity of $d = 266 \text{ nm}$. Each slit of G\textsubscript{1} imposes a constraint onto the transverse molecular position that, following Heisenberg’s uncertainty relation, leads to a momentum uncertainty. The latter turns into a growing delocalization and transverse coherence of the matter wave with increasing distance from G\textsubscript{1}. The second grating, G\textsubscript{2}, is a standing laser light wave with a wavelength of $\lambda = 532 \text{ nm}$. The interaction between the electric laser light field and the molecular optical polarizability creates a sinusoidal potential, which phase-modulates the incident matter waves. The distance between the first two gratings is chosen such that quantum interference leads to the formation of a periodic molecular density pattern 105 mm behind G\textsubscript{1}. This molecular nanostructure is sampled by scanning a second SiN\textsubscript{x} grating (G\textsubscript{3}, identical to G\textsubscript{1}) across the molecular beam while counting the number of the transmitted particles in a quadrupole mass spectrometer (QMS).

In extension to earlier experiments, we have added various technological refinements: the oven was adapted to liquid samples, a liquid-nitrogen-cooled chamber became essential to maintain the source pressure low, a new mass analyser allowed us to increase the detected molecular flux by a factor of four and many optimization cycles in the interferometer alignment were needed to meet all requirements for high-contrast experiments with very massive particles.

Observed interferograms. We recorded quantum interferograms for all molecules of Figure 1, as shown in Figure 3. In all cases the measured fringe visibility V, that is, the amplitude of the sinusoidal modulation normalized to the mean of the signal, exceeds the maximally expected classical moiré fringe contrast by a significant multiple of the experimental uncertainty. This is best shown for TPPF84 and PFNS8, which reached the highest observed interference contrast in our high-mass experiments so far, with individual scans up to $V_{\text{obs}} = 33\%$ for TPPF84 ($m = 2,814 \text{ AMU}$) and $V_{\text{obs}} = 49\%$ for PFNS8 at a mass of $m = 5,672 \text{ AMU}$. In addition, we have observed a maximum contrast of $V_{\text{obs}} = 17\pm4\%$ for PFNS10 and $V_{\text{obs}} = 16\pm2\%$ for TPPF152 (see Figure 3), in which our classical model predicts $V_{\text{class}} = 1\%$. This supports our claim of true quantum interference for all these complex molecules.

The most massive molecules are also the slowest and therefore the most sensitive ones to external perturbations. In our particle

Figure 1 | **Gallery of molecules used in our interference study.** (a) The fullerene C\textsubscript{60} ($m = 720 \text{ AMU, 60 atoms}$) serves as a size reference and for calibration purposes; (b) The perfluoroalkylated nanosphere PFNS8 ($C_{12}F_{13}S, m = 5,672 \text{ AMU, 356 atoms}$) is a carbon cage with eight perfluoroalkyl chains. (c) PFNS10 ($C_{12}F_{13}S, m = 6,910 \text{ AMU, 430 atoms}$) has ten side chains and is the most massive particle in the set. (d) A single tetraphenylporphyrin TPP ($C_{15}H_{26}N_{2}O, m = 614 \text{ AMU, 78 atoms}$) is the basis for the two derivatives (e) TPPF84 ($C_{45}H_{52}F_{11}N_{2}S_{7}, m = 2,814 \text{ AMU, 202 atoms}$) and (f) TPPF152 ($C_{44}H_{48}F_{13}O_{1}N_{2}S_{6}, m = 5,310 \text{ AMU, 430 atoms}$). In its unfolded configuration, the latter is the largest molecule in the set. Measured by the number of atoms, TPPF152 and PFNS10 are equally complex. All molecules are displayed to scale. The scale bar corresponds to 10 Å.

Figure 2 | **Layout of the Kapitza-Dirac-Talbot-Lau (KDTL) interference experiment.** The effusive source emits molecules that are velocity-selected by the three delimiters S\textsubscript{1}, S\textsubscript{2}, and S\textsubscript{3}. The KDTL interferometer is composed of two SiN\textsubscript{x} gratings G\textsubscript{1} and G\textsubscript{3}, as well as the standing light wave G\textsubscript{2}. The optical dipole force grating imprints a phase modulation $\phi(x) = \alpha_{\text{opt}} P/(v w)$ onto the matter wave. Here α_{opt} is the optical polarizability, P the laser power, v the molecular velocity and w, the laser beam waist perpendicular to the molecular beam. The molecules are detected using electron impact ionization and quadrupole mass spectrometry.
The experimental values of PFns10. For this compound we find in very good agreement with the theoretical predictions based on a classical and a quantum model. The observed contrast of TPPF84: \(\nu = 95 \text{ m s}^{-1} \pm 16\% \), \(\alpha = 200 \text{ Å}^3 \times 4 \text{π} \text{e} \) (fit), \(\sigma_{\text{ext}} = 10^{-28} \text{ cm}^2 \), \(w = 34 \pm 3 \mu \text{m} \) and \(w = 500 \pm 50 \mu \text{m} \). PFNS8: \(\nu = 75 \text{ m s}^{-1} \pm 10\% \), \(\alpha = 190 \text{ Å}^3 \times 4 \text{π} \text{e} \) (fit), \(\sigma_{\text{ext}} = 10^{-28} \text{ cm}^2 \), \(w = 27 \pm 3 \mu \text{m} \) and \(w = 620 \pm 50 \mu \text{m} \).

The laser power can be calibrated with an accuracy of ±1% but the absissa also scales in proportion to the optical molecular polarizability and inversely with the vertical laser waist. The theoretical curves of Figure 2 are plotted assuming \(\alpha_{\text{ext}} = 200 \text{ Å}^3 \times 4 \text{π} \text{e} \) for TPPF84 and \(\alpha_{\text{ext}} = 190 \text{ Å}^3 \times 4 \text{π} \text{e} \) for PFNS8. These numbers have to be compared with the static polarizabilities computed using Gaussian09 (ref. 24). These are \(\alpha_{\text{ext}} = 155 \text{ Å}^3 \times 4 \text{π} \text{e} \) for TPPF84 and \(\alpha_{\text{ext}} = 200 \text{ Å}^3 \times 4 \text{π} \text{e} \) for PFNS8. A variation in the polarizability changes the horizontal scale of the plot as does a different laser waist. Both are bound by a relative uncertainty of less than 30%. A classical explanation is therefore safely excluded as an explanation for the experiments.

The quantitative agreement of the experimental and expected contrast is surprisingly good, given the high complexity of the particles. Various factors contribute to the remaining small discrepancies. The interference visibility is highly sensitive to apparatus vibrations, variations in the grating period on the level of 0.5 Å and a misalignment below 100 μrad in the grating roll angle.

Discussion

PFNS10 and TPPF152 contain 430 atoms covalently bound in one single particle. This is ~350% more than that in all previous experiments and it compares well with the number of atoms in small Bose–Einstein condensates (BEC), which, of course, operate in a vastly different parameter regime: The molecular de Broglie wavelength \(\lambda_{\text{dB}} \) is about six orders of magnitude smaller than that of ultracold atoms and the internal molecular temperature exceeds typical BEC values (\(T < 1 \mu \text{K} \)) by about nine orders of magnitude.

Although matter wave interference of BECs relies on the de Broglie wavelength of the individual atoms, our massive molecules always appear as single entities.

One can find various definitions in the literature for what truly Schrödinger cat should be and a number of intriguing experiments have reported the generation of photonic or atomic cat-states.
In as far as the term designates the quantum superposition of two macroscopically distinct states of a highly complex object, the molecules in our new experimental series are among the fastest Schrödinger cats realized to date. Schrödinger reasoned whether it is possible to bring a cat into a superposition state of being ‘dead’ and ‘alive’. In our experiment, the superposition consists of having all 430 atoms simultaneously ‘in the left arm’ and ‘in the right arm’ of our interferometer, that is, two possibilities that are macroscopically distinct. The path separation is about two orders of magnitude larger than the size of the molecules.

Schrödinger’s thought experiment originally also required the entanglement between a microscopic atom and the final state of the macroscopic cat. Such a mechanism is not needed to create the molecular superposition state in our experiment. Entanglement between a molecule and a microscopic probe particle does, however, occur in decoherence processes in which the quantum interaction with the environment reveals *which-path* information\(^{11,15}\) and destroys the interference pattern. Collisions with residual gas molecules\(^1\), the emission of heat radiation\(^2\) and the absorption of blackbody radiation are among the most important decoherence mechanisms for interferometry with massive particles. We estimate that they lead to a visibility reduction of less than 1% under the conditions of the present experimental arrangement, in spite of the high internal molecular temperatures and substantial dipole fluctuations.

Specifically for PFNS8, a macroscopically realistic account of the decoherence processes\(^{11,12}\) predicts a visibility reduction of 10% only if the temperature of either the molecule or the radiation field exceeds 1,500 K, or if the residual nitrogen gas pressure exceeds \(2 \times 10^{-7} \text{ mbar}\).

In conclusion, our experiments reveal the quantum wave nature of tailor-made organic molecules in an unprecedented mass and size domain. They open a new window for quantum experiments with nanoparticles in a complexity class comparable to that of small proteins, and they demonstrate that it is feasible to create and maintain high quantum coherence with initially thermal systems consisting of more than 1,000 internal degrees of freedom.

Methods

Chemical synthesis. The porphyrin derivatives were synthesized by the attachment of a highly fluorescent thiol to meso-tetra(pentafluorophenyl)porphyrin in a nucleophilic aromatic substitution reaction by applying a modified literature procedure\(^7\). To assemble TPPF8, the commercially available \(1H,1H,2H,2H\)-perfluorododecane-1-thiol as nucleophilic fluorous part was introduced to the porphyrin unit. The branched thiil building block for TPF152 was synthesized in three reaction steps. A reaction sequence including mono-functionalization of tris(bromomethyl)benzene with a protected thiol, introduction of two fluorous pontails and a final deprotection of the thiil functionality yielded the desired fluorous thiil suitable for the envisaged substitution reaction. All target structures were purified by column chromatography and characterized by nuclear magnetic resonance spectrosopy and mass spectrometry (Supplementary Methods).

Differences between the classical and quantum predictions. The functional dependence of the interference fringe visibility on the laser power differs, however, by the factor \(\xi \sin(\xi) / \xi = \pi / L_T\), where \(L\) is the distance between two consecutive gratings and \(L_T = d^2 / \Lambda_n\) is the Talbot length. For the case of Figure 4, we find \(\xi \sin(\xi) \approx 5.9\). The experimental data are in clear agreement with the quantum model.

Equipment. The diffracting laser beam is generated by a Coherent Verdi V18 laser at 532 nm. The QMS is an Elselt CMS with a rod diameter of 9.5 mm, operated at a radio frequency of 440 kHz. The SiN gratings in \(G_1\) and \(G_2\) were made by Dr Tim Savas, nm² LLC & MIT Cambridge.

References

Acknowledgments

We thank Lucia Hackermüller (now University of Nottingham) for important contributions to the setup of a first version of this experiment until the end of 2006, and Hendrik Ullbricht (now University of Southampton) for his collaboration until 2008. We thank Anton Zeilinger for his role as an initiator of the ‘foundations of quantum physics’ research programme in Vienna. The interference experiments were financed through the Austrian FWF Wittgenstein grant (Z149-N16), the doctoral...
program CoQuS (Grant W1210-N16). The chemical synthesis in Basel was funded by the Swiss National Science Foundation and the NCCR 'Nanoscale Science. The groups in Vienna, Basel and Dresden were supported by the ESF EuroCore Program MIME (I146-N16).

Author contributions
S.G. and S.E. performed all interference experiments as well as the analysis of the data with important contributions by M.T. M.A. contributed at various stages of the experiment. J.T. synthesized, purified and analysed the porphyrin derivatives based on a design developed together with M.M. P.F. provided the perfluoroalkylated nanospheres. M.A. and M.M. initiated and coordinated the experiments. S.N. and K.H. participated in the interpretation of the data. M.A., S.G. and S.N. wrote the paper. All authors discussed the results and commented on the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/