Magnetostimulation of Vision: Direct Noninvasive Stimulation of the Retina and the Visual Brain

ELWIN MARG

School of Optometry, University of California, Berkeley, California

ABSTRACT

The history of magnetophosphenes and their closely related predecessor, electrophosphenes, is described from the mid-18th century to the present time. The current era of magnetic stimulation started in 1985 with the development of a practical capacitor-discharge electromagnetic stimulator by Barker and his colleagues at the University of Sheffield, and their application of it to the brain with Merton and Morton at the National Hospital, London. The safety of magnetostimulation of the brain is discussed as well as the advantages of magnetostimulation over electrostimulation. Principles of magnetostimulation of nerves and magnetic measurement are considered. Effects on motor and sensory systems of the brain are described including magnetic perceptual suppression in the visual cortex and other pioneering work of Amassian, Cracco and Maccabee at SUNY Health, Brooklyn. Magnetophosphenes from retinal and cortical magnetostimulation are distinguished. Now that visual cortical stimulation is possible with the strong magnetic pulses generated by capacitor-discharge instruments, the functional viability of the visual cortex may be tested directly and noninvasively.

Key Words: magnetic stimulation, magnetophosphenes, electric stimulation, electrophosphenes, retina, visual cortex

Phosphenes are sensations of light produced by stimuli other than light. The visual percept of a blow on the head is characterized as "seeing stars," which are phosphenes generated by the mechanical stimulation of the brain or the retina. Similarly, phosphenes can be elicited by magnetic or electrical stimulation of these tissues.

Phosphenes are sensations of light produced by stimuli other than light. The visual percept of a blow on the head is characterized as "seeing stars," which are phosphenes generated by the mechanical stimulation of the brain or the retina. Similarly, phosphenes can be elicited by magnetic or electrical stimulation of these tissues.

The word phosphene comes from the Greek phos, light, and phainein, to show. In the physiologic literature, phosphene generally refers to a luminous sensation produced by stimuli other than light. Some extend this definition to internally triggered luminous or form sensations such as the "fortification spectra" of optical migraine headaches and of visual illusions induced by hallucinogenic drugs such as LSD. It is reasonable to conclude that seeing a phosphene is not a hallucination because the stimulus is known.

Phosphenes are rarely elicited by clinicians because the stimulus is hard to control and limit. Magnetostimulation and magnetophosphenes may overcome these disadvantages and provide new insights into visual function and new clinical tests.

ELECTROPHOSPHENES

Electrophosphenes, as opposed to magnetic, were first reported 2½ centuries ago. In a shocking attempt to cure blindness. Charles LeRoy, a distinguished French chemist and physician in 1755 discharged a Leyden jar (actually a large vessel forming a high-voltage capacitor of about 1 nanofarad, invented approximately 10 years earlier and used in early experiments with static electricity) through the head of a blind man. Therein lies a story.

In the mid-18th century in Dorchester, England, the newspapers of the time told of a 7-year-old boy who was cured of blindness, having suffered an attack of "goutte sereine." He was cured by electric shock. The tale was also mentioned in a report by a member of the Royal Society, London, in a treatise on electricity.

LeRoy's patient, young Granger, 21 years of age, had been blind for 5 months as a result of an acute disease with high fever and rash. After making the rounds of the best specialists in Paris, his parents took him to LeRoy and implored him to shock their son and restore his sight, as was reported done in England. Although LeRoy was very skeptical, he finally gave in. He knew that Benjamin Franklin had reported that animals had lost their sight by electric shock but young Granger's parents were so confident and insistent that LeRoy could not refuse them. On December 6, 1755 LeRoy started treatment. Initially iron or brass wire was wound two or three times around the head like the rim of a hat and another lead was connected to the left leg. The boy could not refuse them. On December 6, 1755 LeRoy started treatment. Initially iron or brass wire was wound two or three times around the head like the rim of a hat and another lead was connected to the left leg. Possibly the first biotelectrode was fashioned, making contact at the supraorbital ridges and the occiput (Fig. 1). A well-charged Leyden jar or bottle was connected and 12 shocks were administered, provoking terrible cries. Young Granger saw a flame descending rapidly.
before his eyes. This must be the first reported electrophosphene. LeRoy proposed using electric shock as a test of optic nerve function. Despite dozens of shocks on subsequent days, needless to say young Granger remained blind.

As for the malady, goutte sereine was translated by Helmholtz as “cataract” but an old French dictionary defines it as “amaurosis, paralysis of the optic nerve.” In any case, ignorance of biology in the 18th century made diagnosis an art rather than a science 100 years before the advent of the ophthalmoscope. From the context of LeRoy’s paper the amaurosis did not seem to be from cataracts but more likely from optic neuritis or meningococcal meningitis. However, Franklin’s electric shock blinded his animals by cataract, an effect demonstrated in the ophthalmological literature 1% centuries later.

At about the same time Benjamin Franklin, possibly the inventor of bifocals, who defined positive and negative electric current in his one fluid theory of electricity as it is used today, discharged two large Leyden jars though six men (in series), each holding one hand on the head of the man next to him. The result was stunning. Upon closing the circuit all fell down. They did not see the light nor hear the crackling noise of the shocking spark so it seems likely they did not observe a phosphene either. The pathway of the electric current was not directed through the retina or visual cortex as it was with LeRoy’s electrodes.

In the year 1800 Count Alessandro Volta wrote a letter to Sir Joseph Banks (a botanist and president of the Royal Society, who voyaged with Captain James Cook on the Endeavor) in London. Volta, from the University of Padua, coupled silver and zinc separated by a layer of brine-soaked cloth, producing an electric current. He applied one of these metals to the eye or wetted lid and the other either to the other eye or to the mouth. This, he said, gave the most beautiful “éclair” (flash or phosphene). Using a number of these cells in a voltaic pile or battery did not improve the phosphene. Many details of 19th century physiologists who worked with electrical phosphenes, including Purkinje, are related by Helmholtz.

Earlier in this century, neurosurgeons elicited phosphenes by applying electrodes to the surface of
the visual cortex in conscious patients undergoing a craniotomy, usually for epilepsy. Attempts have been made to design and build a visual prosthesis consisting of an array of electrodes implanted on the visual cortex which would transmit electrical pulses to provide a form of vision for people who are blind due to problems anterior to the visual cortex; that is, in the eyes or the visual pathways (for example, Brindley and Lewin, and Marg et al.). Magnetic stimulation of the cortex is more difficult than electrical in this context, as will be explained later.

HISTORY OF MAGNETOPHOSPHENES

The first reported magnetophosphenes was late in the 19th century by d'Arsonval, the inventor of the moving coil electric meter. Until the present era, all magnetophosphenes were from stimulation of the retina, not the cortex.

Magnetism as a science grew from observations in ancient Greece that magnetic stones (Fe₃O₄), called magnetite, would attract bits of iron. The word magnetism comes from Magnetes, the people of ancient Magnesia in Thessaly where lodestones were found. A lodestone (or loadstone) literally means leading stone or compass. Ferromagnetic substances such as iron are permanently magnetizable.

In 1896, d'Arsonval, as a byproduct of his work on the measurement of alternating current, reported the induction of phosphenes by magnetic fields. He saw phosphorescence when he placed his head in a coil which carried 30 amps and 110 V, at 42 Hz. The coil also gave him vertigo to the point of (sic) "fainting" (falling). With a smaller coil, only 5 cm in diameter, d'Arsonval also saw phosphenes and experienced some muscular contractions as well.

In Vienna in 1902, Beer surveyed the research of the physiologic effects of magnetic stimulation. He told of the interest and the activity in the field in the 1880s, despite negative results. He related that at the turn of the century E.K. Müller, a Swiss electrical engineer, saw a "flimmer" (flicker) upon applying an electromagnet to the eye. Beer was able to spend a few weeks working with Müller's magnet and confirmed his results. The specifications of the magnet were not given but the alternating current was 15 and 20 amps.

In 1910, S. P. Thompson, who at the beginning of this century headed the British Institution of Electrical Engineers and the Physical Society, apparently independently rediscovered this phenomenon and coined the term for these luminous sensations magnetophosphenes. His coil had 32 turns of thick copper-stranded wire wound with a 9-in inside diameter and about 8 in in length. The current could be increased up to 180 amps and the peak maximum intensity of the magnetic field at the center of the coil was about 1400 CGS units. These centimeter-gram-second units were later named after Gauss. (In current measure, the flux density was 0.14 teslas.) When Thompson's head was in the magnetic field, the flickering phosphene was visible even in daylight. Several of his subjects noticed a strange taste after exposing their heads for 2 or 3 min to this field.

In 1911, Dunlap at Johns Hopkins University reported generating magnetophosphenes after having read Thompson's paper. Dunlap used a similar method although his coil was slightly larger in diameter and used a 60 Hz ac source. With 200 amps, the coil gave a field of 5400 ampere-turns as compared with the 5760 in Thompson's experiment.

Figure 2. Arsène d'Arsonval, on the right, with two assistants demonstrating the effects of the flow of alternating current on the visual cortex in 1911, some 16 years after he reported the first magnetophosphenes. He was a member of the Académie de Sciences and a physiologist as well. From the Archives of the Académie de Sciences, Paris, France.
Silvanus Phillips Thompson (1851–1916) with his apparatus by which he induced magnetophosphenes in himself. He was a Principal and Professor of Applied Physics and Engineering at a technical college in London and coined the term magnetophosphenes. From the Archives, Imperial College, London, England.

The phosphene flicker was best perceived when the eyes were closed or the room darkened but the magnetic coil screened out much of the ambient light. Some subjects saw nothing. In order to obtain a stronger stimulus, Dunlap took his apparatus to an electric power testing plant and was initially able to increase his stimulus to 440 amps. The responses were improved by switching to 480 amps of 25 Hz current, almost 13,000 ampere-turns, during which the flicker was easily apparent. Dunlap pointed out that his main difficulty was in controlling the necessary high currents and voltage; in effect, the power to the people who were his subjects.

At about the same time, Magnusson and Stevens investigated the effects of magnetic stimulation of the head with direct and alternating current in four subjects. Using direct current, they saw nothing except upon closing or opening the circuit which actions, of course, produced a change in the magnetic field. They reported that the intensity of visual sensation seemed to depend on the intensity and rate of change of the magnetic field. With the alternating current they varied the frequency from 8 to 50 Hz, also varying the current so that they applied from about 3,000 to 14,000 ampere-turns. The most effective frequency was between 20 and 30 Hz. Below 15 Hz the light pulses in a succession of flashes but at 20 to 25 Hz the light was seen as patterns superimposed on a quivering, flickering effect. The effect was graded within the temporal field. Above 40 Hz the light became more uniform and the flicker much more rapid. The magnetic field caused in some but not all subjects a twitches of the orbicularis oculi muscle which they characterized as winking. The phosphenes were not affected by afterimages from a bright light.

Magnusson and Stevens saw phosphenes with a coil of 205 turns which provided 5740 ampere-turns at 60 Hz. The ampere-turn value was approximately the same as that used by Thompson. In addition, a second coil of 263 turns was made to slip over the outside of the first coil and increase magnetic flux; together the 2 coils had 468 turns. Later, provisions were made for additional coils (Fig. 4).

Magnusson and Stevens pointed out that the polarity of the magnet, whether north was up or down, made no difference. In switching the current, the phosphene was more intense on closing the circuit than on turning it off. Also, fatigue reduced the response.

In 1947, Barlow et al., using a magneto in per-
cepted today that the stimulation is from a magnetic coil as a function of stimulus frequency in 60 subjects in a range of 10 to 50 Hz. The considered diamagnetic properties of organic tissue but Valentinuzzi thought that Beer was wrong because stimulation must be based on magnetic induction of an electric current. It is generally accepted that it was likely that the phosphenes originated in the visual field, corresponding to the position of the part of the retina stimulated. This evidence indicated that the stimulation was effected at the retina rather than the optic nerve or the brain. Further support for retinal reception came from pressure ischemia of the eye which blocked the phosphenes. The time for recovery after a stimulus varied with the duration of the stimulation. The authors confirmed that phosphenes lasted longer with movement of the eye or lids. They also confirmed that the phosphene was difficult to detect in intense illumination but could be seen with the eyes opened or shut, and lasted only a few seconds.

The phosphenes filled a large part of the visual field, approaching the central field from the peripheral. If the two poles are placed at the temporal orbits, one on each side of the head, the phosphenes are in the middle of the visual field. If the poles are brought closer to the lower head (stimulating the lower retina), the phosphene appears in the upper visual field. The literature on magnetophosphenes was reviewed up to 1955 by Valentinuzzi, who then theorized on their origin by assuming certain retinal circuitry. He summarized that the frequency for maximum intensity of magnetophosphenes was between 20 and 30 Hz. At less than 20 Hz, the individual pulses could be counted. At higher frequencies there is a blurred mixture of wavy luminance effects which are more intense in the temporal retina. One should avoid very intense fields, be related, that is, greater than that produced by 14,000 ampere-turns because of possible undesired effects. From this evidence they concluded that the phosphenes are not elicited in the eye. One of the blind subjects had retinitis pigmentosa, a retinal disease which affects the photoreceptors, mainly rods, and pigment epithelium. The rest of the retina may have been relatively normal. This totally blind subject saw phosphenes in the eye. One of the blind subjects had had both eyes removed because of glaucoma and saw no phosphenes, which would tend to eliminate the optic nerve as a receptive site (assuming incomplete optic atrophy) and therefore would point to the retina. As related earlier, Barlow et al., showing local visual field specificity, concluded that it was likely that the phosphene originated in the retina. Up to this time, all the magnetophosphenes had been from ac magnetic fields or from pulses caused by making and breaking contact with dc supplied to a magnetic coil.

CURRENT ERA OF MAGNETOSTIMULATION

To prelude to magnetic stimulation, Merton and Morton in 1949 demonstrated that electrical

magnet-magnet electric generator and varying the frequency from 10 to 90 Hz, were able to obtain 3.08 T (tesla = 10^4 Gauss) with 20 amperes. A laminated core was put in the center of the coil of 400 turns which had inside and outside diameters of 16.5 and 20.3 cm, respectively. The end of the core was poised close to the temple so that it tended to concentrate the magnetic field in the eye. A threshold phosphene could be seen when the tip of the core was several centimeters from the eye. Phosphenes were generally colorless and in the peripheral visual field.

No phosphenes were elicited by placing the coil at the occipital region, over the visual cortex, even at maximum field strength. With a core tapered to a few millimeters and pointed to different parts of the eye, the position of the phosphenes could be localized in the visual field, corresponding to the position of the part of the retina stimulated. This evidence indicated that the stimulation was effected at the retina rather than the optic nerve or the brain. Further support for retinal reception came from pressure ischemia of the eye which blocked the phosphenes. The time for recovery after a stimulus varied with the duration of the stimulation. The authors confirmed that phosphenes lasted longer with movement of the eye or lids. They also confirmed that the phosphene was difficult to detect in intense illumination but could be seen with the eyes opened or shut, and lasted only a few seconds.

The phosphenes filled a large part of the visual field, approaching the central field from the peripheral. If the two poles are placed at the temporal orbits, one on each side of the head, the phosphenes are in the middle of the visual field. If the poles are brought closer to the lower head (stimulating the lower retina), the phosphene appears in the upper visual field.

The literature on magnetophosphenes was reviewed up to 1955 by Valentinuzzi, who then theorized on their origin by assuming certain retinal circuitry. He summarized that the frequency for maximum intensity of magnetophosphenes was between 20 and 30 Hz. At less than 20 Hz, the individual pulses could be counted. At higher frequencies there is a blurred mixture of wavy luminance effects which are more intense in the temporal retina. One should avoid very intense fields, be related, that is, greater than that produced by 14,000 ampere-turns because of possible undesired effects. From this evidence they concluded that the phosphenes are not elicited in the eye. One of the blind subjects had retinitis pigmentosa, a retinal disease which affects the photoreceptors, mainly rods, and pigment epithelium. The rest of the retina may have been relatively normal. This totally blind subject saw phosphenes in the eye. One of the blind subjects had had both eyes removed because of glaucoma and saw no phosphenes, which would tend to eliminate the optic nerve as a receptive site (assuming incomplete optic atrophy) and therefore would point to the retina. As related earlier, Barlow et al., showing local visual field specificity, concluded that it was likely that the phosphene originated in the retina.

Up to this time, all the magnetophosphenes had been from ac magnetic fields or from pulses caused by making and breaking contact with dc supplied to a magnetic coil.

CURRENT ERA OF MAGNETOSTIMULATION

To prelude to magnetic stimulation, Merton and Morton in 1949 demonstrated that electrical...
Magnetostimulation

Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction. Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction. Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction. Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction.

Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction. Barker and colleagues have published a series of papers on magnetostimulation and have considered the safety aspects. Barker et al. calculated that for a peak magnetic field value of 1.4 T at the surface of the brain, their magnetic stimulator induces a maximum brain current at its surface of 9.1 mA·cm⁻² and a maximum brain charge density of about 0.8 μC·cm⁻³ per millisecond, short pulses, and the reduction of current density with extended electrode surface. They used a 2-KV pulse with a decay time constant of 10 as applied through the scalp Electroencephalograms before and after electric and magnetic stimulation. The maximal charge is approximately 0.05 to 0.005% of the charge used in electroconvulsive therapy, 100 mC to 1 C. The average power set free in the brain is less than 53 mW. This represents less than 0.001% of the heat generated in the brain from normal basal metabolism. Barker and his colleagues reported no apparent side-effects for either electrical or magnetic brain stimulation; they have subjected themselves to thousands of stimuli over a half-dozen years without any untoward reaction.
ceptability because it can be painful, especially for use outside the U.S.A.

MAGNETIC vs. ELECTRICAL STIMULATION

Central nervous system. There is no such restriction for peripheral stimulation, but not for the brain itself. The mechanism of magnetic stimulation is electrical, the procedure is called "electrodeless stimulation." The minimum short pulse of a capacitor discharge is of the order of 100 μs, which can meet the chronaxie of the neural target.

SITE OF MAGNETOSTIMULATION

The brain itself is too complex to be used to work out some of the basic principles of magnetic stimulation of neural tissue. In addition to working with peripheral nerves, Geddes suggests that because the mechanism of magnetic stimulation is electrical, the procedure should be called "electrodeless stimulation." The minimum short pulse of a capacitor discharge is of the order of 100 μs, which can meet the chronaxie of the neural target.

MAGNETIC vs. ELECTRICAL STIMULATION

Electrical stimulation is of limited clinical acceptability because it can be painful, especially when care is not exercised to minimize it. Of course, there is no problem with pain when electrical stimulation is used during surgery with general anesthesia to determine the patency of neural pathways. Magnetic stimulation, although not always pleasant, is not painful. In both methods the excitable tissue is activated by an electric current depolarizing a cell membrane. Because both magnetic and electric stimulation induce a depolarizing current in the neuron, there must be some difference in the path of the current in electric vs. magnetic stimulation that accounts for the pain. If the skin is stimulated with an electric current, the flow falls off as a function of the impedance of the intervening tissue to the target. In order to get to the targeted neural tissue the current must be increased on the skin much more than is needed at the neural tissue target itself. Therefore higher voltage has to be applied. This activates pain receptors in the intervening tissues. A magnetic field penetrates the tissue without alteration except for the magnetic effect of eddy currents. The flux density of the near field falls off roughly linearly with the distance but the current generated in the skin will be less than that from electrical stimulation. For example, to produce stimulation of the hand areas requires a threshold value of typically 60 V/cm between electrodes for electrical stimulation, whereas for a similar effect from magnetic stimulation the potential gradient along the scalp surface will be only 1 V/cm. (Personal communication, Reginald Newman.) The comparison of electric and magnetic stimulation is also discussed by Barker et al.43

Magnetostimulation of Vision—Marg 433
of the facial nerve, central to the posterior tragus. An increased latency of 1 to 1.3 ms of facial muscle activation through the facial nerve using a magnetic coil over the parieto occipital scalp compared to electrical stimulation at the posterior tragus pointed to a site of activation about 6 cm central to the point of electrical stimulation at the posterior tragus. That is close to the exit of the facial nerve from the brainstem.

MAGNETIC FIELD SHAPE AND NEUROSTIMULATION

It is difficult to shape a magnetic field, especially a strong one. It can neither be focused nor sharpened by absorption, as can visible or electromagnetic radiation. The only way that magnetic fields can be somewhat concentrated or sharpened is by the physical design of the magnetic coil and its poles. An iron core in a magnetic coil can help concentrate the magnetic flux field. However, in magnetic pulse stimulation, the pulse time is very short, comparable to a high frequency. With a flux density of several teslas, ferrite or similar cores become saturated and therefore cannot be used to confine the field.

The magnitude of the magnetic flux out from the center of the plane of the coil in both directions is about one-third of the maximum at a distance equal to the radius of the coil. The flux does not originate at a point radiating out in all directions and therefore does not follow an inverse square law. Our measurements indicate that in the limited range used of 1 to 3 cm from the plane of the coil, the fall-off is approximately linear.

GEOMETRY OF MAGNETIC STIMULATION

Induced Currents in a Volume Conductor

The effectiveness of a magnetic coil in stimulating a nerve in the body, a volume conductor, depends on the orientation of the coil relative to the target nerve. The effect of orientation of a round magnetic coil relative to a wire is shown in Fig. 5. The current distribution in a volume conductor is similar except that it spreads out laterally, not being confined by a limited wire conductor path. Maccabee et al.74 and Maccabee et al.75 studied the three-dimensional voltage distributions induced in a homogeneous volume conductor with ordinary round magnetic coils as well as with a figure-8 coil (sometimes termed, according to minor differences in shape, a double D, double square, or butterfly magnetic coil). The most effective position for a round magnetic coil for stimulating a nerve is tangential to it (like a wheel ready to roll along the nerve axis). To reduce the area of stimulation the figure-8 coil magnetic field clearly is more discrete and therefore generally more desirable.

Electrical stimulation of a neuron or of a nerve bundle consisting of multiple neurons depends on the angle between the flow of current and direction of the nerve. The relation was suggested in the middle of the last century by duBois Reymond. Subsequently, a number of investigators sought to demonstrate it quantitatively. Rushton76 showed that stimulation is a function of the cosine of the angle between the direction of flow of current and the nerve axis. Thus when the flow is along the neuroaxis, the angle is 0 and the cosine is 1 and the stimulus is 100%. When the current flow is perpendicular to the nerve bundle, the angle is 90°, the cosine of the angle equals 0. The same principle would hold, of course, for magnetic stimulation because magnetic stimulation is generally considered to be effected by the induction of an electric current in the tissue as a volume conductor. A ring-shaped magnetic coil placed flat or tangentially against an arm produces rings of current, the effect depending upon the position of the coil relative to the targeted neural structures. In Fig. 6 the magnetic stimulating coil is shown in three positions with the direction of current in the coil and the induced current in the adjacent brain.77 The current flow in the tissue is the opposite to that of the coil. When such a coil is placed transversely (horizontally) on the vertex (top) of the head, like a crown, and is bisected by the midsagittal plane of the brain, motor stimulation from a monophasic magnetic pulse is greater on one side of the brain than on the
Figure 6. Representation of the electric currents in round magnetic coils and their transfer by magnetic induction to the brain. (1) The coil is placed at the top of the head (vertex), current flowing in a clockwise direction. The induced current below is shown by a ring with an arrow in a counter-clockwise direction. (2) The coil is placed sagittally with a variable tilt medially as indicated by the thick arrow. (3) The coil is in a coronal or transverse plane with a variable tilt anteriorly as indicated by the thick arrow. Note that in each case the direction of current flow induced is parallel and opposite to that in the coil. Taken from reference 47 with permission of Dr. Cracco.

Current flowing from anterior to posterior in that part of the brain is more effective than the reverse. The reason for this polarity is unknown. A coil surface is usually marked with a + and a − on one side to show the direction of the current, which can be reversed by flipping the coil over 180°. As stated earlier, the electric current induced by a magnetic pulse is most effective for stimulating a nerve when the neuroaxis is in the same direction as the current flow and is not effective if the nerve is perpendicular to the direction of the current. Also, a larger diameter neuron has a lower threshold and can be stimulated more easily than a smaller one. If the two nerves are equidistant from the stimulating current source, the larger nerve will have the lower threshold.

A stimulating coil produces magnetic flux lines emanating in arcs around the coil. The current flow induced in the tissues will be parallel and opposite to the direction of flow in the magnetic coil. There will be a magnetic field projecting out from the plane of the coil in both directions, becoming smaller and weaker, attenuating to less than one-third of maximum at a distance beyond one coil radius. The greatest flux density is nearest the coil.

Basic Magnetic Units

B is called the magnetic flux density. Other names are also used, which can be confusing, such as magnetic induction, magnetic field, or magnetic strength. It is represented by the density of the “lines of induction,” which are visualized by the patterns formed by iron filings in a magnetic field. These lines represent magnetic flux, ψ, which is the magnetic induction, B, times the surface area. Given an electric charge, q, at rest at point P near a permanent magnet, no force acts on q. But if q, is moved through point P with a velocity v, a sideways force acts on it at right angles to v. This defines the magnetic flux density at point P in terms of force, F, v, and q,.

$$B = \frac{F}{qv}$$ \hspace{1cm} (1)$$

when the velocity and field B are at right angles. If the angle between B and v is θ

$$F = qvB\sin\theta$$ \hspace{1cm} (2)$$

Thus, if the charge moves parallel to the field, there is no force.

A charge q of one coulomb flowing past a point on a wire in 1 s by definition equals 1 amp of electric current. The unit of B that follows from equation 2 is the Newton/(coulomb) · (meter/s), which is called a tesla or T. The unit of magnetic flux, ψ, in Whb can be measured experimentally using a small "search" coil. The changing flux through the coil induces a voltage in it. The relation between units is:

$$V = \frac{q}{c}V = \frac{F}{B}$$ \hspace{1cm} (3)$$

but coulombs/s = amperes

$$B = \frac{F}{\text{amperes}}$$ \hspace{1cm} (4)$$

The earth’s magnetic field is about 1 G, which equals 10⁻⁵ T. The magnetic flux, ψ, in Whb can be measured experimentally using a small "search" coil. The changing flux through the coil induces a voltage in it. The relation between units is:

$$\text{volts} = \frac{V}{\sqrt{\text{meters}/\text{s}^3}} = \frac{\text{flux}}{\text{m}^2}$$ \hspace{1cm} (5)$$

where m² is the area in square meters of the one turn measuring search coil. Hence

$$V = \frac{Bm^2}{s}$$ \hspace{1cm} (6)$$

If the search coil has N turns,

$$V = \frac{N\times Bm^2}{s}$$ \hspace{1cm} (7)$$

$$B = \frac{V}{N\times m^2}$$ \hspace{1cm} (8)$$

By further manipulation of units it can be shown that B (in teslas) has units of amps/meter or B (in Gauss) has units of amp/cm. For example, the magnetic field at a distance r from an infinite, straight wire carrying a current I is

$$B(\text{tesla}) = \frac{\mu_0}{2\pi} \frac{I}{r}$$ \hspace{1cm} (9)$$

Magnetostimulation of Vision—Marg 435
Using a Cadwell MES-10 Stimulator with a peak magnetic stimulation of the human cerebral cortex. With a round coil (92-mm outside diameter) the field at the center of the loop is

\[B_{\text{coil}} = \frac{n_a}{2} \frac{1 \text{ amp}}{b \text{ m}} \quad (10) \]

If the wire is wound into a coil with N turns or loops, each turn of the wire behaves like a separate loop. Every loop adds to the field so

\[B = \frac{n_a}{2} \frac{N \text{ I}}{b} \quad (11) \]

The magnetic field or flux density of the coil is directly proportional to ampere-turns (NI). If the coil's made larger (b increased) the magnetic flux is spread over a greater area and the flux density (B) decreases. Moving along the central axis directly above or below by a distance z, the flux density is

\[B_z = \frac{n_a}{2} \frac{N \text{ I}}{b} \left(1 + \frac{z}{b}
ight)^{-1/2} \quad (12) \]

This reduces to the previous formula when z = 0. The falloff in field is more diffuse.

The peak value of the magnetic flux density is usually given to show the strength of a stimulator. But the effective stimulation is dependent on the pulse width in that for a given field strength shorter rise times (down to the region of 60 ps) are more effective. The average current required by the coil to produce the field strength from a capacitor source depends on the capacity (C in farads) and the pulse width in seconds (13)

\[CV \text{ pulse width in s} \quad (13) \]

EVIDENCE OF COROLLARY DISCHARGE

Amassian et al. applied a pressure cuff to the upper arm producing an ischemic block of the motor cortex, were abolished. However, magnetic stimulation still gave a clear sense of movement, such as that predominantly of a single digit, was elicited, such focal stimulation could be accomplished much more readily by another coil, a double square (figure-8) magnetic coil.

The Cadwell stimulator using paper capacitors, unlike the Digitimer stimulator, yields a oscillatory wave which is damped in a few cycles. After a rapid rise the wave falls, becoming negative at 70 µs and positive at 200 µs, undulating out to about 800 µs. Damping depends on the capacitance where the charge is stored, the impedance of the magnetic coil, and resistance in the circuit. This waveform appears to give a stronger stimulation because of the short pulse durations (although the effect of the waveform is not clear) but it is more likely to be unpleasant and does not seem to elicit phosphene sensations as well.

DISCRETE CENTRAL MAGNETIC STIMULATION

Amassian et al. compared focal electric with magnetic stimulation of the human cerebral cortex. Using a Cadwell MS5-10 Stimulator with a peak of 2.2 T, they employed a series of different magnetic coils. With a round coil (92-mm outside diameter) they were able to elicit short latency, compound motor action potentials due to focal activation of the motor cortex by threshold stimulation.

Although relatively discrete movement, such that predominantly of a single digit, was elicited, such focal stimulation could be accomplished much more readily by another coil, a double square (figure-8) magnetic coil.

The Cadwell stimulator using paper capacitors, unlike the Digitimer stimulator, yields an oscillatory wave which is damped in a few cycles. After a rapid rise the wave falls, becoming negative at 70 µs and positive at 200 µs, undulating out to about 800 µs. Damping depends on the capacitance where the charge is stored, the impedance of the magnetic coil, and resistance in the circuit. This waveform appears to give a stronger stimulation because of the short pulse durations (although the effect of the waveform is not clear) but it is more likely to be unpleasant and does not seem to elicit phosphene sensations as well.

Maccabee et al. were able to obtain from Cadwell an experimental magnetic coil, shaped like two contiguous squares, measuring 7 cm per side, with one side of each adjoining.

Such coils are also known by the names of similar shapes, as a figure-8, or a double D, or a butterfly coil. When the coil is wound as a figure-8 is written, where the two sides adjoin there is a doubling of the magnetic flux of any of the single sides of the coils. The double strength magnetic field lobe from the double side is available for relatively discrete local stimulation. Placing this coil over the precentral motor area of the brain can stimulate a limb or even a few digits in isolation. Coil shape and size are also discussed by Rödér et al.

A small coil stimulates a small area but it is limited in penetration distance. Cohen and Coffin pointed out there is a limit to how small one can make a magnetic coil. The limit is reached when the coil produces a force. They have made figure-8 coils as small as 1-in diameter per section and are working toward 1 cm. At a distance of 2½ cm the stimulus area is roughly a sphere of ½ cm diameter. Ultimately it may be possible to produce a localized field of up to 17 T, although the necessary penetration to reach and stimulate the brain would be lacking.

EVIDENCE OF COROLLARY DISCHARGE

Amassian et al. applied a pressure cuff to the upper arm producing an ischemic block of the motor and sensory neurons innervating the hand. After 0.5 h of ischemia, all distal movements, both voluntary and from magnetic coil stimulation at the motor cortex, were abolished. However, magnetic stimulation still gave a clear sense of movement, isolated even to one digit. This sensation was made greater by increasing the magnetic stimulus, and was projected elsewhere when the magnetic coil was
The coil was isolated from its motor and sensory communication with the brain by the ischemic pressure from the cuff. It was concluded that the magnetic pulse elicited what is normally a corollary discharge. This is the neural basis of a sense of movement that normally originates from the neural source of the motor stimulation in the brain, independent of the peripheral neuromuscular mechanisms.

SENSORY vs. MOTOR STIMULATION

THRESHOLDS

Magnetic stimulation of the motor cortex appears to elicit a motor response much more readily than stimulation of the sensory cortex does a sensory response. This was demonstrated by using a smaller, experimental figure-8 coil over the post-central sensory cortex, each section of the coil having a dimension 5 by 4.8 cm and joined at one side. It was possible to obtain paraesthesias in only one of eight subjects tested compared with all subjects responding to motor cortex stimulation.

RETINAL AND CORTICAL ELECTROPHOSPHENES

Amassian and Cracco, and Cracco et al. investigated simian and human transrassal responses evoked by both magnetic coil and electrical stimulation. The 9.2-cm diameter (outside diameter) magnetic coil was placed in the lateral sagittal plane over the right hemisphere. The edge contacted the scalp midway between F4 and C4. The transcallosal response gave a positive wave at 0.8 Hz to 1 or 2 KHz.

Currents between the stimulating electrodes, a vari- etal and the magnetic coil to reduce stimulus placed between the active or focal recording elec- trode and the indifferent or reference electrode. The recording bandwidth was 6 cm away and a grounded stainless steel strip was used to elicit a motor response much more readily than stimulation of the sensory cortex does a sensory response. This was demonstrated by using a smaller, experimental figure-8 coil over the post-central sensory cortex, each section of the coil having a dimension 5 by 4.8 cm and joined at one side. It was possible to obtain paraesthesias in only one of eight subjects tested compared with all subjects responding to motor cortex stimulation.

PERCEPTUAL SUPPRESSION AT THE VISUAL CORTEX

Amassian et al. found and studied the suppression of visual perception by magnetic coil stimulation. They used a round 9.2-cm diameter magnetic coil placed symmetrically at the back of the head but with the lower part of the coil 2 cm above the inion. To give the effect, 2 to 2.2 T were required, which was several-fold greater than that required for the stimulation of the lateral motor cortex.

Phosphenes were not observed. Three letters of the alphabet chosen randomly were displayed tachis- scopically at a distance of 35 to 75 cm, subtending a visual angle of 0.4 to 0.8°. The correct response was obliterated when the magnetic pulse was generated between 80 and 100 ms after the visual stimulus presentation (Fig. 7). The percentage of letters correctly read was reduced when the pulse was triggered between 50 and 150 ms. They also demonstrated a lateral effect by shifting the coil to one side, which shifted the effect toward the opposite visual field. Further experiments by Mascabre et al. demonstrated backward masking and a delay of the effect with equiluminous colored targets.

RETRINAL AND CORTICAL MAGNETOPHOSPHENE THRESHOLDS

Bedinger et al. designed and constructed a de- vice for magnetic stimulation capable of a peak dib/ dt value of 5 T/s, which reached a peak B of 0.4 to 0.8 T. The correct response was obliterated when the magnetic pulse was generated between 30 and 500 ms after the visual stimulus presentation (Fig. 7). The percentage of letters correctly read was reduced when the pulse was triggered between 50 and 150 ms. They also demonstrated a lateral effect by shifting the coil to one side, which shifted the effect toward the oppo- site visual field. Further experiments by Mascabre et al. demonstrated backward masking and a delay of the effect with equiluminous colored targets.

Magnetostimulation of Vision—Marg 437
for dB/dt in older subjects was 1.9 T/s and in younger subjects, 1.3 T/s, both with a rise time of 2 ms. The magnetic field must change fast enough to induce a strong enough electric field for a phos- phene. The authors propose an alternative stimu- lation mechanism to the generally accepted one of the induction of electric current. They speculate that retinal membrane depolarization results from mechanical forces associated with a torque on the retinal rods inasmuch as they have a known mag- netic susceptibility and an anisotropy.

Retinal and cortical magnetophosphene thresh- olds were identified and compared by Marg and Newman in themselves. Until the current era of capacitor discharge stimulators, magnetophosphenses have been elicited only from the eye and not from the cortex. The reason that attempts at cortical stimulation were not effective in the past became clear when they found that the eye has a five-times lower threshold than the occipital cortex to magnetic stimulation.

Using a Digitimer D-190 Magnetic Stimulator, the small 7-cm-diameter coil was at 20% power at the eye and 100% at the occiput for the thresholds. At maximum power the stimulator produces 5 kT/ s and at 20%, 1 kT/s. The corresponding peak fields are 1.2 and 0.24 T, respectively. This finding dem- onstrates that the retina is much more sensitive to magnetic stimulation than the cortex, a conclusion reached earlier by Merton and Morton for electrical stimulation.

The retinal phosphenses appear in the extreme peripheral visual field. They may take the form of a crescent or an annulus. They usually appear diff- use, like distant lightning. The cortical phosphenses are generally in the midperipheral field and are more corporeal. Stronger stimuli with a figure-8 coil can produce cortical phosphenses in the central field.

CONCLUSIONS

Magnetic pulse stimulation provides new data on the function of motor and sensory systems of the brain, noninvasively and painlessly. Retinal and cortical phosphenses are separately elicited. Current developments in the field promise to increase its utility. Use of magnetic stimulation in a functional visual prosthesis is ruled out because magnetic fields cannot be "focused" to less than 1 mm di- ameter at the 1 cm or more distance between the scalp and the visual cortex. There seems little like- lihood of producing such a finely focal magnetic field except perhaps through fundamental advances in the understanding of the physics of magnetism. However, in its current state of development, mag- netic stimulation can be used to test the peripheral retina and visual cortex. Combined with appropri- ate visual stimuli, it may be possible to devise tests for specific functional aspects of the visual brain—examples are visual areas 4 and 5 (V4, V5), the inferotemporal cortex, superior colliculi, lateral ge- nulocellular nuclei, and other visual function centers.

ACKNOWLEDGMENT

Supported in part by the Minerva Foundation, Berkeley, CA.

REFERENCES

14. Beer B. Ueber das Auftreten einer subjektiven Lichtempfin-
29. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic
30. Merton PA, Morton HB. A magnetic stimulator for the human
31. Barker AT, Freeston IL, Jalinous R, Jarratt JA. Clinical eval-
35. Barker AT. Freeston IL, Jarratt JA, Jalinous R. Magnetic
36. Cohen LG, Hallet M. Non-invasive electrical stimulation of the
24. Lovsund P, Oberg PA, Nilsson SE, Reuter T. Magneto phos-
25. Merton PA, Morton HB. Electrical stimulation of the human
26. Merton PA, Morton HB. Stimulation of the cerebral cortex in
22. Bickford RG, Fremming BD. Neuronal stimulation by pulse
18. Magnusson CE, Stevens HC. Visual sensations caused by a
17. Magnusson CE, Stevens HC. Visual sensation caused by
21. Seidel D. Der Existenzbereich elektrisch und magnetischin-
15. Thompson SP. A physiological effect of an alternating mag-
17. Magnusson CE, Stevens HC. Visual sensations caused by
50. Rushton WAH. The effect upon the threshold for nervous
49. Maccabee PJ, Amassian VE, Cracco RQ. Cadwell JA. An
48. Maccabee PJ, Amassian VE, Cracco RQ, Cracco JB. Anziska
55. Arnassian VE, Cracco RQ, Maccabee PJ. A sense of move-
46. Maccabee PJ, Eberle L, Amassian VE, Cracco RQ. Rudell A.
45. Barker AT. Garnham CW, Freeston IL. Magnetic nerve stim-
44. Barker AT, Freeston IL, Garnham CW. Measurement of cor-
52. Amassian VE, Cracco RQ, Maccabee PJ. Focal stimulation
43. Amassian VE, Cracco RQ, Maccabee PJ. A comparison of the
42. Maccabee PJ, Amassian VE, Cracco RQ. Rudell A. A study of
41. Hufnagel A, Elger CE. DUN^^ HF, Bokas DK, Entizian W.
38. Homberg V, Netz J. Generalised seizures induced by trans-
34. Tsuzuki H, Kikuchi K, Takayanagi M. Changes in the strength of a magnetic field. Am J Physiol
33. Tsuchiya H, Kikuchi K, Takayanagi M. Changes in the strength of a magnetic field. Am J Physiol
31. Merton PA, Morton HB. Electrical stimulation of the human
26. Merton PA, Morton HB. Stimulation of the cerebral cortex in
25. Merton PA, Morton HB. Electrical stimulation of the human
24. Lovsund P, Oberg PA, Nilsson SE, Reuter T. Magneto phos-
23. Bickford RG, Fremming BD. Neuronal stimulation by pulse
22. Bickford RG, Fremming BD. Neuronal stimulation by pulse
21. Seidel D. Der Existenzbereich elektrisch und magnetischin-
19. Bickford RG, Fremming BD. Neuronal stimulation by pulse
18. Magnusson CE, Stevens HC. Visual sensations caused by a
17. Magnusson CE, Stevens HC. Visual sensation caused by
16. Magnusson CE, Stevens HC. Visual sensations caused by a
15. Thompson SP. A physiological effect of an alternating mag-
14. Magnusson CE, Stevens HC. Visual sensations caused by a
13. Magnusson CE, Stevens HC. Visual sensations caused by a
12. Magnusson CE, Stevens HC. Visual sensations caused by a
11. Magnusson CE, Stevens HC. Visual sensations caused by a
10. Magnusson CE, Stevens HC. Visual sensations caused by a
9. Magnusson CE, Stevens HC. Visual sensations caused by a
8. Magnusson CE, Stevens HC. Visual sensations caused by a
7. Magnusson CE, Stevens HC. Visual sensations caused by a
6. Magnusson CE, Stevens HC. Visual sensations caused by a
5. Magnusson CE, Stevens HC. Visual sensations caused by a
4. Magnusson CE, Stevens HC. Visual sensations caused by a
3. Magnusson CE, Stevens HC. Visual sensations caused by a
2. Magnusson CE, Stevens HC. Visual sensations caused by a
1. Magnusson CE, Stevens HC. Visual sensations caused by a

AUTHOR’S ADDRESS:
Elwin Marg
School of Optometry
University of California
Berkeley, California 94720

440 OPTOMETRY & VISION SCIENCE