Additional Indexes
 • Index of Standards
 • Index of Interactive Equations
 • Index of Materials

A
Abbreviations
 accuracy 1249
 mathematical signs and scientific and engineering terms 121
 symbols for mechanics and welding 121
Abrasives
 belt
 applications 222
 cutting off difficulties 223
 grinding
 abrasive diamond 222
 cutting diamond 222
 grains and materials 222
 grinding
 honing 222
 lapping 222
 polishing 222
 stones for honing 222
ABS plastics 222
Absolute programming, NC
 system of measurement 142
 temperature 2583
 zero 2583
Acceleration
 angular 167
 constant 167
 linear, of point on rotating body of gravity, g 222
Accuracy
 effect of, on part tolerances 1249
 of NC machine tools 1249
 positioning 1247
 repeatability, and resolution, NC 1247
 significance of 1247

Acme threads
 abbreviations 1826
 ANSI Standard 1826
 centralizing checking 1826
 diameter allowances 1826
 diameter tolerances 1826
 drill sizes for 1826
 form 1826
 general purpose 1826
 length of engagement 1826
 multiple start 1826
 stub 1826
 alternative 1826
 60-degree 1826
 taps for 1826
 thread profile form 1826
 tolerances application 1826
 types of 1826
 wire sizes for checking 1826

Active face width 2029
Acute-angle triangles solution 64
 Adaptive control, NC 1262
Addendum
 chordal 2048
 modification 2048
 involute spur and helical gears 2048
Addition
 decimal fractions 10
 fractions and mixed numbers 9
 matrix 119
Addresses, letter, NC 1272
Adhesives
 acrylic bonding 2481
 moisture cured polyurethane 2481
 one-component 2481
 retaining composition 2481
 rubber cement 2481
 sealants 2481
 threadlocking 2481
 two-component 2481
 types 2481
Adiabatic expansion and compression 509
Adjacent of a matrix 509
Adjusting gear blanks for milling 2093
Aerodynamic lubrication 2343
Aerospace screws, bolts and nuts 1805
Aero-thread 1890
Aging of metal 509
Air
 absolute pressure 121
 adiabatic expansion and compression 121
 compression and flow 121
 density 121
 expanded and compression 121
Machinery's Handbook 27th Edition

INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2589</td>
</tr>
</tbody>
</table>

Air
- expansion and compression
 - compression [130]
 - expansion [130]
 - horsepower to compress [132-133]
- isothermal work to compress [131]
- flow in pipes [130]
- gage pressure [131-135]
- power or work to compress [131-135]
- pressure, temperature, and volume relationships [130]
- velocity of escaping [131]
- volume and weight at different temperatures [131]
- volume transmitted through pipes [131]

AISI-SAE
- alloy steels
 - carbon steels [29]
 - expressions and formulas [29]
 - rearrangement and transposition of terms [29]
 - allowances and tolerances
 - allowance defined [445, 584]
 - allowance for forced fits [451]
 - application [451]
 - bending sheet metal [414, 1312, 1313]
 - cylindrical fits, ANSI Standard for [584, 581]
 - fits [451, 584, 581]
 - metric ISO, British Standard for [579, 578]
 - preferred series [579]
 - unilateral and bilateral tolerances [579]
 - Alloy cast iron [505]
 - Alloy steels [510]
 - AISI-SAE Designations
 - basic numbering system [441, 144, 142, 451, 422, 484]
 - carburizing grades [451, 484, 422, 484]
 - cast composition directly hardenable grades [451, 484, 422, 484]
 - effects of alloying elements on electrodes (welding) [484]
 - current to use with [484]
 - elongation of forged and rolled gears [414]
 - hardness of heat-treated heat treatments [484]
 - mechanical properties [484]
 - milling [581, 582]
 - numbering system [581, 582]
 - strength of heat-treated [581, 582]

Alloy steels
- tensile strength [2844]
- turning [292, 291]

Alloys
- aluminum alloys
 - anodizing characteristics [284]
 - chemical composition [278, 279, 279]
 - electrical conductivity [279]
 - elongation [279, 279, 279]
 - high corrosion resistance [279]
 - mechanical properties [279]
 - temper [279, 279, 279]
 - ultimate tensile strength [279]
 - workability [279]
 - yield strength [279, 279, 279]

- Association bearing material data [292, 292]
- cast composition characteristics of cladding alloys [278, 279, 279]
- coefficient of expansion [284]
- density [284]
- die casting [284]
- elongation [284, 284]
- heat treatability of wrought material [284]
- melting point [284]
- modulus of elasticity [284]
- specific heat [284]
- structural shapes [284]
- temper designation [279, 279, 279]
- tensile strength [284]
- thermal conductivity [284]
- welding [284]
- wrought yield strength [284]

American Boiler Makers Association [292]

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

American (continued)

Brass Company 250
Bureau of Shipping 258
Foundrymen’s Association 291
Gear Manufacturers Association (AGMA) 250
Institute of Steel Construction 289
Iron and Steel Institute (AISI) 280, 281
National Standards Institute VI 297
(see also ANSI Standard)
Society for Metals (ASMO) 47
Society for Testing and Materials (ASTM) 281, 282, 283, 284
Society of Mechanical Engineers (ASME) VI 297
(see Index of Standards)
Standard Code for Information Interchange (ASCII) 227
Standards Association VI
wire gage 222
AMO thread 286
— design dimensions 286
— design requirements 286
— formulas 286
— gage testing 286
— lengths of engagement 286
— limit of size 286
— swiss screw thread symbols 286
— tolerances and allowances 286

Analysis, break-even 284, 285

Analytical geometry

Angle between lines tangent to two circles 286
— between two lines 286
compound 286
— cutting tool degrees into radians 286
— functions of helix 286
— indexing 286
— involute functions of lead 286
— length of arc of given radius 286
— length of chord 286
— measuring by disc method 286
— minutes, seconds into decimal degrees 286
— minutes, seconds into radians 286
— radians into degrees 286
— sine bar for measuring 286
— structural 286
— bent to circular shape 286
— moment of inertia 286
— radius of gyration 286
— section modulus 286
— weight per foot 286
— taper per foot corresponding to 286

Angle (continued)

— thread, tolerances on pages to find, given taper per foot 286
— tolerance, single point tool 286
— trigonometric functions of useful relationships among 286

Angular acceleration 292
— torque, relation to 292
— backlash in gears 292
— indexing 292
— velocity 292
— of retaining bolts 292

Annealing
— constant temperature, transformation 292

Annuities (calculation of) 287

Anodizing 287

ANSI Standard abbreviations
— Acme threads 287
— bolts, nuts, screws, washers inch 287
— metric 287
— boring tools 287
— carbide button inch screw thread 287
— cap screws 287
— hex 287
— slotted head 287
— socket head 287
— metric 287
— socket head 287
— chain, transmission 287
— clearance fits 287
— core drills 287
— cutting tools 287
— cylindrical fits 287
— diamond wheels 287
— dowel pins, hardened and ground 287
— drawing and drafting practices 287
— symbols 287
— accuracy between comparison to ISO 287
— concentricity controlled radius 287
— datum referencing 287
— parallelism 287
— part tolerance perpendicularity 287
— position 287
— roundness 287

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>INDEX</th>
<th>ANSI Standard (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Standard</td>
<td>ANSI Standard (continued)</td>
</tr>
<tr>
<td>drawing and drafting practices</td>
<td>machine screws</td>
</tr>
<tr>
<td>runout</td>
<td>fillister head</td>
</tr>
<tr>
<td>section lining</td>
<td>flat, countersunk head</td>
</tr>
<tr>
<td>statical tolerance</td>
<td>hexagon head</td>
</tr>
<tr>
<td>total runout</td>
<td>metric</td>
</tr>
<tr>
<td>welding</td>
<td>oval head</td>
</tr>
<tr>
<td>drill drivers</td>
<td>pan head</td>
</tr>
<tr>
<td>collet type</td>
<td>round head</td>
</tr>
<tr>
<td>drive screws</td>
<td>slotted hexagon</td>
</tr>
<tr>
<td>drive studs</td>
<td>truss head</td>
</tr>
<tr>
<td>electric socket and lamp base</td>
<td>manufacturers standard gage for sheet steel</td>
</tr>
<tr>
<td>gagemakers tolerances</td>
<td>metric fits</td>
</tr>
<tr>
<td>gages</td>
<td>cap screws</td>
</tr>
<tr>
<td>gages</td>
<td>clearance fits</td>
</tr>
<tr>
<td>gages</td>
<td>hex flange nuts</td>
</tr>
<tr>
<td>for self-holding tapers</td>
<td>hex flange screws</td>
</tr>
<tr>
<td>for Unified screw threads</td>
<td>interference fits</td>
</tr>
<tr>
<td>for Unified screw threads</td>
<td>microthreads</td>
</tr>
<tr>
<td>gear tooth forms</td>
<td>metric macrothreads</td>
</tr>
<tr>
<td>geometric characteristic symbols</td>
<td>metric miniature threads</td>
</tr>
<tr>
<td>geometric dimensioning and tolerancing</td>
<td>metric metric function macrothreads</td>
</tr>
<tr>
<td>grinding wheel speeds</td>
<td>metric metric threads</td>
</tr>
<tr>
<td>grinding wheels</td>
<td>metric modules</td>
</tr>
<tr>
<td>grooved pins</td>
<td>metric module</td>
</tr>
<tr>
<td>hexagon socket head screw</td>
<td>metric module</td>
</tr>
<tr>
<td>for self-holding tapers</td>
<td>metric module</td>
</tr>
<tr>
<td>screws</td>
<td>metric module</td>
</tr>
<tr>
<td>hexagon spline socket set screws</td>
<td>metric module</td>
</tr>
<tr>
<td>hose coupling screw threads</td>
<td>metric modules</td>
</tr>
<tr>
<td>interference fits</td>
<td>metric modules</td>
</tr>
<tr>
<td>involute splines</td>
<td>metric modules</td>
</tr>
<tr>
<td>metric module</td>
<td>metric modules</td>
</tr>
<tr>
<td>jig bushings</td>
<td>metric modules</td>
</tr>
<tr>
<td>key drive</td>
<td>metric modules</td>
</tr>
<tr>
<td>keys and keyways</td>
<td>metric modules</td>
</tr>
<tr>
<td>keys and keyways</td>
<td>metric modules</td>
</tr>
<tr>
<td>knurls and knurling</td>
<td>metric modules</td>
</tr>
<tr>
<td>letter symbols for mechanics</td>
<td>metric modules</td>
</tr>
<tr>
<td>limits and fits</td>
<td>metric modules</td>
</tr>
<tr>
<td>M profile thread</td>
<td>metric modules</td>
</tr>
<tr>
<td>design profile</td>
<td>metric modules</td>
</tr>
<tr>
<td>limits of size</td>
<td>metric modules</td>
</tr>
<tr>
<td>tolerances of internal threads</td>
<td>metric modules</td>
</tr>
<tr>
<td>machine screws</td>
<td>metric modules</td>
</tr>
<tr>
<td>binding head</td>
<td>metric modules</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
2592

INDEX

ANSI Standard (continued)
screws and bolts
 metric hex bolts 1539
 metric neck bolts 1542
 square neck bolts 1544
section lining symbols
 self-tapping thread inserts 1552
 self-threading screws
 inch 1539
 metric
 head types 1568
 serrations, involute 1572
set-screws
 heads and points 1568
 socket type 1626
 slotted headless set screws 1625
 spindles and drives for portable tools 1625
 hexagonal socket set screws 1626
 splines, involute 2176
 tooth proportions 2039
 transition fits 669
 twist drills 877
 Unified threads
 inch 1572
 metric 1564
 welded and seamless wrought steel pipe 1572
 wing nuts and screws 1572
 wood screws 1572
 woodruff keys 1570
 worm gearing, key slots 1594
 wrench openings 1644
 Antifriction bearings 1589

Apothecaries measure
 fluid weight 1671
 Applications nickel alloys 180
 APT (automatically programmed tool)
 axis nomenclature 180
 circles 279
 computational statements for turning 279
 geometry statements 279
 planes 150
 postprocessor statements 150
 program 150
 standard milling machine 148
 Arrows
 checking radius of cutting 218
 cutting 218
 electric, cutting of metals 218
 length of given angle and radius 218
 plasma precision cutting 218
 plasma welding 218
 welding 218
 Area
 circle 63
 circular
 ring 67
 ring sector 67
 sector 67
 segments 67, 67
 cycloid 67
 ellipse 67
 enclosed by cycloidal curve 67
 fillet 67
 finding by Simpson’s rule 67
 geometrical figures 67
 hexagon 67
 hyperbola 67
 irregular outline 67
 octagon 67
 parallelogram 67
 plane figures 67
 plane surface of irregular outline polygons 67
 rectangle 67
 spandrel 67

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

<table>
<thead>
<tr>
<th>Area (continued)</th>
<th>2593</th>
</tr>
</thead>
<tbody>
<tr>
<td>balls, standard grades</td>
<td>2126</td>
</tr>
<tr>
<td>hardness corrections for curvatures</td>
<td>2125</td>
</tr>
<tr>
<td>hardness range</td>
<td>2127</td>
</tr>
<tr>
<td>materials</td>
<td>2128</td>
</tr>
<tr>
<td>number per kilogram</td>
<td>2129</td>
</tr>
<tr>
<td>number per pound</td>
<td>2130</td>
</tr>
<tr>
<td>ordering specifications</td>
<td>2131</td>
</tr>
<tr>
<td>package markings</td>
<td>2132</td>
</tr>
<tr>
<td>preferred gages</td>
<td>2133</td>
</tr>
<tr>
<td>preferred sizes</td>
<td>2134</td>
</tr>
<tr>
<td>preferred tolerances</td>
<td>2135</td>
</tr>
<tr>
<td>Band brakes</td>
<td>2136</td>
</tr>
<tr>
<td>coefficient of friction</td>
<td>2137</td>
</tr>
<tr>
<td>simple and differential</td>
<td>2138</td>
</tr>
<tr>
<td>Band saw</td>
<td>2139</td>
</tr>
<tr>
<td>blade selection</td>
<td>2140</td>
</tr>
<tr>
<td>blade type: break-off</td>
<td>2141</td>
</tr>
<tr>
<td>speed and feed</td>
<td>2142</td>
</tr>
<tr>
<td>speed for cutting materials</td>
<td>2143</td>
</tr>
<tr>
<td>speeds and feeds, metal cutting</td>
<td>2144</td>
</tr>
<tr>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>Barrell</td>
<td>1143</td>
</tr>
<tr>
<td>effect</td>
<td>1144</td>
</tr>
<tr>
<td>liquid capacity</td>
<td>1145</td>
</tr>
<tr>
<td>volume</td>
<td>1146</td>
</tr>
<tr>
<td>Barometric reading and equivalent pressure</td>
<td>1147</td>
</tr>
<tr>
<td>Base</td>
<td>1148</td>
</tr>
<tr>
<td>circle</td>
<td>1149</td>
</tr>
<tr>
<td>diameter</td>
<td>1150</td>
</tr>
<tr>
<td>helix angle</td>
<td>1151</td>
</tr>
<tr>
<td>oils for metal cutting</td>
<td>1152</td>
</tr>
<tr>
<td>pitch</td>
<td>1153</td>
</tr>
<tr>
<td>spur gear, diameter</td>
<td>1154</td>
</tr>
<tr>
<td>tooth thickness</td>
<td>1155</td>
</tr>
<tr>
<td>1156</td>
<td></td>
</tr>
<tr>
<td>Basic dimensions</td>
<td>1157</td>
</tr>
<tr>
<td>of shaft or hole</td>
<td>1158</td>
</tr>
<tr>
<td>endurance limit</td>
<td>1159</td>
</tr>
<tr>
<td>gear dimensions</td>
<td>1160</td>
</tr>
<tr>
<td>rack profiles</td>
<td>1161</td>
</tr>
<tr>
<td>space width</td>
<td>1162</td>
</tr>
<tr>
<td>Baume’s hydrometer</td>
<td>1163</td>
</tr>
<tr>
<td>conversion</td>
<td>1164</td>
</tr>
<tr>
<td>Beams</td>
<td>1165</td>
</tr>
<tr>
<td>conversion</td>
<td>1166</td>
</tr>
<tr>
<td>beams</td>
<td>1167</td>
</tr>
<tr>
<td>channel</td>
<td>1168</td>
</tr>
<tr>
<td>combined stresses in</td>
<td>1169</td>
</tr>
<tr>
<td>curved</td>
<td>1170</td>
</tr>
<tr>
<td>deflections</td>
<td>1171</td>
</tr>
<tr>
<td>designating</td>
<td>1172</td>
</tr>
<tr>
<td>fixed at one end</td>
<td>1173</td>
</tr>
<tr>
<td>I-beams</td>
<td>1174</td>
</tr>
<tr>
<td>rectangular</td>
<td>1175</td>
</tr>
<tr>
<td>stresses in</td>
<td>1176</td>
</tr>
<tr>
<td>stresses produced by shears</td>
<td>1177</td>
</tr>
<tr>
<td>supported at both ends</td>
<td>1178</td>
</tr>
<tr>
<td>Bearings</td>
<td>1179</td>
</tr>
<tr>
<td>ball bearings</td>
<td>1180</td>
</tr>
<tr>
<td>B & S automatic screw machines</td>
<td>2269</td>
</tr>
<tr>
<td>Babbit metals</td>
<td>2270</td>
</tr>
<tr>
<td>properties of</td>
<td>2271</td>
</tr>
<tr>
<td>SAE general information</td>
<td>2272</td>
</tr>
<tr>
<td>Backlash</td>
<td>2273</td>
</tr>
<tr>
<td>allowance in checking gears by the pin method</td>
<td>2274</td>
</tr>
<tr>
<td>bevel gears</td>
<td>2275</td>
</tr>
<tr>
<td>calculation</td>
<td>2276</td>
</tr>
<tr>
<td>control of allowances in production</td>
<td>2277</td>
</tr>
<tr>
<td>control of in assemblies</td>
<td>2278</td>
</tr>
<tr>
<td>determining proper amount of excess depth of cut</td>
<td>2279</td>
</tr>
<tr>
<td>fine-pitch gears</td>
<td>2280</td>
</tr>
<tr>
<td>gearing</td>
<td>2281</td>
</tr>
<tr>
<td>hypoid gears</td>
<td>2282</td>
</tr>
<tr>
<td>recommended for gears</td>
<td>2283</td>
</tr>
<tr>
<td>Balance wheels</td>
<td>2284</td>
</tr>
<tr>
<td>Balancing</td>
<td>2285</td>
</tr>
<tr>
<td>calculations</td>
<td>2286</td>
</tr>
<tr>
<td>counterbalancing masses</td>
<td>2287</td>
</tr>
<tr>
<td>located in single plane</td>
<td>2288</td>
</tr>
<tr>
<td>located in two or more planes</td>
<td>2289</td>
</tr>
<tr>
<td>dynamic</td>
<td>2290</td>
</tr>
<tr>
<td>lathe fixtures</td>
<td>2291</td>
</tr>
<tr>
<td>machines</td>
<td>2292</td>
</tr>
<tr>
<td>rotating parts</td>
<td>2293</td>
</tr>
<tr>
<td>running or dynamic</td>
<td>2294</td>
</tr>
<tr>
<td>static</td>
<td>2295</td>
</tr>
<tr>
<td>Ball bearing (see Bearings: ball)</td>
<td>2296</td>
</tr>
<tr>
<td>Balls, standard (continued)</td>
<td>2297</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Bearings

(continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEC tolerances</td>
<td>2279–2284</td>
</tr>
<tr>
<td>alignment and squareness</td>
<td>2284</td>
</tr>
<tr>
<td>allowance for axial displacement in</td>
<td>2280</td>
</tr>
<tr>
<td>angular contact</td>
<td>2279</td>
</tr>
<tr>
<td>cage materials</td>
<td>2280</td>
</tr>
<tr>
<td>clamping and retaining methods</td>
<td>2280–2281</td>
</tr>
<tr>
<td>clearances, running</td>
<td>2282</td>
</tr>
<tr>
<td>closures</td>
<td>2279–2280</td>
</tr>
<tr>
<td>design and installation</td>
<td>2280</td>
</tr>
<tr>
<td>designation</td>
<td>2279–2280</td>
</tr>
<tr>
<td>double row bearings</td>
<td>2279–2280</td>
</tr>
<tr>
<td>equivalent thrust load</td>
<td>2279–2280</td>
</tr>
<tr>
<td>failures</td>
<td>2280–2281</td>
</tr>
<tr>
<td>fatigue life</td>
<td>2280–2281</td>
</tr>
<tr>
<td>fits</td>
<td>2280–2281</td>
</tr>
<tr>
<td>flanged housings</td>
<td>2279–2280</td>
</tr>
<tr>
<td>handling precautions</td>
<td>2280–2281</td>
</tr>
<tr>
<td>housing bore tolerances</td>
<td>2282–2283</td>
</tr>
<tr>
<td>housings, soft metal</td>
<td>2284</td>
</tr>
<tr>
<td>life</td>
<td>2284</td>
</tr>
<tr>
<td>adjustment factor application</td>
<td>2284–2285</td>
</tr>
<tr>
<td>adjustment factor for material</td>
<td>2284–2285</td>
</tr>
<tr>
<td>adjustment factors</td>
<td>2284–2285</td>
</tr>
<tr>
<td>criterion</td>
<td>2285</td>
</tr>
<tr>
<td>limitations</td>
<td>2285–2286</td>
</tr>
<tr>
<td>load ratings</td>
<td>2285–2286</td>
</tr>
<tr>
<td>locknuts and shafts for lockwashers</td>
<td>2280–2281</td>
</tr>
<tr>
<td>lubrication materials</td>
<td>2280–2281</td>
</tr>
<tr>
<td>mounting</td>
<td>2280–2281</td>
</tr>
<tr>
<td>precautions</td>
<td>2280–2281</td>
</tr>
<tr>
<td>types</td>
<td>2280–2281</td>
</tr>
<tr>
<td>pillow block</td>
<td>2280–2281</td>
</tr>
<tr>
<td>plastics</td>
<td>2280–2281</td>
</tr>
<tr>
<td>quiet or vibration-free mountings</td>
<td>2280–2281</td>
</tr>
<tr>
<td>radial and angular contact</td>
<td>2280–2281</td>
</tr>
<tr>
<td>radial and axial clearance</td>
<td>2280–2281</td>
</tr>
<tr>
<td>radial, deep groove and angular contact</td>
<td>2280–2281</td>
</tr>
<tr>
<td>rating life</td>
<td>2280–2281</td>
</tr>
<tr>
<td>reliability</td>
<td>2280–2281</td>
</tr>
<tr>
<td>seating fits</td>
<td>2280–2281</td>
</tr>
<tr>
<td>selection</td>
<td>2280–2281</td>
</tr>
<tr>
<td>shaft</td>
<td>2280–2281</td>
</tr>
<tr>
<td>and housing fits for metric</td>
<td>2280–2281</td>
</tr>
<tr>
<td>radial</td>
<td>2280–2281</td>
</tr>
<tr>
<td>bore limits</td>
<td>2280–2281</td>
</tr>
<tr>
<td>housing fits</td>
<td>2280–2281</td>
</tr>
<tr>
<td>tolerance</td>
<td>2280–2281</td>
</tr>
<tr>
<td>classifications, metric</td>
<td>2280–2281</td>
</tr>
<tr>
<td>limits, metric</td>
<td>2280–2281</td>
</tr>
<tr>
<td>single row radial, filling slot</td>
<td>2279–2280</td>
</tr>
<tr>
<td>single row radial, non filling slot</td>
<td>2279–2280</td>
</tr>
<tr>
<td>special or unconventional types</td>
<td>2279–2280</td>
</tr>
<tr>
<td>squareness and alignment</td>
<td>2280–2281</td>
</tr>
<tr>
<td>starting torque</td>
<td>2280–2281</td>
</tr>
<tr>
<td>static equivalent load</td>
<td>2279–2280</td>
</tr>
<tr>
<td>load criterion</td>
<td>2279–2280</td>
</tr>
<tr>
<td>load ratings</td>
<td>2279–2280</td>
</tr>
<tr>
<td>symbols</td>
<td>2279–2280</td>
</tr>
<tr>
<td>thrust</td>
<td>2279–2280</td>
</tr>
<tr>
<td>thrust load</td>
<td>2279–2280</td>
</tr>
<tr>
<td>tolerances</td>
<td>2279–2280</td>
</tr>
<tr>
<td>types</td>
<td>2279–2280</td>
</tr>
<tr>
<td>guide</td>
<td>2279–2280</td>
</tr>
<tr>
<td>journal</td>
<td>2279–2280</td>
</tr>
<tr>
<td>allowable pressure</td>
<td>2279–2280</td>
</tr>
<tr>
<td>bearing pressure</td>
<td>2279–2280</td>
</tr>
<tr>
<td>capacity number</td>
<td>2279–2280</td>
</tr>
<tr>
<td>classes</td>
<td>2279–2280</td>
</tr>
<tr>
<td>clearance modulus</td>
<td>2279–2280</td>
</tr>
<tr>
<td>diameter of bearing</td>
<td>2279–2280</td>
</tr>
<tr>
<td>diametral clearance</td>
<td>2279–2280</td>
</tr>
<tr>
<td>eccentricity ratio</td>
<td>2279–2280</td>
</tr>
<tr>
<td>factor</td>
<td>2279–2280</td>
</tr>
<tr>
<td>film thickness</td>
<td>2279–2280</td>
</tr>
<tr>
<td>flow factor</td>
<td>2279–2280</td>
</tr>
<tr>
<td>flow of lubricant</td>
<td>2279–2280</td>
</tr>
<tr>
<td>friction horsepower</td>
<td>2279–2280</td>
</tr>
<tr>
<td>friction torque</td>
<td>2279–2280</td>
</tr>
<tr>
<td>hydrodynamic flow of lubricant</td>
<td>2279–2280</td>
</tr>
<tr>
<td>length of bearing</td>
<td>2279–2280</td>
</tr>
<tr>
<td>length to diameter ratio</td>
<td>2279–2280</td>
</tr>
<tr>
<td>lubrication analysis</td>
<td>2279–2280</td>
</tr>
<tr>
<td>operating temperature</td>
<td>2279–2280</td>
</tr>
<tr>
<td>pressure</td>
<td>2279–2280</td>
</tr>
<tr>
<td>pressure flow of lubricant</td>
<td>2279–2280</td>
</tr>
<tr>
<td>temperature of mineral oils</td>
<td>2279–2280</td>
</tr>
<tr>
<td>temperature rise</td>
<td>2279–2280</td>
</tr>
<tr>
<td>torque parameter</td>
<td>2279–2280</td>
</tr>
<tr>
<td>total flow of lubricant</td>
<td>2279–2280</td>
</tr>
<tr>
<td>viscosity of lubricant</td>
<td>2279–2280</td>
</tr>
<tr>
<td>keying</td>
<td>2279–2280</td>
</tr>
<tr>
<td>laminated phenolic</td>
<td>2279–2280</td>
</tr>
<tr>
<td>life adjustment factors</td>
<td>2279–2280</td>
</tr>
<tr>
<td>lubricants and lubrication</td>
<td>2279–2280</td>
</tr>
<tr>
<td>grease</td>
<td>2279–2280</td>
</tr>
<tr>
<td>journal bearings</td>
<td>2279–2280</td>
</tr>
<tr>
<td>plain bearings</td>
<td>2279–2280</td>
</tr>
<tr>
<td>materials, plain</td>
<td>2279–2280</td>
</tr>
<tr>
<td>aluminum</td>
<td>2279–2280</td>
</tr>
<tr>
<td>babbit metals</td>
<td>2279–2280</td>
</tr>
<tr>
<td>bronze</td>
<td>2279–2280</td>
</tr>
<tr>
<td>cadmium alloys</td>
<td>2279–2280</td>
</tr>
<tr>
<td>carbon-graphite</td>
<td>2279–2280</td>
</tr>
<tr>
<td>cast iron</td>
<td>2279–2280</td>
</tr>
<tr>
<td>compatibility</td>
<td>2279–2280</td>
</tr>
<tr>
<td>conformability</td>
<td>2279–2280</td>
</tr>
<tr>
<td>copper-lead</td>
<td>2279–2280</td>
</tr>
</tbody>
</table>
Bearings (continued)

- **materials, plain**
- **corrosion resistance**
- **embeddability**
- **fatigue resistance**
- **laminated phenolics**
- **load capacity**
- **nylon**
- **plastics laminates**
- **porous**
- **properties**
- **rubber**
- **SAE compositions**
- **silver**
- **strength**
- **teflon (TFE)**
- **thermal conductivity**
- **tin-bronze**
- **white metal**
- **wood**
- **needle**
- **loose roller**
- **types of**
- **needle roller**
- **fitting and mounting practice**
- **tolerances**
- **allowable pressures**
- **boundary lubrication**
- **circumferential-groove classes of**
- **clearances**
- **controlled clearance noncontact seals**
- **cylindrical-overshot**
- **cylindrical-undershot**
- **design**
- **die casting in place**
- **displaced elliptical**
- **elliptical-overshot**
- **full film lubrication**
- **full film operational mode**
- **grooving feeding**
- **hardness and surface finish**
- **heat radiating capacity**
- **hydrostatic**
- **journal**
- **journal bearing oil grooving**
- **journal bearing types**
- **journal or sleeve**
- **keying methods**
- **length-to-diameter ratio**
- **lubricants**
- **lubrication analysis**
- **lubrication methods**
- **machining**
- **materials**
- **mixed-film lubrication mode**
- **modes of operation**
- **multiple-groove**
- **nutcracker**
- **oil bath lubrication**
- **oil feeding**
- **oil grooves**
- **oil ring lubrication**
- **operating temperatures**
- **pivot-shoe**
- **positive contact**
- **press or shrink fit**
- **pressure**
- **pressure lubrication**
- **pressure profile**
- **retaining methods**
- **rubbing seals**
- **sealing methods**
- **sleeve**
- **solid lubricants**
- **splash lubrication**
- **static seals**
- **surface finish and hardness**
- **three-lobe types**
- **viscosity conversion table**
- **viscosity temperature chart**
- **waste pack lubrication**
- **porous retension dowel pin**
- **housing cap**
- **set screws**
- **woodruff key**
- **roller**
- **ABEC and RBEC tolerances**
- **alignment and squareness**
- **allowance for axial displacement**
- **barrel roller**
- **barrel type**
- **bearing closures**
- **cage materials**
- **clamping and retaining methods closures**
- **deficiencies**
- **design and installation considerations**
- **designation of**
- **failures**
- **fatigue life**
- **fits**
- **flanged housing**
INDEX

Bearings

(continued)

roller
- friction losses in 2304
- handling precautions 2304
- high speed effects 2313
- housing bore tolerances 2254, 2258
- housings, soft metal and resilient 2290
- internal clearance 2314
- life 2257, 2258
- adjustment factors, for application 2318
- for material 2318
- criterion 2307
- life adjustment factors 2318
- load ratings 2307
- location and seating 2294–2302
- locknuts and shafts 2299–2301
- lockwashers 2298
- lubrication 2304, 2313
- materials for 2277, 2313
- method of designation 2288–2289
- mounting 2294, 2304
- precautions 2297
- type 2297
- needle type 2291–2293
- pillow block 2277
- plastics 2274
- quiet or vibration-free mountings 2297
- radial 2315
- radial and axial clearance 2305
- radial load 2316
- rating life 2274, 2275
- reliability 2298
- selection 2297
- self-aligning 2274
- shaft and housing fits for 2297
- metric radial 2289, 2291
- soft metal and resilient housings 2297
- special or unconventional types of 2297
- spherical roller 2274
- spherical type 2274
- squareness and alignment 2290
- static equivalent loads 2282, 2283
- static load criterion 2246
- stress concentrations 2246
- symbols 2259
- tapered 2273
- tapered roller thrust type 2273
- thrust 2273
- tolerances for 2283, 2289
- torque, starting 2256
- types of 2273, 2291
- roller thrust
- spherical roller 2274
- sleeve 2279
- spacing and shaft stiffness 2086
- tapered
- land thrust bearing 2248, 2254, 2256
- roller bearings 2273

tapered
- roller thrust bearings 2273
- thrust bearing 2297, 2298
- ball symbols 2272
- design notation 2248
- flat plate design
 - depth of chamber 2248
 - film flow 2248
 - flow per chamber 2248
 - friction power loss 2248
 - kinetic energy correction 2248
- length of pad 2248
- number of pad 2248
- pitch line velocity 2248
- radial pad width 2248
- required oil flow 2248
- flat plate type 2248
- friction power leakage factor 253
- load 2241
- parallel flat plate 2248
- plain 2248, 2255
- rated load 2241, 2316
- symbols 2248
- static equivalent load 2132, 2135
- step design
 - depth of step 2244, 2248
 - film thickness 2245
 - friction power loss 2245
 - hydrodynamic oil flow 2245
 - length of pad 2245
 - number of pads 2245
 - pad step length 2245
 - pitch line circumference 2245
 - pitch line velocity 2245
 - radial pad width 2245
 - temperature rise 2245
- tapered land design 2244, 2245, 2246
- film thickness 2244, 2245
- friction power loss 2244, 2245
- length of pad 2244, 2245
- number of pads 2244, 2245
- oil film flow 2245
- oil flow factor 2245
- oil leakage factor 2245
- pitch line circumference 2245
- pitch line velocity 2245
- radial pad width 2245
- shape factor 2245
- taper values 2245
- tilting pad design
 - bearing unit load 2244
 - dimensionless film thickness 2245
 - film thickness 2245
 - friction coefficient 2245
 - length of pad 2244, 2245
 - number of pads 2244, 2245
 - operating number 2245, 2246

Copyright 2004, Industrial Press, Inc., New York, NY
Bearings (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrust bearing</td>
<td>2256</td>
</tr>
<tr>
<td>pitch line velocity</td>
<td>2256</td>
</tr>
<tr>
<td>radial pad width</td>
<td>2256</td>
</tr>
<tr>
<td>temperature rise</td>
<td>2256</td>
</tr>
<tr>
<td>tolerances</td>
<td>2256</td>
</tr>
<tr>
<td>metric ball and roller</td>
<td>2277</td>
</tr>
<tr>
<td>needle roller</td>
<td>2277</td>
</tr>
<tr>
<td>Belleville disc springs or washers</td>
<td>2278</td>
</tr>
</tbody>
</table>

Belts and pulleys (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-belts</td>
<td>2388</td>
</tr>
<tr>
<td>groove dimension</td>
<td>2400</td>
</tr>
<tr>
<td>horsepower ratings</td>
<td>2400</td>
</tr>
<tr>
<td>length correction</td>
<td>2401</td>
</tr>
<tr>
<td>shear dimensions</td>
<td>2403</td>
</tr>
<tr>
<td>speed ratio correction</td>
<td>2403</td>
</tr>
<tr>
<td>double V-belts</td>
<td>2405</td>
</tr>
<tr>
<td>arc of contact</td>
<td>2405</td>
</tr>
<tr>
<td>thrust</td>
<td>2405</td>
</tr>
<tr>
<td>width</td>
<td>2406</td>
</tr>
<tr>
<td>flat belts</td>
<td>2391</td>
</tr>
<tr>
<td>length formula</td>
<td>2391</td>
</tr>
<tr>
<td>rules for diameters and speeds of pulleys</td>
<td>2391</td>
</tr>
<tr>
<td>speed limitations</td>
<td>2391</td>
</tr>
<tr>
<td>synchronous belts</td>
<td>2406</td>
</tr>
<tr>
<td>cross section</td>
<td>2406</td>
</tr>
<tr>
<td>horsepower rating</td>
<td>2406</td>
</tr>
<tr>
<td>length determination</td>
<td>2407</td>
</tr>
<tr>
<td>pitch lengths</td>
<td>2407</td>
</tr>
<tr>
<td>pulley</td>
<td>2407</td>
</tr>
<tr>
<td>and flange dimension</td>
<td>2407</td>
</tr>
<tr>
<td>diameter</td>
<td>2407</td>
</tr>
<tr>
<td>size</td>
<td>2407</td>
</tr>
<tr>
<td>tolerances</td>
<td>2407</td>
</tr>
<tr>
<td>section dimension</td>
<td>2407</td>
</tr>
<tr>
<td>service factors</td>
<td>2407</td>
</tr>
<tr>
<td>storage and handling</td>
<td>2407</td>
</tr>
<tr>
<td>timing</td>
<td>2407</td>
</tr>
<tr>
<td>tolerances</td>
<td>2407</td>
</tr>
<tr>
<td>tooth dimensions</td>
<td>2407</td>
</tr>
<tr>
<td>torque ratings</td>
<td>2407</td>
</tr>
<tr>
<td>width factor</td>
<td>2407</td>
</tr>
<tr>
<td>width, finding</td>
<td>2407</td>
</tr>
<tr>
<td>variable speed belts</td>
<td>2407</td>
</tr>
<tr>
<td>arc of contact</td>
<td>2407</td>
</tr>
<tr>
<td>cross section selection</td>
<td>2407</td>
</tr>
<tr>
<td>degree</td>
<td>2407</td>
</tr>
<tr>
<td>diameter</td>
<td>2407</td>
</tr>
<tr>
<td>design</td>
<td>2407</td>
</tr>
<tr>
<td>drive design</td>
<td>2407</td>
</tr>
<tr>
<td>groove dimension</td>
<td>2407</td>
</tr>
<tr>
<td>horsepower rating</td>
<td>2407</td>
</tr>
<tr>
<td>length correction</td>
<td>2407</td>
</tr>
<tr>
<td>lengths</td>
<td>2407</td>
</tr>
<tr>
<td>shear dimension</td>
<td>2407</td>
</tr>
<tr>
<td>shear groove data</td>
<td>2407</td>
</tr>
<tr>
<td>speed ratio</td>
<td>2407</td>
</tr>
<tr>
<td>V-belts</td>
<td>2411</td>
</tr>
<tr>
<td>belt lengths and center distances</td>
<td>2411</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>INDEX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Belts and pulleys</td>
<td></td>
</tr>
<tr>
<td>V-belts</td>
<td></td>
</tr>
<tr>
<td>speed ratio correction</td>
<td>327</td>
</tr>
<tr>
<td>Bending allowances, sheet metal formulas for beams for shafts for</td>
<td></td>
</tr>
<tr>
<td>stress in beams structural angles</td>
<td>313 – 314</td>
</tr>
<tr>
<td>Bending load, wood</td>
<td>111</td>
</tr>
<tr>
<td>Bending moments units conversion</td>
<td></td>
</tr>
<tr>
<td>Beryllium and copper alloys</td>
<td>257</td>
</tr>
<tr>
<td>Bevel gearing</td>
<td></td>
</tr>
<tr>
<td>ANSI/AGMA Standard applications of bearing spacing blanks</td>
<td>264</td>
</tr>
<tr>
<td>bronze and brass gears</td>
<td>244</td>
</tr>
<tr>
<td>chordal addendum</td>
<td>209</td>
</tr>
<tr>
<td>chordal thickness</td>
<td>209 – 210</td>
</tr>
<tr>
<td>circular pitch</td>
<td>208</td>
</tr>
<tr>
<td>circular thickness</td>
<td>208</td>
</tr>
<tr>
<td>cutting angle</td>
<td>208</td>
</tr>
<tr>
<td>cutting teeth</td>
<td>204</td>
</tr>
<tr>
<td>design</td>
<td>208</td>
</tr>
<tr>
<td>dimensions</td>
<td>208</td>
</tr>
<tr>
<td>face angle</td>
<td>208</td>
</tr>
<tr>
<td>factors for offset of cutter</td>
<td>208</td>
</tr>
<tr>
<td>formed cutters for hypoid gears</td>
<td>208</td>
</tr>
<tr>
<td>German standard tooth form</td>
<td>211</td>
</tr>
<tr>
<td>milled</td>
<td>208</td>
</tr>
<tr>
<td>milling cutters</td>
<td>208 – 209</td>
</tr>
<tr>
<td>milling setup</td>
<td>208</td>
</tr>
<tr>
<td>mountings</td>
<td>208</td>
</tr>
<tr>
<td>nomenclature</td>
<td>208</td>
</tr>
<tr>
<td>offset of cutter</td>
<td>208</td>
</tr>
<tr>
<td>pitch cone</td>
<td>207</td>
</tr>
<tr>
<td>pitch diameter</td>
<td>207</td>
</tr>
<tr>
<td>planetary</td>
<td>215</td>
</tr>
<tr>
<td>replacement gear dimensions</td>
<td>313</td>
</tr>
<tr>
<td>selecting formed cutters for shaft stiffness</td>
<td>208</td>
</tr>
<tr>
<td>spiral</td>
<td>203</td>
</tr>
<tr>
<td>straight</td>
<td>203 – 204</td>
</tr>
<tr>
<td>thickness of tool</td>
<td>208</td>
</tr>
<tr>
<td>types of typical steels used for</td>
<td>208</td>
</tr>
<tr>
<td>Zeros</td>
<td>208 – 209</td>
</tr>
<tr>
<td>Bilateral and unilateral tolerances</td>
<td>414</td>
</tr>
<tr>
<td>Binary multiples</td>
<td>414</td>
</tr>
<tr>
<td>Birmingham wire gauge</td>
<td>226</td>
</tr>
<tr>
<td>Birnie’s equation</td>
<td>464</td>
</tr>
<tr>
<td>Blank diameters, drawing dies</td>
<td>310 – 311</td>
</tr>
<tr>
<td>Blanks, sintered carbide</td>
<td>407</td>
</tr>
<tr>
<td>Blast cleaning of castings</td>
<td>408</td>
</tr>
<tr>
<td>Block</td>
<td>204</td>
</tr>
</tbody>
</table>

Block	
NC	327 – 328, 329
or multiple indexing	327 – 328
Blow, force of	329
Boilers, strengths of flat stayed surfaces	329
Bolting temperature, various substances	329
Bolt hole circles	
chordal distance	19
coordinates for	
Bolts and nuts	
angularity and eccentricity	327
ANSI Standard	
ANSI inch dimensions	
cap or acorn nuts	322
countersunk bolts	322
flat jam nuts	322
hex	
flat nuts	322
slotted nuts	322
thick slotted nuts	322 – 323
jam nuts	322
ribbed neck bolts	323
round head bolts	323
round head fin neck bolts	323
slotted countersunk bolts	323
square	
neck bolts	323 – 324
step bolts	323
T-bolts	360
T-nuts	360
Unified	360 – 361, 362
wing nuts	361 – 362
ANSI, metric dimensions	
diameters	374
heavy hex bolts	374
heavy hex flanges	374
heavy hex nuts	374
hex jam nuts	375
hex nuts	375
prevailing torque hex flange nuts	378
nuts	378
reduced diameter bolts	378
slotted hex nuts	378
thread series	378
bolt designation	378
United	
Whitworth	
chamfering	436

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Bolts and nuts (continued)

- **Combination** [1580]
- **Counterbore sizes** [887, 1557]
- **Countersinking** [1579]
- **Deflection** [1495]
- **Designation** [1580]
- **Diameter-length combinations** [1552]
- **Drill sizes** [1558]
- **Elongation and tightening tension** [1495]
- **Elongation measurements** [1500]
- **Eye bolts and nuts** [394–395]
- **Finish** [1578]
- **Friction coefficient** [1498]
- **Friction coefficients** [1498]
- **Grade markings for steel** [1508]
- **Hexagonal bolts, screws, and nuts** [1578]
- **Hexagonal sockets** [1560]
- **Identification symbols** [1551]
- **Length of thread** [1579]
- **Load allowable on bolts** [1509]
- **Loaded joints** [1496]
- **Marking** [1580]
- **Materials properties** [1508]
- **Metric hex bolts** [1550]
- **Metric hex cap screws** [1553]
- **Metric hex flange nuts** [1564]
- **Metric hex lag screws** [1562]
- **Metric round head bolts** [1551]
- **Metric screw** [1551]
- **Nominal lengths** [1578]
- **Preload adjustments** [1496]
- **Application methods** [1500]
- **Applications** [1497]
- **Loaded joints** [1499]
- **Shear** [1497]
- **Proof strength** [1495]
- **Relaxation of preloads** [1495]
- **Round head neck bolts** [1526]
- **Socket head cap screws** [1552]
- **Spacing for wrench clearances** [1530–1531]
- **Spline sockets** [1560]
- **Square** [1513]
- **Steel nuts** [1580]
- **Strength grade designations** [1508–1509, 1550–1551, 1561–1566, 1579–1580]
- **Tightening** [1495]
- **Torque** [1495]
- **Torque prevailing types** [1564]
- **Torque required to tighten** [1495]
- **Unified square** [747]
- **Unified Standard** [747]
- **Washer facing** [1579]

Bolts and nuts (continued)

- **Working strength of bolts** [1507]
- **Wrench and socket clearances** [1504]
- **Wrench clearances for nuts** [1504]
- **Wrench openings** [1504]
- **Yield strength** [1495]
- **Bonding, adhesives** [1495]

Boring

- **Carbide tools for** [887–888]
- **Cutting time for** [1033]
- **Insert holder** [762–764]
- **Boring machine, origin** [891]

Boring tools

- **Carbide carbide tipped round** [887–888]
- **Cutting tool materials** [1013–1017, 1178, 1195, 1204]
- **Drilling and reaming** [1072]
- **Drilling and reaming** [1060–1066]
- **Speeds and feeds** [1033–1039]
- **Wrought iron** [1060–1066]

Brass and bronze

- **Alloys** [553–577]
- **Cast iron** [560–568]
- **Drilling and reaming** [1072]
- **Drilling and reaming** [1060–1066]
- **Wrought iron** [1060–1066]
- **Speeds and feeds** [1033–1039]
- **Turning** [1084–1086]

Brass files

- **Drill** [1355–1356]

Brazing

- **Blowpipe** [1348, 1349]
- **Dip** [1354]
- **Filler metals for** [1364]
- **Fluxes for** [1348]
- **Furnace** [1351–1353]
- **Heating for** [1354]
- **Induction** [1354]
- **Methods** [1354]
- **Resistance** [1354]
- **Symbols** [1354]
- **Vacuum furnace** [1354]

Brakes

- **Band** [1384–1385]
- **Block type** [1384–1385]
- **Coefficient of friction** [1384–1385]

Brass files

- **Blowpipe** [1348, 1349]
- **Dip** [1354]
- **Filler metals for** [1364]
- **Fluxes for** [1348]
- **Furnace** [1351–1353]
- **Heating for** [1354]
- **Induction** [1354]
- **Methods** [1354]
- **Resistance** [1354]
- **Symbols** [1354]
- **Vacuum furnace** [1354]
INDEX

2600

Briggs (now ANSI) standard pipe thread 396, 362, 589, 862

Brinell hardness 847

British Association basic dimensions 478

British Standard

button head screws 467

buttress threads 447

cap screws 452

cheese head screw 463

clearance holes for metric bolts and screws 523

combined drills and countersinks 574

core drills 360-381

countersunk head screws 552, 694

deviations for holes 583

deviations for shafts 556

dowel pins, metric 1688

drills and countersinks 578

fasteners, mechanical properties 678

flange heads (BSF)

basic dimensions 1847

tolerance formulas 1846

fits 517

hexagon and thin nuts 521

hexagon bolts 525

hexagon bolts and screws 523

hexagon head screws 512, 556

hexagon nuts 527

hexagon slotted and castle nuts 556

hexagon socket countersunk head screws 510

hexagon socket screws, metric 576

button head 504

bushing head 504

cap 503

set 501

tolerance formulas 517

imperial wire gauge 513

interference fits 516

ISO metric grade markings 573

limits and fits 807, 838

limiting drill sizes for taps 816

taps 596, 824

ISO metric nuts 478

ISO profile dimensions 413, 398

tolerance formulas 517

keys and keyways 414, 398

Machinery's Handbook 27th Edition

Copyright 2004, Industrial Press, Inc., New York, NY

British Standard

(continued)

limits and fits 884

limits of tolerance for shafts 883

machine screw nuts 1603, 1602

machine screws 1605, 1604

countersunk head 1603

material 694

metric series 695

metric and inch pipe threads 884, 873

basic sizes, preferred 690

bolts, clearance holes 469

bright metal washers 698

comparision of British, French, German and Swiss 1585

dowel pins 1668, 1669

drills 579, 693

gauge and letter sizes 579

hexagon socket screws 573, 575

keys and keyways 414, 398

limits and fits 779, 883

machine screws and nuts 696

series 695

series plain washers 1571

series spring washers 536

spring washers 536

taps, ISO 472, 475

threads 832-834

morse taper 471

mushroom head screw 506, 513

nibs 467, 512, 1659, 1666

pan head screw 1610

pipe threads 1574

jointing threads 1576

long screw threads 1576

non pressure tight joints 1607

pressure tight joints 1576

precision metric nuts 1573

preferred metric basic sizes 1570

preferred numbers 1569

preferred sizes 1571

recessed head screws 1619

rivets 489, 491

RMS thread 579

round head screws 456

screws 579, 580, 1561, 1562, 580

spring washers 536

thread dimensions 1571

thread profiles 573, 696

slotted head screws 579

socket head 579

spur and helical gears 1589

straight splines 438

studs 459

taps, ISO, metric 424, 425

tolerance for holes and shafts 882, 883

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

British Standard (continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>twist drills</td>
<td>880-883</td>
</tr>
<tr>
<td>Unified machine screws and nuts</td>
<td>1517</td>
</tr>
<tr>
<td>thread system</td>
<td></td>
</tr>
<tr>
<td>UNI profile threads</td>
<td></td>
</tr>
<tr>
<td>washers, plain, metric</td>
<td>1584-1586</td>
</tr>
<tr>
<td>Whitworth and fine machine screws</td>
<td>1815-1816</td>
</tr>
<tr>
<td>Whitworth threads (BSW)</td>
<td>1815-1816</td>
</tr>
<tr>
<td>basic dimensions</td>
<td></td>
</tr>
<tr>
<td>formulas</td>
<td>1825-1826</td>
</tr>
<tr>
<td>machine screws</td>
<td>1827-1830</td>
</tr>
<tr>
<td>measuring</td>
<td></td>
</tr>
<tr>
<td>pipe thread</td>
<td>1831-1834</td>
</tr>
<tr>
<td>set-screws</td>
<td>1835-1836</td>
</tr>
<tr>
<td>thread form</td>
<td>1837-1838</td>
</tr>
</tbody>
</table>

Bushings

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gear</td>
<td>1449</td>
</tr>
<tr>
<td>jig, materials for standard, for jigs</td>
<td>751</td>
</tr>
<tr>
<td>butt joint, riveted</td>
<td>752-753</td>
</tr>
<tr>
<td>button head screw</td>
<td>754</td>
</tr>
<tr>
<td>buttress threads</td>
<td>755-756</td>
</tr>
<tr>
<td>allowances and tolerances</td>
<td></td>
</tr>
<tr>
<td>ANSI Standard inch type</td>
<td>757</td>
</tr>
<tr>
<td>basic dimensions</td>
<td>1828-1829</td>
</tr>
<tr>
<td>British Standard</td>
<td>1828</td>
</tr>
<tr>
<td>designations</td>
<td>1829</td>
</tr>
<tr>
<td>diameter equivalents</td>
<td>1830</td>
</tr>
<tr>
<td>diameter-pitch combinations</td>
<td>1830-1831</td>
</tr>
<tr>
<td>dimensions</td>
<td>1832</td>
</tr>
<tr>
<td>symbols and formulas</td>
<td>1832-1833</td>
</tr>
<tr>
<td>thread form</td>
<td>1833-1834</td>
</tr>
<tr>
<td>tolerances</td>
<td>1835-1836</td>
</tr>
<tr>
<td>wire method of measuring</td>
<td>1837</td>
</tr>
</tbody>
</table>

Byte

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2546</td>
<td></td>
</tr>
<tr>
<td>1258</td>
<td></td>
</tr>
</tbody>
</table>

Cables, wire, breaking strength

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>372-377</td>
<td></td>
</tr>
</tbody>
</table>

CAD/CAM

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drawing exchange standards</td>
<td>1315-1325</td>
</tr>
<tr>
<td>projections</td>
<td>1326-1327</td>
</tr>
<tr>
<td>rapid prototyping</td>
<td>1328-1329</td>
</tr>
<tr>
<td>standard lettering sizes</td>
<td>1330-1331</td>
</tr>
<tr>
<td>tips</td>
<td>1332-1333</td>
</tr>
</tbody>
</table>

Cadmium

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bearing alloys</td>
<td>209</td>
</tr>
<tr>
<td>plating</td>
<td>210</td>
</tr>
<tr>
<td>vacuum coating</td>
<td>211</td>
</tr>
</tbody>
</table>

Cage materials, anti-friction bearings

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td></td>
</tr>
</tbody>
</table>

Caliper

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gear tooth</td>
<td>251</td>
</tr>
<tr>
<td>measurement of gear teeth</td>
<td>252</td>
</tr>
<tr>
<td>vernier</td>
<td>253</td>
</tr>
</tbody>
</table>

Calorie, kilogram

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2578-2583</td>
<td></td>
</tr>
</tbody>
</table>

Cams and cam design

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2118-2120</td>
<td></td>
</tr>
<tr>
<td>accelerating forces</td>
<td>2121</td>
</tr>
<tr>
<td>acceleration, velocity, and displacement</td>
<td>2122-2123</td>
</tr>
<tr>
<td>formulas</td>
<td>2124-2125</td>
</tr>
<tr>
<td>classes of cams</td>
<td>2126-2127</td>
</tr>
<tr>
<td>constant velocity with parabolic matching</td>
<td>2128</td>
</tr>
<tr>
<td>contact stresses</td>
<td>2129</td>
</tr>
<tr>
<td>cylinder cams</td>
<td>2130</td>
</tr>
<tr>
<td>displacement</td>
<td>2131</td>
</tr>
<tr>
<td>constant velocity</td>
<td>2132</td>
</tr>
<tr>
<td>curves</td>
<td>2133</td>
</tr>
<tr>
<td>cycloidal diagrams</td>
<td>2134-2135</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
Cams and cam design

(continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>displacement</td>
<td></td>
</tr>
<tr>
<td>harmonic</td>
<td></td>
</tr>
<tr>
<td>parabolic</td>
<td></td>
</tr>
<tr>
<td>synthesis of</td>
<td></td>
</tr>
<tr>
<td>follower systems</td>
<td></td>
</tr>
<tr>
<td>forces</td>
<td></td>
</tr>
<tr>
<td>friction forces</td>
<td></td>
</tr>
<tr>
<td>harmonic motion</td>
<td></td>
</tr>
<tr>
<td>layout of a cylinder cams</td>
<td></td>
</tr>
<tr>
<td>materials</td>
<td></td>
</tr>
<tr>
<td>compressive stress</td>
<td></td>
</tr>
<tr>
<td>milling</td>
<td></td>
</tr>
<tr>
<td>offset translating follower</td>
<td></td>
</tr>
<tr>
<td>pressure angle</td>
<td></td>
</tr>
<tr>
<td>harmonic motion</td>
<td></td>
</tr>
<tr>
<td>parabolic motion</td>
<td></td>
</tr>
<tr>
<td>uniform velocity motion</td>
<td></td>
</tr>
<tr>
<td>profile determination</td>
<td></td>
</tr>
<tr>
<td>radius of curvature</td>
<td></td>
</tr>
<tr>
<td>cycloidal motion</td>
<td></td>
</tr>
<tr>
<td>parabolic motion</td>
<td></td>
</tr>
<tr>
<td>rise for threading</td>
<td></td>
</tr>
<tr>
<td>size determination</td>
<td></td>
</tr>
<tr>
<td>stresses, contact</td>
<td></td>
</tr>
<tr>
<td>swinging roller follower</td>
<td></td>
</tr>
<tr>
<td>symbols</td>
<td></td>
</tr>
<tr>
<td>torque</td>
<td></td>
</tr>
<tr>
<td>translating roller follower</td>
<td></td>
</tr>
</tbody>
</table>

Cams and tool design

(continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cams and tool design</td>
<td></td>
</tr>
<tr>
<td>Canned (fixed) cycles, NC</td>
<td></td>
</tr>
<tr>
<td>Cap screws</td>
<td></td>
</tr>
<tr>
<td>button head</td>
<td></td>
</tr>
<tr>
<td>drill and counterbored sizes</td>
<td></td>
</tr>
<tr>
<td>finished, hexagonal</td>
<td></td>
</tr>
<tr>
<td>flat head</td>
<td></td>
</tr>
<tr>
<td>hexagon socket head</td>
<td></td>
</tr>
<tr>
<td>hexagon socket type</td>
<td></td>
</tr>
<tr>
<td>hexagonal</td>
<td></td>
</tr>
<tr>
<td>metric</td>
<td></td>
</tr>
<tr>
<td>round head</td>
<td></td>
</tr>
<tr>
<td>slotted fillister head</td>
<td></td>
</tr>
<tr>
<td>slotted flat head</td>
<td></td>
</tr>
<tr>
<td>slotted head</td>
<td></td>
</tr>
<tr>
<td>designation</td>
<td></td>
</tr>
<tr>
<td>length of thread</td>
<td></td>
</tr>
<tr>
<td>spline socket type</td>
<td></td>
</tr>
<tr>
<td>Capitalized cost</td>
<td></td>
</tr>
<tr>
<td>Carborundum</td>
<td></td>
</tr>
<tr>
<td>Carbide blank</td>
<td></td>
</tr>
<tr>
<td>designs</td>
<td></td>
</tr>
<tr>
<td>sizes</td>
<td></td>
</tr>
<tr>
<td>Carbide tools</td>
<td></td>
</tr>
<tr>
<td>application of cutting fluids to boring</td>
<td></td>
</tr>
<tr>
<td>coated</td>
<td></td>
</tr>
<tr>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>grinding</td>
<td></td>
</tr>
<tr>
<td>insert holders</td>
<td></td>
</tr>
<tr>
<td>Carbide tools (continued)</td>
<td></td>
</tr>
<tr>
<td>insert type</td>
<td></td>
</tr>
<tr>
<td>materials for</td>
<td></td>
</tr>
<tr>
<td>nose angle</td>
<td></td>
</tr>
<tr>
<td>nose radius</td>
<td></td>
</tr>
<tr>
<td>rectangular shank</td>
<td></td>
</tr>
<tr>
<td>sharpening</td>
<td></td>
</tr>
<tr>
<td>side cutting edge angle</td>
<td></td>
</tr>
<tr>
<td>sintered</td>
<td></td>
</tr>
<tr>
<td>square shank</td>
<td></td>
</tr>
<tr>
<td>standard blanks for</td>
<td></td>
</tr>
<tr>
<td>style A</td>
<td></td>
</tr>
<tr>
<td>style B</td>
<td></td>
</tr>
<tr>
<td>style C</td>
<td></td>
</tr>
<tr>
<td>style D</td>
<td></td>
</tr>
<tr>
<td>style E</td>
<td></td>
</tr>
<tr>
<td>style ER</td>
<td></td>
</tr>
<tr>
<td>tips for boring tools</td>
<td></td>
</tr>
<tr>
<td>Carbides and carbonitrides</td>
<td></td>
</tr>
<tr>
<td>Carbon steel</td>
<td></td>
</tr>
<tr>
<td>AISI-SAE designations</td>
<td></td>
</tr>
<tr>
<td>chemical composition</td>
<td></td>
</tr>
<tr>
<td>classification</td>
<td></td>
</tr>
<tr>
<td>cold drawn</td>
<td></td>
</tr>
<tr>
<td>forged and rolled</td>
<td></td>
</tr>
<tr>
<td>free cutting</td>
<td></td>
</tr>
<tr>
<td>gears</td>
<td></td>
</tr>
<tr>
<td>heat treatments</td>
<td></td>
</tr>
<tr>
<td>mechanical properties</td>
<td></td>
</tr>
<tr>
<td>milling</td>
<td></td>
</tr>
<tr>
<td>numbering system</td>
<td></td>
</tr>
<tr>
<td>structure of</td>
<td></td>
</tr>
<tr>
<td>tool steel as a cutting tool material</td>
<td></td>
</tr>
<tr>
<td>turning</td>
<td></td>
</tr>
<tr>
<td>unified numbering system</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates and alcohols</td>
<td></td>
</tr>
<tr>
<td>Carbon graphite bearings</td>
<td></td>
</tr>
<tr>
<td>Carbonitrides and carbides</td>
<td></td>
</tr>
<tr>
<td>Carbonitrides</td>
<td></td>
</tr>
<tr>
<td>Carbuncing</td>
<td></td>
</tr>
<tr>
<td>Carburing</td>
<td></td>
</tr>
<tr>
<td>Carburizing</td>
<td></td>
</tr>
<tr>
<td>cold draw</td>
<td></td>
</tr>
<tr>
<td>gas</td>
<td></td>
</tr>
<tr>
<td>liquid</td>
<td></td>
</tr>
<tr>
<td>solid materials</td>
<td></td>
</tr>
<tr>
<td>steels for temperatures</td>
<td></td>
</tr>
<tr>
<td>alloy steel</td>
<td></td>
</tr>
<tr>
<td>carbon steel</td>
<td></td>
</tr>
<tr>
<td>vacuum</td>
<td></td>
</tr>
<tr>
<td>Cartesian coordinates</td>
<td></td>
</tr>
<tr>
<td>Case hardening</td>
<td></td>
</tr>
<tr>
<td>Case hardening (continued)</td>
<td></td>
</tr>
<tr>
<td>steel</td>
<td></td>
</tr>
<tr>
<td>Cash flow conversion</td>
<td></td>
</tr>
<tr>
<td>annuity to future value</td>
<td></td>
</tr>
<tr>
<td>annuity to present value</td>
<td></td>
</tr>
<tr>
<td>diagrams</td>
<td></td>
</tr>
<tr>
<td>future value to annuity</td>
<td></td>
</tr>
<tr>
<td>future value to gradient</td>
<td></td>
</tr>
<tr>
<td>future value to present value</td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

<table>
<thead>
<tr>
<th>Cash flow conversion (continued)</th>
<th>Castings (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>present value to annuity</td>
<td>dimensions</td>
</tr>
<tr>
<td>present value to future value</td>
<td>ductile (nodular) iron</td>
</tr>
<tr>
<td>present value to gradient</td>
<td>finishing operations</td>
</tr>
<tr>
<td>Casing thread</td>
<td>heat treatment</td>
</tr>
<tr>
<td>Casing thread</td>
<td>investment</td>
</tr>
<tr>
<td>Cast copper alloys</td>
<td>malicable iron</td>
</tr>
<tr>
<td>Cast iron</td>
<td>metal</td>
</tr>
<tr>
<td>bearings</td>
<td>milling cutters</td>
</tr>
<tr>
<td>chilled</td>
<td>nodular cast iron</td>
</tr>
<tr>
<td>coefficient of expansion</td>
<td>removal of gates and risers</td>
</tr>
<tr>
<td>cutting, flame</td>
<td>shrinkage of steel, for gears</td>
</tr>
<tr>
<td>density</td>
<td>tolerances</td>
</tr>
<tr>
<td>ductile</td>
<td>weight</td>
</tr>
<tr>
<td>malleable</td>
<td>Casing and slotted nuts</td>
</tr>
<tr>
<td>melting points</td>
<td>1418</td>
</tr>
<tr>
<td>nodular</td>
<td>Cathode</td>
</tr>
<tr>
<td>specific heat</td>
<td>Cell, flexible manufacturing, NC</td>
</tr>
<tr>
<td>speeds and feeds for drilling, reaming, and threading</td>
<td>Cement, strength of</td>
</tr>
<tr>
<td>milling</td>
<td>Cementation</td>
</tr>
<tr>
<td>strength</td>
<td>Cemented carbide tools</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>coated drilling with</td>
</tr>
<tr>
<td>Cast metals, power constant</td>
<td>grinding</td>
</tr>
<tr>
<td>Cast roller chains</td>
<td>materials for milling with</td>
</tr>
<tr>
<td></td>
<td>turning with</td>
</tr>
<tr>
<td></td>
<td>Cementite</td>
</tr>
<tr>
<td></td>
<td>Cements, pipe joints</td>
</tr>
<tr>
<td></td>
<td>Center</td>
</tr>
<tr>
<td></td>
<td>distance, gear set</td>
</tr>
<tr>
<td></td>
<td>drills reamers and machine</td>
</tr>
<tr>
<td></td>
<td>countersinks</td>
</tr>
<tr>
<td></td>
<td>of oscillation</td>
</tr>
<tr>
<td></td>
<td>of percussion</td>
</tr>
<tr>
<td></td>
<td>Center distance, gearing</td>
</tr>
<tr>
<td></td>
<td>Center of gravity</td>
</tr>
<tr>
<td></td>
<td>any four-sided figure</td>
</tr>
<tr>
<td></td>
<td>circle sector</td>
</tr>
<tr>
<td></td>
<td>circular arc</td>
</tr>
<tr>
<td></td>
<td>cone, frustum</td>
</tr>
<tr>
<td></td>
<td>cylinder</td>
</tr>
<tr>
<td></td>
<td>cylinder, portion of</td>
</tr>
<tr>
<td></td>
<td>ellipse segment</td>
</tr>
<tr>
<td></td>
<td>ellipsoid, segment of</td>
</tr>
<tr>
<td></td>
<td>fillet</td>
</tr>
<tr>
<td></td>
<td>of two bodies</td>
</tr>
<tr>
<td></td>
<td>parabola, area of</td>
</tr>
<tr>
<td></td>
<td>paraboloid</td>
</tr>
<tr>
<td></td>
<td>part of circle ring</td>
</tr>
<tr>
<td></td>
<td>perimeter or area of</td>
</tr>
<tr>
<td></td>
<td>parallelogram</td>
</tr>
<tr>
<td></td>
<td>pyramid</td>
</tr>
<tr>
<td></td>
<td>pyramid, frustum</td>
</tr>
<tr>
<td></td>
<td>spandrel</td>
</tr>
<tr>
<td></td>
<td>sphere, hollow</td>
</tr>
<tr>
<td></td>
<td>spherical sector</td>
</tr>
<tr>
<td></td>
<td>segment</td>
</tr>
<tr>
<td></td>
<td>surface</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Center of gravity (continued) 2604
sphere, segment of 2604
trapezoid 2604
triangle 2604
wedge 2604
Centering tools, length of point 877
centerless grinding 878, 879
troubles 878, 879
Centers, for arbors and reamers 876
Centimeter-gram-second system of measurement 514
Centimeter-inch conversion tables 514
Centipoises 2334, 2586
Centistokes 2334, 2586
Centralized lubrication systems 2335
Centralizing Acme threads alternative series 1843, 1846
basic dimensions 1843
designation 1843
diameter allowance 1836
diameter tolerance 1837
formulas for determining diameters 1836
limiting dimensions 1836
major and minor diameter allowances and tolerances 1836
pitch diameter allowances 1836
pitch diameter tolerances 1836
single start screw thread data 1836
Centrifugal casting 393
clutches 393
force calculation 393
stresses in flywheels 393
Ceramic coefficient of expansion 311, 312
compressive properties 113, 115
compressive strength 115, 118
cutting tool materials 113, 115, 118
density 113, 115, 118
dielectric strength 115
fracture toughness 115
hardness 113, 115, 118
mechanical properties 115
modulus of elasticity 115
modulus of rigidity 115
Poisson’s ratio 115
property 115
tenacity 115
tensile strength 115
thermal conductivity 115
whisker reinforced 115
Cerments 271
Cgs system of measurement 2544
Chain cast roller 144
close-link 144
crane and hoisting detachable 144
pintle 144
saw files 144
Chamfering insert holder 144
Chamfers and corner clearance, gearing 144
Change gears compound gear 904
finding accurate ratios 904
finding ratios 904
helical gear hobbing 1113
helical milling 904
idler gears 904
lathe 904
leads and angles for helical milling 904
odd inch pitch threads 904
output, quick change 904
relieving helical-fluted hob thread cutting, lathe 904
fractional ratios 904
fractional threads 904
metric pitches 904
modifying the gearbox output 904
trains, for fractional ratios 904
Chains aluminum 311
moment of inertia 311
radius of gyration 311
section modulus 311
steel 311
structural 311
weight per foot 311
Checking Acme threads by three-wire method assembly 2125
castings 2125
dimensions 2125
drawings 2125
enlarged spur pinion 2125
for strength 2125
gear size 2125
geared 2125
machined parts 2125
measures over pins or wires 2125
radius of arc 2125
rake angles 2125
indicator drop method 2125
indicator drops on milling cutter 2125
relief angles 2125
indicator drop method 2125
indicator drops on end teeth 2125
face 2125
indicator drops on side teeth 2125
screw thread dimensions 2125
shaft conditions 2125
spur gear by wires 2125
spur gear size 2125
Whitworth threads 2125
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical belts and pulleys</td>
<td>2606</td>
</tr>
<tr>
<td>V-belts</td>
<td>2606</td>
</tr>
<tr>
<td>datum length</td>
<td>2606</td>
</tr>
<tr>
<td>groove dimension</td>
<td>2606</td>
</tr>
<tr>
<td>horsepower rating</td>
<td>2606</td>
</tr>
<tr>
<td>length correction</td>
<td>2606</td>
</tr>
<tr>
<td>sheave dimension</td>
<td>2606</td>
</tr>
<tr>
<td>Coefficient of expansion</td>
<td>2606</td>
</tr>
<tr>
<td>aluminum</td>
<td>2606</td>
</tr>
<tr>
<td>cast iron</td>
<td>2606</td>
</tr>
<tr>
<td>ceramics</td>
<td>2606</td>
</tr>
<tr>
<td>common materials</td>
<td>2606</td>
</tr>
<tr>
<td>copper alloys</td>
<td>2606</td>
</tr>
<tr>
<td>ductile iron</td>
<td>2606</td>
</tr>
<tr>
<td>plastics</td>
<td>2606</td>
</tr>
<tr>
<td>thermoplastics</td>
<td>2606</td>
</tr>
<tr>
<td>titanium alloys</td>
<td>2606</td>
</tr>
<tr>
<td>various substances</td>
<td>2606</td>
</tr>
<tr>
<td>fraction</td>
<td>2606</td>
</tr>
<tr>
<td>rolling resistance</td>
<td>2606</td>
</tr>
<tr>
<td>steel on various materials</td>
<td>2606</td>
</tr>
<tr>
<td>heat radiation</td>
<td>2606</td>
</tr>
<tr>
<td>heat transmission</td>
<td>2606</td>
</tr>
<tr>
<td>Collets</td>
<td>2606</td>
</tr>
<tr>
<td>Cold-form tapping</td>
<td>2606</td>
</tr>
<tr>
<td>Cold-work tool steels</td>
<td>2606</td>
</tr>
<tr>
<td>Air hardening</td>
<td>2606</td>
</tr>
<tr>
<td>chemical composition heat treatment</td>
<td>2606</td>
</tr>
<tr>
<td>oil hardening</td>
<td>2606</td>
</tr>
<tr>
<td>American Institute of Steel Construction</td>
<td>2606</td>
</tr>
<tr>
<td>American Railway Engineering Association formulas</td>
<td>2606</td>
</tr>
<tr>
<td>Eccentrically loaded steel pipe, allowable concentric loads</td>
<td>2606</td>
</tr>
<tr>
<td>Combination</td>
<td>2606</td>
</tr>
<tr>
<td>drill and tap</td>
<td>2606</td>
</tr>
<tr>
<td>involute spline types</td>
<td>2606</td>
</tr>
<tr>
<td>shank, helix single end mills</td>
<td>2606</td>
</tr>
<tr>
<td>Combined drills and countersunks</td>
<td>2606</td>
</tr>
<tr>
<td>Combined stress</td>
<td>2606</td>
</tr>
<tr>
<td>normal stresses of roll angle</td>
<td>2606</td>
</tr>
<tr>
<td>Common fractions</td>
<td>2606</td>
</tr>
<tr>
<td>Compensation, inset radius, NC</td>
<td>2606</td>
</tr>
<tr>
<td>Complex conjugate</td>
<td>2606</td>
</tr>
<tr>
<td>Complex or imaginary numbers</td>
<td>2606</td>
</tr>
<tr>
<td>Composite, checking of gears</td>
<td>2606</td>
</tr>
<tr>
<td>Compound angles</td>
<td>2606</td>
</tr>
<tr>
<td>indexing</td>
<td>2606</td>
</tr>
<tr>
<td>thread cutting, NC</td>
<td>2606</td>
</tr>
<tr>
<td>Compression</td>
<td>2606</td>
</tr>
<tr>
<td>in columns</td>
<td>2606</td>
</tr>
<tr>
<td>springs</td>
<td>2606</td>
</tr>
<tr>
<td>Compressive properties</td>
<td>2606</td>
</tr>
<tr>
<td>ceramics</td>
<td>2606</td>
</tr>
</tbody>
</table>
INDEX

Compressive properties (continued)
 definitions of air 110, 1137
 strength 729
 ceramics 415
 common non-metals 420
 iron and steel 1142
 magnesium alloys 685
 wood 112
 strength, wood 112

Computer numerical control, CNC 1254–1255
 programming 1269–1309

Computer-aided (or-assisted) design (CAD) 1315–1325
 manufacturing (CAM) 1315

Concave arbor-type milling cutters 815

Concrete strength 420

Conditional expressions, NC 1287

Conductance, thermal 401, 2582
 electrical, of metals 1354
 electrical, of plastics 605

Center of gravity 230
 clutches 2030, 2059
 gearing 2060
 face 2030
 of volume 77
 polar moments of inertia 252
 radius of gyration 234
 volume 77

Conical pendulum 165

Conjugate fractions 12, 14

Constants, fundamental 2548

Constructional steels 1188–1189

Contact
 diameter 2500, 2507
 diameter, bearing 2505
 ratio 2010, 2066
 face 2506
 gearing 1506
 total 2510
 stresses, cans 210

Contents of tanks 61–62

Continued fractions 12, 14
 use of as conjugates 31
 value 12

Convergents 11

Conversational part programming, NC 1269, 2720

Conversion (continued)
 celsius to fahrenheit temperatures 2583
 centimeter to inch 612
 coordinate systems 2074
 cutting speed formulas 2080
 density units 2573
 energy units 2581
 fahrenheit and celsius temperatures 2583
 flow units 2586
 force units 2586
 fractional inch to millimeter 1
 millimeter to fractional inch 1
 moment and torque units 2578
 moment of inertia units 2567
 newton-meters into pound-inches 2586
 numbers to powers-of-ten notation 2583
 oil viscosity unit 2334
 pound-inches into newton-meters 2586
 pressure units 2567
 section modulus units 2538
 specific gravity 2500
 tables
 angular measure 26, 11
 cutting speed and diameter to rpm 2037, 2039
 conversion factors for decimal multiples of SI units 2546
 foot-pounds into Btu 2580
 fractional inch to millimeter 2
 fractional inch to millimeters 2
 hardness 2500
 horsepower into kilowatts 2580
 kilowatts to horsepowers 2580
 moment and torque units 2578
 moment of inertia units 2567
 pounds-force into newtons 2580
 power and heat 2578
 radians into degrees 26, 11
 specific gravity 2500
 tables
 thermal conductance 2583
 torque units 2500
 U.S. gallons into liters 2566
 UK gallons into liters 2566
 velocity units 2500
 viscosity 2500
 work units 2500

Convex arbor-type milling cutters 153

Coolants for
 lapping 278
 machining 278
 aluminum 153
 magnesium 115
 tool sharpening 153
 zinc 153
 tapping 278

Coordinate system, converting to another 4

Coordinates, for jig boring 206, 208

Copolymer 204

Copper
 coloring 462
 lead bearings 260, 260
 passivation 460
 plating 460

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2608</td>
</tr>
</tbody>
</table>

Copper and copper-base alloys
- classification 655
- coefficient of expansion 401
- composition 358, 355
- copper-silicon alloys: 359
- copper-zinc-nickel alloys 359
- strength 359
- density 359
- die casting 1127
- elongation 1127, 550, 558
- hardness 457
- machinability 256, 468
- melting points 501
- passivation 466
- powdered metal alloys 359
- specific heat 359
- speeds, for drilling and reaming 1124
- for turning and milling 1124
- tensile strength 359
- thermal conductivity 601
- UNS number 355, 468
- yield strength 357, 550, 558

Copper- and iron-base sintered bearings 501, 502

Copper-base powdered alloys
- density 101
- elongation 101
- hardness 101
- rupture strength 101
- ultimate strength 101
- yield strength 101

Cordeau thread 632

Core drills 78

Corner-rounding milling cutters 88, 915

Cosine law of 90

Cost
- cutting grinding 135
- feeds and speeds 113
- function 110
- minimum 110
- optimum 110
- regrinding 110
- tools with inserts 111

Cotangent 88

Cotter pins, standard sizes 157

Cotter points
- standard sizes 157, 556, 1010

Coulomb shear theory (plastics) 609

Countersinks
- cutters and guides 88
- pilot 88
- solid 88
- three piece 88

Countersinking 88

Countersunk head
- (continued)
- rivets 483, 484, 485
- British Standard screw, British Standard screws 528, 529, 1490
- for British Standard 652
- for French 815
- for German 815
- for Japanese 815
- for United States 529

Countersunk head cap screws 895

Couples of forces 44

Couplings
- connecting shafts 137
- double-cone 137
- fire-hose 153
- flexible 214
- hose 153
- interference fits 137
- knuckle joint 137
- safety flange 137
- shafts 603
- single keys used as fixed slipping 137
- universal 247

CPVC plastics 213

Crane
- chain hoisting 36, 901
- safe loads 157, 188, 192
- slings 157, 188
- strength 36, 157
- hooks, eyes, shackles 186, 159
- capacity of dimensions 159

Crane motors
- 212, 217

Crater-resistant carbide tools
- 191, 512

Creep
- 195
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612

Copyright
Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Cutting tools (continued)

Angular milling 222, 228, 621, 824, 834
boring-bar carbide grade selection 812
carbon tool steels 410
applications 228, 232, 614
modern cast nonferrous alloys 231
cemented carbides 778, 780, 1012
ceramics 778, 780, 1012
chipbreaker 752
checking relief and rake angles 826, 830
chipbreaking reamers 887–888
coated carbides 408
coatings 408
coating adhesion 776
crater-resistant carbides 1011
cubic boron nitride (CBN) 1013, 1178, 1195, 1204
carbide ceramics 781
metals compositions and properties 774
hardness 774
rupture strength 774
structures 774
strength to resist internal pressure 296
tungsten carbide 774
oxide ceramics 780
silicon nitride base 781
superhard materials 780
grinding 352, 353
indexable inserts 352, 353
high-speed steel 352
indexable insert holder 351
machining data 352,

Carbonitrides (cermets) 773–778, 1012

Diamond

diamond polycrystalline 352, 353
grades 352
grinding 352, 353
checking rake angle 352
checking relief angle 352
high-speed steel 352
indexable insert holder 351
indexable inserts 352, 353
maching data 352
materials 352
Cemented carbides 773–778, 1010–1012

Cementitious materials 778–779

Clearance angles 826, 831

Cobalt–diamond 101

Cylindrical grinding 1212–1220
automation in 1213–1216
basic process data 1215
high-speed 1215–1216
machines 1212
operating data 1214
selection of grinding wheels 1180, 1194–1195, 1204–1213
traverse and plunge grinding 1212
troubleshooting 1216–1219
workholding 1213

Cylindrical roller bearings, symbols 227

Cutting tools (continued)
tungsten carbide 774, 775, 1011
combined with other elements 776
wheels for sharpening milling cutters 624
Woodruff keyseat cutters 624
Cyanide hardening (cyaniding) 529
Cylindrical coordinates 41
tank, contents 41

to rectangular coordinates 41

Cylindrical grinding 1212–1220
automation in 1213–1216
basic process data 1215
high-speed 1215–1216
machines 1212
operating data 1214
selection of grinding wheels 1180, 1194–1195, 1204–1213
traverse and plunge grinding 1212
troubleshooting 1216–1219
workholding 1213

Cylindrical roller bearings, symbols 227

D

Damascus steel 341
Discrete thread 352
Data input, manual, NC 276
Datum feature identifier 334
plan reference frame 334
referencing 334
Datum simulator 334
Data input, manual, NC 276
Datum line 340
Datum points 340

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Diacesence point in steel hardening 314

Decimal
 fractions 54
 inch into fraction inch 114.666
 multiples and submultiples of SI units 754
 point programming, NC 737

Defendum 2034

Definitions
 gear terms 2029–2032
 geometric dimensioning and tolerancing 2077–2079
 spline terms 2157–2159
 surface texture 726
 surfaces of solid materials 724

Deflection
 beams 260–271, 277–281
 flat plates 292–294
 shaft, linear 301
 shaft, torsional 301–302
 springs 311
 compression and extension 315–318

Degrees, expressed in radians 26, 28

Density
 air 129
 aluminum 105
 cast iron 105
 ceramics 117
 copper alloys 131
 copper-base powdered alloys 131
 iron alloys 131
 iron-base powdered alloys 131
 nickel alloys 131
 of air at different temperatures 128
 plastics 116
 plastic materials 116
 powdered metal 116
 stainless steels 116
 titanium alloys 116
 tungsten-base powdered alloys 119
 units conversion 127
 water 118
 wood 113

Department of Commerce 297

Deposition rates (welding) 305

Depreciation
 double declining balance method 310
 property class and factors 311
 sum of the years digits method 330
 Depth of cut 1011

Depth of engagement 1148

Derivatives of functions 148

Detachable chains 1831

Diameter factor 190

Diameter of circle enclosing smaller circles 54.41

Diameters for finished shafting 503

Diametral pitch
 definition 2016
 equivalent circular pitch and tooth proportions 2016
 metric modules and circular pitch 212

Diametral pitch knurls, (ANSI) Standard 212

Diamond
 built up edge concentration 281
 cratering 783
 designation symbols 220
 diamond concentration feeds and speeds 220
 grades, grit sizes 221–222
 modifications 220
 operating guidelines for operations and handling 220
 selection of shapes of standard speed and feeds 220
 terminology 220
 thread grinding work speeds 220

Die casting
 alloys 1371–1374
 bearing metals 1373
 dies machines 1373
 files 1373
 injection molding machining zinc alloys 1374
 porosity 1374
 skin effect 1374

Dielectric strength
 ceramics 145
 plastics 145

Die-maker's reamers 222

Dies and taps
 combination drill and tap maximum pitches 104
 square thread tap drill size 104
 Acme thread formula 100
 metric 102
 pipe 100
 Unified 102

Dies, sheet metal bending允许 132, 133
Drilling (continued)

cutting speeds for
ferrous cast metals 1068, 1069
light metal 1068
superalloys 1068

titanium and titanium alloys 1069
tool steels 1069
difficulties 1069
estimating thrust, torque, and
power 1069
feed factors 1069
holes in glass 1069
horsepower and thrust for
machine, shaftless motor type 1090

Drills
accuracy of drilled holes 891
and countersink plain types 873
and countersinks, bell types 873
angle of cutting point 968
ANSI Standards 854
chucks, tapers 939

cobalt high-speed steel 885
combined drills and countersinks 872

core, taper shank 874
counterbores 854
cutting speeds and equivalent rpm 1017
definitions of terms 854
diameter factors, thrust 1091
diameter factors, torque 1091
diameters of tap 1932
driver, collet type 878
drivers 879
for taper pin reamers 1877
grinding 969
jobbers length 1868
length of point 877
metric, British Standard 854
nomenclature 854
screw machine drills 568, 1770
sharping 1868
sizes for tapping 1868
for Acme threads 1869
sizes for tapping Acme threads 1869
spades 879
specifications 857
steels for 854
straight shank 874
straight-shank, drill sizes

core drills 870
cutting speeds for 870
light metal 870
superalloys 870
titanium and titanium alloys 870
tool steels 870
difficulties 870
estimating thrust, torque, and
power 870
feed factors 870
holes in glass 870
horsepower and thrust for
machine, shaftless motor type 1090

Drills (continued)
straight-shank, taper-length, drill sizes
metric 837, 861
number 837, 861
screw machine length 867
tangs for 865
tap and clearance hole sizes 891
taper shank 837
taper-shank drill sizes
fractional inch 868, 874
metric 868, 874

terms 859

Drives
nose key screws 1643
square, for portable tools 1681
for taper 1654

Drums, chain and wire rope 378

Dry seal pipe threads 1866
assembly limitations 1866
designations 1868

diameter pitch combinations 1868
taps for 901
types 1866

Ductile
cast iron 1361
iron 474

Durametall, machining 1155

Durometer tests 551

eccentricity 2165

Echols thread 1891

economic tool-life 1110

Dynamic balance 283
stresses 283

Dynamic factor 839

Dynamic factor 1351

Edy 548

Edx 548

Eccentricity 1765

Edm 856

capacitor 835
craters 835

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDM (continued)</td>
<td></td>
</tr>
<tr>
<td>dielectric</td>
<td></td>
</tr>
<tr>
<td>filter</td>
<td>1350</td>
</tr>
<tr>
<td>fluid</td>
<td>1350</td>
</tr>
<tr>
<td>strength</td>
<td>1350</td>
</tr>
<tr>
<td>discharge channel</td>
<td>1350</td>
</tr>
<tr>
<td>duty cycle</td>
<td>1350</td>
</tr>
<tr>
<td>electrical controls</td>
<td>1350</td>
</tr>
<tr>
<td>electrode growth</td>
<td>1350</td>
</tr>
<tr>
<td>wear</td>
<td>1350</td>
</tr>
<tr>
<td>electrode materials</td>
<td>1350</td>
</tr>
<tr>
<td>electrode uses</td>
<td>1350</td>
</tr>
<tr>
<td>electro-forming</td>
<td>1350</td>
</tr>
<tr>
<td>electronic controls</td>
<td>1350</td>
</tr>
<tr>
<td>Farad</td>
<td>1350</td>
</tr>
<tr>
<td>flushing</td>
<td>1350</td>
</tr>
<tr>
<td>gap current</td>
<td>1350</td>
</tr>
<tr>
<td>heat-affected zone</td>
<td>1353</td>
</tr>
<tr>
<td>ion</td>
<td>1350</td>
</tr>
<tr>
<td>ionization</td>
<td>1350</td>
</tr>
<tr>
<td>low-wear</td>
<td>1350</td>
</tr>
<tr>
<td>machine settings</td>
<td>1353</td>
</tr>
<tr>
<td>materials</td>
<td>1355</td>
</tr>
<tr>
<td>characteristics</td>
<td>1355</td>
</tr>
<tr>
<td>electrode</td>
<td>1356</td>
</tr>
<tr>
<td>metal removal rates</td>
<td>1350</td>
</tr>
<tr>
<td>negative electrode</td>
<td>1350</td>
</tr>
<tr>
<td>no-wear</td>
<td>1350</td>
</tr>
<tr>
<td>overcut</td>
<td>1350</td>
</tr>
<tr>
<td>plasma</td>
<td>1350</td>
</tr>
<tr>
<td>plunge (sinker) method</td>
<td>1350</td>
</tr>
<tr>
<td>electrode materials</td>
<td>1356</td>
</tr>
<tr>
<td>machine settings</td>
<td>1356</td>
</tr>
<tr>
<td>making electrodes</td>
<td>1357</td>
</tr>
<tr>
<td>metal removal rates</td>
<td>1350</td>
</tr>
<tr>
<td>positive electrode</td>
<td>1356</td>
</tr>
<tr>
<td>power parameters</td>
<td>1354</td>
</tr>
<tr>
<td>process</td>
<td>1354</td>
</tr>
<tr>
<td>quench</td>
<td>1354</td>
</tr>
<tr>
<td>recast layer</td>
<td>1354</td>
</tr>
<tr>
<td>secondary discharge</td>
<td>1353</td>
</tr>
<tr>
<td>spark frequency</td>
<td>1354</td>
</tr>
<tr>
<td>spark in and out</td>
<td>1354</td>
</tr>
<tr>
<td>square wave</td>
<td>1354</td>
</tr>
<tr>
<td>stroke</td>
<td>1351</td>
</tr>
<tr>
<td>UV axis</td>
<td>1356</td>
</tr>
<tr>
<td>white layer</td>
<td>1354</td>
</tr>
<tr>
<td>wire</td>
<td>1354</td>
</tr>
<tr>
<td>drilling holes</td>
<td>1350</td>
</tr>
<tr>
<td>EDM guide</td>
<td>1350</td>
</tr>
<tr>
<td>speed</td>
<td>1350</td>
</tr>
<tr>
<td>wire electron</td>
<td>1350</td>
</tr>
<tr>
<td>wire method</td>
<td>1350</td>
</tr>
<tr>
<td>workpiece materials</td>
<td>1350</td>
</tr>
<tr>
<td>Effective</td>
<td></td>
</tr>
<tr>
<td>dimensions, splines</td>
<td>1354</td>
</tr>
<tr>
<td>length of bolt</td>
<td>1350</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>influence of friction on</td>
<td>1357</td>
</tr>
<tr>
<td>riveted joints</td>
<td></td>
</tr>
<tr>
<td>Elastic</td>
<td></td>
</tr>
<tr>
<td>limit</td>
<td>1351</td>
</tr>
<tr>
<td>limit, plastics</td>
<td>1354</td>
</tr>
<tr>
<td>modulus</td>
<td>1354</td>
</tr>
<tr>
<td>in shear (torsion)</td>
<td>1354</td>
</tr>
<tr>
<td>spring materials</td>
<td>1354</td>
</tr>
<tr>
<td>various materials</td>
<td>1354</td>
</tr>
<tr>
<td>properties of material</td>
<td>1354</td>
</tr>
<tr>
<td>region</td>
<td>1354</td>
</tr>
<tr>
<td>tightening fasteners in</td>
<td>1354</td>
</tr>
<tr>
<td>Elastohydrodynamic lubrication</td>
<td>1354</td>
</tr>
<tr>
<td>Electric</td>
<td></td>
</tr>
<tr>
<td>arc, cutting metals</td>
<td>1358</td>
</tr>
<tr>
<td>fixture threads</td>
<td>1358</td>
</tr>
<tr>
<td>motor keys and keyseats</td>
<td>1358</td>
</tr>
<tr>
<td>socket and lamp base threads</td>
<td>1358</td>
</tr>
<tr>
<td>Electrical fixture threads</td>
<td>1352</td>
</tr>
<tr>
<td>lamp base</td>
<td>1352</td>
</tr>
<tr>
<td>socket shell threads</td>
<td>1352</td>
</tr>
<tr>
<td>Electrical network</td>
<td>1352</td>
</tr>
<tr>
<td>Electrical relationships</td>
<td>1352</td>
</tr>
<tr>
<td>Electrode</td>
<td></td>
</tr>
<tr>
<td>diameter, sheet metal making</td>
<td>1355</td>
</tr>
<tr>
<td>machining graphite material</td>
<td>1354</td>
</tr>
<tr>
<td>brass</td>
<td>1350</td>
</tr>
<tr>
<td>copper</td>
<td>1350</td>
</tr>
<tr>
<td>copper-tungsten</td>
<td>1350</td>
</tr>
<tr>
<td>graphite</td>
<td>1350</td>
</tr>
<tr>
<td>steel</td>
<td>1350</td>
</tr>
<tr>
<td>zinc</td>
<td>1350</td>
</tr>
<tr>
<td>material selection</td>
<td>1350</td>
</tr>
<tr>
<td>uses on various materials</td>
<td>1350</td>
</tr>
<tr>
<td>wear</td>
<td>1355</td>
</tr>
<tr>
<td>Electrodes (welding)</td>
<td></td>
</tr>
<tr>
<td>characteristics of standard types</td>
<td>1355</td>
</tr>
<tr>
<td>AWS E60XX</td>
<td>1355</td>
</tr>
<tr>
<td>current to use with</td>
<td>1355</td>
</tr>
<tr>
<td>deposition rates</td>
<td>1355</td>
</tr>
<tr>
<td>diameter to use</td>
<td>1355</td>
</tr>
<tr>
<td>selecting GTAW tungsten type</td>
<td>1355</td>
</tr>
<tr>
<td>wire feed rates</td>
<td>1355</td>
</tr>
<tr>
<td>Electropolishing</td>
<td>1355</td>
</tr>
<tr>
<td>Elements, table of chemical</td>
<td>1355</td>
</tr>
<tr>
<td>Elevation reading displacements</td>
<td>1355</td>
</tr>
<tr>
<td>Ellipse</td>
<td></td>
</tr>
<tr>
<td>area</td>
<td>1356</td>
</tr>
<tr>
<td>drawing</td>
<td>1356</td>
</tr>
<tr>
<td>eccentricity</td>
<td>1356</td>
</tr>
<tr>
<td>foot</td>
<td>1356</td>
</tr>
<tr>
<td>general equation</td>
<td>1356</td>
</tr>
<tr>
<td>major axis</td>
<td>1356</td>
</tr>
<tr>
<td>methods of drawing</td>
<td>1356</td>
</tr>
<tr>
<td>minor axis</td>
<td>1356</td>
</tr>
<tr>
<td>moment of inertia</td>
<td>1356</td>
</tr>
</tbody>
</table>
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facing insert holder</td>
<td>761–764</td>
</tr>
<tr>
<td>Factorial</td>
<td>218, 223</td>
</tr>
<tr>
<td>Factors</td>
<td>423–424</td>
</tr>
<tr>
<td>of numbers</td>
<td>19–28</td>
</tr>
<tr>
<td>Factors of prime number</td>
<td>495–497</td>
</tr>
<tr>
<td>machine columns</td>
<td>888</td>
</tr>
<tr>
<td>shafts</td>
<td>802, 805</td>
</tr>
<tr>
<td>tubes subject to external pressure</td>
<td>598–599</td>
</tr>
<tr>
<td>Face</td>
<td>215–217</td>
</tr>
<tr>
<td>Fatigue</td>
<td>206–208</td>
</tr>
<tr>
<td>modes of</td>
<td>207</td>
</tr>
<tr>
<td>Fatigue, springs</td>
<td>352</td>
</tr>
<tr>
<td>of riveted joints</td>
<td>1479</td>
</tr>
<tr>
<td>of springs</td>
<td>318</td>
</tr>
<tr>
<td>Fasteners detecting counterfeit</td>
<td>1509</td>
</tr>
<tr>
<td>Fatigue combined with creep</td>
<td>208</td>
</tr>
<tr>
<td>corrosion</td>
<td>208</td>
</tr>
<tr>
<td>cumulative damage</td>
<td>208</td>
</tr>
<tr>
<td>failure, modes of</td>
<td>207</td>
</tr>
<tr>
<td>influence of stress on</td>
<td>206–208</td>
</tr>
<tr>
<td>life factor involute splines</td>
<td>2172</td>
</tr>
<tr>
<td>low/high cycle</td>
<td>207</td>
</tr>
<tr>
<td>properties</td>
<td>205</td>
</tr>
<tr>
<td>S-N diagrams</td>
<td>205, 207</td>
</tr>
<tr>
<td>Fatigue, springs</td>
<td>352</td>
</tr>
<tr>
<td>Surface</td>
<td>208</td>
</tr>
<tr>
<td>Tests on plastics</td>
<td>603</td>
</tr>
<tr>
<td>Thermal</td>
<td>207</td>
</tr>
<tr>
<td>FCAW (flux-cored arc welding)</td>
<td>1398</td>
</tr>
<tr>
<td>Federal specification</td>
<td>743</td>
</tr>
<tr>
<td>Gage blocks, inch and metric sizes</td>
<td>741</td>
</tr>
<tr>
<td>Feed</td>
<td>493–494</td>
</tr>
<tr>
<td>function, NC</td>
<td>1278–1279</td>
</tr>
<tr>
<td>rate override, NC</td>
<td>1280</td>
</tr>
<tr>
<td>rates</td>
<td>1027–1040</td>
</tr>
<tr>
<td>Centering tools</td>
<td>1132</td>
</tr>
<tr>
<td>for drilling</td>
<td>1132</td>
</tr>
<tr>
<td>for milling</td>
<td>1040</td>
</tr>
<tr>
<td>for turning</td>
<td>1027–1040</td>
</tr>
<tr>
<td>Hollow Mills</td>
<td>1132</td>
</tr>
<tr>
<td>Number of teeth</td>
<td>1128</td>
</tr>
<tr>
<td>Feed and speeds</td>
<td>118, 119–120</td>
</tr>
<tr>
<td>Grinding</td>
<td>119–120</td>
</tr>
<tr>
<td>Total cost</td>
<td>1120</td>
</tr>
<tr>
<td>Feet</td>
<td>555</td>
</tr>
<tr>
<td>and inches into inches</td>
<td>555</td>
</tr>
<tr>
<td>into meters</td>
<td>560</td>
</tr>
<tr>
<td>Feet per minute into rpm</td>
<td>578, 579, 583</td>
</tr>
<tr>
<td>Ferrite</td>
<td>609</td>
</tr>
<tr>
<td>Ferrous</td>
<td>609–610</td>
</tr>
<tr>
<td>cast metals, speeds</td>
<td>609, 609–610</td>
</tr>
<tr>
<td>for drilling, reaming, and threading</td>
<td>609, 609–610</td>
</tr>
<tr>
<td>for milling</td>
<td>609, 609–610</td>
</tr>
<tr>
<td>for turning</td>
<td>609, 609–610</td>
</tr>
<tr>
<td>Fiber, vulcanized, strength of</td>
<td>620</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Files (continued)

- special purpose
 - long angle lathe 205
 - shear tooth 205
 - square 964
 - Swiss pattern class 965
 - blunt machine 965
 - die sinker 965
 - die sinker rifflers 965
 - needle 965
 - silversmiths rifflers 965

- teeth, cut of 963
- warding 964
- wood 964

Filer metals for brazing 1382

Fillet
- area 277
- center of gravity 277

Filletter head machine screws 1593

Fine blanking 1344
- tool dimensions 1345

Finishing, power brush
- 1456–1459

Fire hose connection
- screw threads 1874–1876
- ANSI Standard 1874
- thread designation 1874
- thread form 1874

Fire hose connection screw threads
- ANSI Standard 1874
- thread designation 1874
- thread form 1874

Fits
- actual 572
- and limits 572
 - graphical representation 555–557
 - tolerances designation 556
- basic shaft fits 846
- bilateral hole fits 846
- British Standard 846
- limits and fits 846
- minimum and maximum clearances 846
- tolerance limits 846
- holes 846
- shafts 846
- clearance fits 850–871
 - 24, 552
- cylindrical allowances and tolerances for
 - ANSI Standard 853–872
 - British Standard 872
 - definitions 872
- expansion 872
- forced 872
- metric ISO, British 579–588
- metric radial, ball and roller bearing
 - shaft and housing 579
 - preferred series 579
- shrinkage 579
- transition 579
- drive 579
- expansion 579
- force 579–580
- allowance 579

Force
- pressure in assembling 847
- hole basis 847
- British Standard 847
- figure 847
- hole system 847
- interference 847
- locational clearance 847
- interference 847
- transition 847
- metric clearance fits 970–971, 974–975
- metric interference fits 970–971, 974–975
- metric transition fits 970–971, 974–975
- running 971–972
- shaft basis 847
- British Standard 847
- figure 847
- shaft system 847
- shrinkage 48, 555–566, 661
- allowance 48, 560
- sliding 560–561
- transition 847–849

Fittings
- pipe 417–418
 - friction loss in 417
- Fixed (canned) cycles, NC 428–430
- Fixtures and jigs 524–525

Flat
- cutting of metals 1115
- cutting torch 1116
- hardening 426
- spraying process 1122
- Flanged housing bearings 839
- Flank of tooth 804

Flexible
- belts 838
- couplings 148
- manufacturing
 - cell 839
 - module 839
- systems, (FMS) 838

Floor and bench stand grinding 827

Flow of air in pipes 90

Copyright 2004, Industrial Press, Inc., New York, NY
Formulas (continued)

<table>
<thead>
<tr>
<th>Column</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson</td>
<td>280</td>
</tr>
<tr>
<td>Rankine</td>
<td>280</td>
</tr>
<tr>
<td>Linear</td>
<td>284</td>
</tr>
<tr>
<td>Contour milling</td>
<td>285</td>
</tr>
<tr>
<td>Critical speed</td>
<td>285</td>
</tr>
<tr>
<td>Cutting speed</td>
<td>285</td>
</tr>
<tr>
<td>Derivative</td>
<td>285</td>
</tr>
<tr>
<td>Dimensions of milled bevel gears</td>
<td>285</td>
</tr>
<tr>
<td>Dimensions of SAE standard splines</td>
<td>285</td>
</tr>
<tr>
<td>Dimensions of standard spur gears</td>
<td>285</td>
</tr>
<tr>
<td>Distance across bolt circle</td>
<td>285</td>
</tr>
<tr>
<td>Integral</td>
<td>285</td>
</tr>
<tr>
<td>Linear motion, constant acceleration</td>
<td>285</td>
</tr>
<tr>
<td>Pendulum</td>
<td>285</td>
</tr>
<tr>
<td>Proportions of ANSI fine-pitch worms and wormgears</td>
<td>285</td>
</tr>
<tr>
<td>Rearrangement of</td>
<td>285</td>
</tr>
<tr>
<td>Rotary motion, constant acceleration</td>
<td>285</td>
</tr>
<tr>
<td>Tooth parts, coarse pitch spur gear</td>
<td>285</td>
</tr>
<tr>
<td>Torque capacity of involute splines</td>
<td>285</td>
</tr>
<tr>
<td>Transposition</td>
<td>285</td>
</tr>
<tr>
<td>Triangle</td>
<td>285</td>
</tr>
<tr>
<td>Oblique</td>
<td>285</td>
</tr>
<tr>
<td>Right</td>
<td>285</td>
</tr>
<tr>
<td>Trigonometric</td>
<td>285</td>
</tr>
<tr>
<td>Volume</td>
<td>285</td>
</tr>
<tr>
<td>Work and power</td>
<td>285</td>
</tr>
</tbody>
</table>

Friction coefficients (continued)

<table>
<thead>
<tr>
<th>Friction coefficients</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling resistance</td>
<td>285</td>
</tr>
<tr>
<td>Static steel on various materials</td>
<td>285</td>
</tr>
<tr>
<td>Torque</td>
<td>285</td>
</tr>
<tr>
<td>Effect on efficiency</td>
<td>285</td>
</tr>
<tr>
<td>In brakes</td>
<td>285</td>
</tr>
<tr>
<td>Laws of</td>
<td>285</td>
</tr>
<tr>
<td>Rolling</td>
<td>285</td>
</tr>
<tr>
<td>Wheels horsepower</td>
<td>285</td>
</tr>
<tr>
<td>Wheels, power transmission</td>
<td>285</td>
</tr>
</tbody>
</table>

Friction loss

<table>
<thead>
<tr>
<th>Friction loss</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>285</td>
</tr>
<tr>
<td>45 degrees</td>
<td>285</td>
</tr>
<tr>
<td>90 degrees</td>
<td>285</td>
</tr>
<tr>
<td>In bearings</td>
<td>285</td>
</tr>
<tr>
<td>Standard tee</td>
<td>285</td>
</tr>
<tr>
<td>Flow thru branches</td>
<td>285</td>
</tr>
<tr>
<td>Flow thru run</td>
<td>285</td>
</tr>
</tbody>
</table>

Fuels, equivalent

<table>
<thead>
<tr>
<th>Fuels, equivalent</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivatives</td>
<td>285</td>
</tr>
<tr>
<td>Integration</td>
<td>285</td>
</tr>
<tr>
<td>Involute</td>
<td>285</td>
</tr>
<tr>
<td>Sevolute</td>
<td>285</td>
</tr>
<tr>
<td>Trigonometric</td>
<td>285</td>
</tr>
<tr>
<td>Tables of</td>
<td>285</td>
</tr>
<tr>
<td>Versed cosine</td>
<td>285</td>
</tr>
<tr>
<td>Versed sine</td>
<td>285</td>
</tr>
</tbody>
</table>

Fundamental constants

<table>
<thead>
<tr>
<th>Fundamental constants</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace brazing</td>
<td>285</td>
</tr>
<tr>
<td>Furnaces, steel heat-treating</td>
<td>285</td>
</tr>
</tbody>
</table>

Fusion, latent heat of

<table>
<thead>
<tr>
<th>Fusion, latent heat of</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>285</td>
</tr>
<tr>
<td>Ice</td>
<td>285</td>
</tr>
<tr>
<td>Lead</td>
<td>285</td>
</tr>
<tr>
<td>Copper</td>
<td>285</td>
</tr>
<tr>
<td>Iron</td>
<td>285</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>G</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gage block sets</td>
<td>285</td>
</tr>
<tr>
<td>Inch sizes</td>
<td>285</td>
</tr>
<tr>
<td>Metric sizes</td>
<td>285</td>
</tr>
<tr>
<td>Gage blocks, precision</td>
<td>285</td>
</tr>
<tr>
<td>Federal specifications for inch sizes</td>
<td>285</td>
</tr>
<tr>
<td>Metric sizes</td>
<td>285</td>
</tr>
<tr>
<td>Gage tolerances</td>
<td>285</td>
</tr>
<tr>
<td>Gagemakers tolerances</td>
<td>285</td>
</tr>
<tr>
<td>Gages</td>
<td>285</td>
</tr>
<tr>
<td>ANSI Unified thread classification</td>
<td>285</td>
</tr>
<tr>
<td>Constants for computing</td>
<td>285</td>
</tr>
<tr>
<td>Formulas for limits and tolerances for plain pitch</td>
<td>285</td>
</tr>
<tr>
<td>Rods</td>
<td>285</td>
</tr>
<tr>
<td>Sheet metal</td>
<td>285</td>
</tr>
<tr>
<td>Sheet zinc</td>
<td>285</td>
</tr>
<tr>
<td>Thickness and diameters sizes, galvanized sheet</td>
<td>285</td>
</tr>
</tbody>
</table>
Gages (continued)
- thread form [G012]
- tolerances [G014]
- tubing [G018]
- usage, ANSI Standard recommended [G028]
- wire [G031], [G034]
- zinc [G021]
- Gaging methods and measuring instruments [G092]

Gallyons (cylindrical tanks)
- in tank at given level [G06]
- to cubic inches [G2566]
- U.S. into liters [G2566], [G2569]

Galliumized, (welding)
- carburizing [G028]
- illuminating, specific gravity [G107]
- metal arc welding (GMAW) [G107]
- specific gravity [G107]
- specific heat [G107]
- stainless steel welding (TIG) [G1079]

G-code programming, NC
- involute [G028], [G027]
- milling cutters for chain sprockets [G019]
- 14.5 deg pressure angles [G216], [G217]
- number for bevel gears [G029], [G029]

Gear cutters, formed
- involute [G028], [G027]
- chain sprockets [G17], [G18]
- 14.5 deg pressure angles [G216]
- number for bevel gears [G029], [G029]

Gear cutting
- block or multiple indexing [G023], [G023]
- excess depth to obtain backlash [G2089]
- formed cutter selection [G028], [G028]

Gearing materials
- effect of alloying metals [G128]
- chrome-molybdenum [G128]
- chrome-nickel [G128]
- chrome-vanadium [G128]
- manganese [G128]
- molybdenum [G128]
- nickel [G128]
- nickel-molybdenum [G128]
- vanadium [G128]
- forged and rolled [G128]
- alloy steels [G128]
- carbon steels [G128]
- non metallic [G128]

Gear cutting
- application [G128]
- bore sizes [G128]
- diametral pitch for given power [G128]
- diametral pitch for given torque [G128]
- mating gear [G128]
- power transmitting capacity [G128]
- preferred pitch [G128]
- safe working stress [G128]

Gearing materials (continued)
- non metallic [G130]
- tooth form [G130]
- sintered materials [G113]
- steel castings [G107]

Gears and gearing
- active face width [G027]
- active spline length [G113]
- actual safety factor [G027]
- actual space width [G113]
- actual tooth thickness [G113]
- AGMA Standards [G027], [G027]
- angular backlash [G027]
- arc of action [G027]
- of approach [G027]
- of recession [G027]
- thickness of internal gear tooth [G027]
- thickness of pinion tooth [G027]
- axial pitch plan sets [G027]
- axial thickness [G027]
- backslash [G027]
- angular backlash [G027]
- recommended [G027]
- bearing spacing and shaft stiffness [G028]

Bevel gears, angulations
- design of [G028]
- for fine pitch gears [G028]
- bottom land [G028]
- for bronze and brass castings for [G126]
- bulk temperature thermal flash factor [G027]
- bushings for gears [G028]

Calculating
- calculated safety factors [G027]
- calculating dimensions of milled bevel gears [G028]
- replacement gear dimensions [G113]
- spur gear proportions [G028]
- case hardening steels for [G113]
- change gears, for lathe checking [G016]
- gear sizes [G128]
- pressures [G027]
- spur gear sizes [G128]
- chordal measurement of teeth [G128]
- circular pitch system [G128]
- coefficient of friction [G207]
- contact ratio factor [G028]
- crossed helical [G028]
- deburring tooth profile [G028]
- design of bevel gear blanks [G028]
- diametral pitch definition [G028]
- preferred system [G028]

Differential indexing ratio [G028]
Gears and gearing (continued)
drawing
 data for spur and helical gears . 2055
 information to be given on . 2034
 efficiency . 2034

 elasticity factor . 2077
 endurance limit . 2077
 enlarged pinion . 2061
 fine-pitch . 2076
 meshing without backlash . 2058
 reduced dimensions to avoid interference . 2045
 epicyclic . 2116
 equivalent pitch radius . 2012
 external spur gears . 2037
 dimensions for checking over wires . 2131
 face advance . 2034
 Fellows stub tooth . 2041
 fillet radius . 2034
 fillet stress . 2034
 finishing gear milling cutters . 2054
 flank of tooth . 2034
 forged and rolled alloy steels for gears . 2145

 formulas for helical gears . 2099
 for module system gears . 2122
 for spur gears . 2035
 geometrical factor . 2078

 given center distance and ratio obtained with diametral pitch system . 2034

 helical . 2029
 herringbone . 2114
 highest point of single tooth contact (HPSTC) . 2061
 hypoid bevel gears . 2114
 increasing pinion diameter to avoid undercut or interference . 2058
 inspection of gears . 2034
 integral temperature criterion . 2078
 interference . 2045
 internal diameter . 2034
 internal gear . 2037
 spur . 2034
 dimensions between wires . 2110

 involute curve . 2011
 land . 2034
 lead . 2034
 length of action . 2071
 line of action . 2071
 load distribution . 2071
 lowest point of single tooth contact (LPSTC) . 2012
 lubricant influence . 2071
 roughness, and speed . 2071
 lubrication-film factor . 2050
 material quality . 2077

 measurements . 2071
 gear size over wires . 2131

 metric module gear cutters . 2052
 module system . 2122
 module, definition . 2071
 motion control . 2493
 mountings for bevel gears . 2071
 nomenclature of gear teeth . 2034
 non-metallic . 2145
 normal plane . 2034
 number of teeth . 2034
 to avoid undercutting . 2034
 outside diameter . 2034
 pin method of checking size . 2125
 pinions flanges composition . 2149
 pitch diameter . 2034
 obtained with, diametral pitch system . 2034
 pitch point . 2034
 plane of rotation . 2034
 planetary . 2034
 plastics gearing . 2034
 pressure angle . 2034
 profile checker settings . 2062
 rack . 2034
 ratchet gearing . 2119
 ratio, defined . 2034
 relative sizes of internal gear and pinion . 2071
 replacement gear dimensions . 2071
 roll angle . 2034
 root diameter . 2034
 selection of involute gear milling cutter . 2034
 shapers, root diameters of gears cut on . 2041
 size factor . 2041
 size, checking . 2125
 specifications . 2062
 spur gear . 2034
 external . 2034
 internal . 2034
 standard normal diametral pitches . 2040
 steels for . 2040

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Grinding (continued)

minimum cost conditions 260
mounted wheels and points 262
offhand grinding 262
optimization planning 266
optimization planning, plunge 266
portable grinding 272
power 270
procedure to determine data 268
relative grindability 265
rene 172
rpm, various speeds and diameters 271
screw threads 273
side feed, roughing and finishing 266
silicon carbide wheels 276
spark-out time 275
specific metal removal rates 274
spindles for portable tools 285
stainless steels 276
surface 277
surface finish, Rz 267
surface grinding troubles 268
swing-frame 265
terms and definitions 267
tool steels 278
unhardened steels 286
user calibration of recommendations 287
vertical and angle spindles 290
wheel life 289

Grinders, spindles for portable tools 260

Grinding (continued)
g apoptosis 267
abrasive belt grinding 275
abrasives 216
abrasive tools 216
abrasive tools, diamond wheel 217
carbide tools 215
carbide tools, diamond wheel 217
centerless grinding troubles 222
centerless grinding troubles, ceramic materials, diamond wheel 222
centerless grinding troubles, chip breakers 222
centerless grinding troubles, cost 222
centerless grinding troubles, cutting forces 222
centerless grinding troubles, cutting time formulas 222
centerless grinding troubles, cutting time formulas, radius 222
centerless grinding troubles, data selection including wheel life 222
centerless grinding troubles, data selection including wheel life, diamond wheel 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, diamond wheel 222
centerless grinding troubles, diamond wheel, R 222
centerless grinding troubles, diamond wheel, R, R 222
centerless grinding troubles, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life 222
centerless grinding troubles, data selection including wheel life, diamond wheel 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R, R 222
centerless grinding troubles, data selection including wheel life, diamond wheel, R 222

Equivalent diameter factor feeds 125
finishing 126
floor and bench stand fluids 114
grindability groups 169
grinding and grinding rules and data selection 176
heat resistant alloys 176
inconel 176
internal centerless 125
milling cutters 125

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Grinding (continued)
wheels
 cubic boron nitride 1177, 1195
 diamond
 truing of 1196 – 1200
 dressing and truing of eccentric type 1196 – 1200
 faces, shapes of 1189
 grades 1189
 handling 1199
 inspection 1199
 markings, standard 1179 – 1180
 mounted wheels and points metric 1198
 mounting and safety 1207 – 1208
 radial relief angle 828
 roughing 1166
 safe operating speeds 1165
 selection of 1180 – 1200
 sequence of markings 1179
 shapes and sizes, standard 1180 – 1188
 metric 1186 – 1187
 side feed 1166
 silicate bonding process 1227
 single point truing diamonds 1200
 storage 1208
 structure 1178 – 1179
 truing
 diamond feeds 1199
 diamond sizes 1199 – 1200
 dressing of 1196 – 1200
 vitrified 1198
 wheel markings 1179
 work speed and depth of cut selection in rough and finish grinding 1180
 Grooved drive studs
 dimensions 608
 hole sizes 608
 Grooved pins
 designation 657
 hole sizes 657
 lengths and sizes 657
 materials 657
 properties 657
 requirements 657
 standard sizes 658
 Grooving and oil feeding of bearings 472
 Grooving insert holder 50
 Ground thread tap, designations 493
 GTAW (gas tungsten arc welding) 492
 Grinding bearings 396
 Grinding or Pappus rules 60
 Gutta percha, turning 1083
 G-word, NC 1279, 1280
 Gyration, radius of
 bar, small diameter 1212
 circular disk, thin circular ring, thin cone, frustum cylinder, hollow ellipsoid 112
 flat plate, thin hollow cylinder, thick hollow sphere 112
 paraboloid 112
 parallellogram 112
 prism, rectangular ring 112
 sphere, hollow spherical shell 112
 thin flat plate 112

H
 H- and L-limits 210 – 217
 Half circle moment of inertia 211
 radius of gyration 211
 section modulus 211
 Hand
 expansion reamers 814
 of flute helix of milling cutter reamers 812
 taps 802
 Hard facing
 austenitic high chromium irons 228
 austenitic manganese steels 228
 cobalt base alloys 228
 copper base alloys 228
 high speed steels 228
 materials 228
 nickel-chromium-boron alloys 228
 Hard rubber, machining 415
 Hardening
 alloy steels 232
 steel 232
 flame 235
 induction 235
 test methods 235
 Hard metals 276
 carbide-based coated 268
 ISO classifications 269
 titantium carbide 270
 Tool steels 271
 Stainless tool steels 271
 tool steels 271
 Hardness
 aluminum alloys 57
 85

Copyright 2004, Industrial Press, Inc., New York, NY
Hardness (continued)

- bearings
- ceramics
- cobalt alloys
- copper alloy
- copper-base powdered alloys
- heat-treated steels
- iron-base powdered alloys
- magnesium alloys
- nickel alloys

Number

- Brinell
- Rockwell
- steel
- O-ring
- powdered metal alloys
- relation to tensile strength scales
- comparison
- Rockwell
- unhardness scales
- stainless steel

Carbon and alloy tool steels

- testing
- Brinell
- conversion errors, causes
- correction for curvature
- durometer
- Hollgren ball
- Keep’s test
- Mohs hardness scale
- monotron
- Rockwell
- scleroscope
- Turner’s sclerometer
- Vickers
- tungsten-base powdered alloys

Harmonic

Harvey grip thread

Heat

- absolute temperature and zero coefficients of radiation
- coefficients of transmission
- freezing mixtures
- ignition temperatures
- latent loss from uncovered steam pipes
- mechanical equivalent
- power equivalents
- quantity measurement
- radiation coefficient
- scales
- specific
- temperature scales
- thermal energy

Heat treating furnace

- fluidized bed furnace
- oven or box
- pit type
- pot type
- rotary
- vacuum furnace

Heat treatment

- alloy steel
 - carburizing temperatures
 - normalizing temperatures
 - tempering temperatures
 - carbon steels
 - molybdenum high speed steels
 - stainless steel
 - quenching medium
 - tempering temperatures
 - stainless steel temperatures
 - steel
 - annealing
 - baths quenching
 - carburizing temperatures
 - case hardening
 - cleaning work after case hardening
 - colors for tempering
 - cooling period
 - cooling subzero, to improve properties
 - cyanide hardening
 - decalcsesence point
 - defects in hardening
 - flame hardening
 - furnaces
 - hardening baths
 - vacuum treatment
 - hardening, defects in
 - induction hardening
 - interrupted quenching
 - lead bath temperatures
 - liquid bath temperatures
 - nitriding
 - normalizing
 - oil quenching
 - pack hardening
 - pressure spraying quenching
 - protective coatings for molybdenum steels
 - quenching
 - temperatures
 - quenching baths
 - recalcsesence point
 - scale formation
 - spheroidizing
 - stabilizing dimensions
 - strength and hardness of AISI steels
 - stress relieving
 - subzero treatments
INDEX

Heat treatment (continued)
- steel surface hardening 514
- tempering temperatures 512
- tempering period 510
- time aging 511
- water quenching 515

Hectares into acres 2563

Helical end mills 807
- gear, helix angle 1966
- interpolation, NC 1284
- milling, change gears 1965
- wire screw thread inserts 1654

Helical gearing (continued)
- tooth proportions 507
- tooth thickness measurement 517
- tool rounding 514

Helical milling
- development of helix 506
- helix angle 506
- lead of helix 506

Helical overlap 506

Helix
- angle 506
- angle factor 506
- angles, screw threads 672
- constructing 506
- end mills with welden shanks 506
- lead and diameter 506
- lead and pitch radius lead angle 506
- lead for given angle measurement of angle 506
- number of teeth 506

Herringbone gearing failures 874

Hertz stress 2031

Hexagon
- area 24
- distance across corners 24
- moment of inertia 410
- radius of gyration 410
- section modulus 410

Highest point of single tooth contact (HPSTC) 267

High-speed steels
- annealing rehardening as cutting tool material 1010
- cobalt cobaltium 331
- cooling period 410
- cutters 410
- drawing 410
- hardening molybdenum heat treatment 411
- annealing 411
- cutting efficiency 411
- equipment 411
- hardening temperatures 411
- preheating tungsten quenching molybdenum 411
- tungsten 390
- subzero treatment 417
- tempering molybdenum time for through hardening 410
- molybdenum 411
- hardening 411
- quenching straightening tempature 410
- tool 410
- tungsten 410
- tungsten annealing 411

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-strength, low-alloy (HSLA) steels (see HSLA steels)</td>
<td>595</td>
</tr>
<tr>
<td>Hob tip radius, maximum</td>
<td>509</td>
</tr>
<tr>
<td>Hobs, change gears for relieving</td>
<td>526</td>
</tr>
<tr>
<td>roller chain sprocket</td>
<td>484</td>
</tr>
<tr>
<td>tip radius, maximum</td>
<td>505</td>
</tr>
<tr>
<td>worm gear</td>
<td>499</td>
</tr>
<tr>
<td>Housing chain and wire rope</td>
<td>190</td>
</tr>
<tr>
<td>Holders for NC, insert</td>
<td>489</td>
</tr>
<tr>
<td>Hold-on or dolly bars for riveting</td>
<td>148</td>
</tr>
<tr>
<td>Hole sizes, tapping</td>
<td>597</td>
</tr>
<tr>
<td>Holes, accuracy of drilled</td>
<td>884</td>
</tr>
<tr>
<td>coordinate dimension factors for jig boring</td>
<td>503</td>
</tr>
<tr>
<td>difficulties in reaming, for riveted pins</td>
<td>440</td>
</tr>
<tr>
<td>for tapping</td>
<td>524</td>
</tr>
<tr>
<td>in glass, drilling</td>
<td>505</td>
</tr>
<tr>
<td>sizes for self-tapping screws</td>
<td>547</td>
</tr>
<tr>
<td>Hollow</td>
<td>243</td>
</tr>
<tr>
<td>circle, moment of inertia</td>
<td>341</td>
</tr>
<tr>
<td>circle, radius of gyration</td>
<td>411</td>
</tr>
<tr>
<td>circle, section modulus</td>
<td>411</td>
</tr>
<tr>
<td>cylinder, radius of gyration</td>
<td>341</td>
</tr>
<tr>
<td>mills, feeds and speeds</td>
<td>131</td>
</tr>
<tr>
<td>sphere, radius of gyration</td>
<td>341</td>
</tr>
<tr>
<td>Housing process</td>
<td>224</td>
</tr>
<tr>
<td>adjustments</td>
<td>223</td>
</tr>
<tr>
<td>carbide tools</td>
<td>227</td>
</tr>
<tr>
<td>rotative speeds in</td>
<td>274</td>
</tr>
<tr>
<td>stock removal, rate of</td>
<td>835</td>
</tr>
<tr>
<td>tolerances</td>
<td>223</td>
</tr>
<tr>
<td>Hooks, dimensions of crane</td>
<td>598</td>
</tr>
<tr>
<td>Horsepower</td>
<td>245</td>
</tr>
<tr>
<td>V-belt drives</td>
<td>430</td>
</tr>
<tr>
<td>water at a given head</td>
<td>439</td>
</tr>
<tr>
<td>Hose connection screw threads</td>
<td>584</td>
</tr>
<tr>
<td>ANSI Standards</td>
<td>257</td>
</tr>
<tr>
<td>basic dimension tolerances</td>
<td>257</td>
</tr>
<tr>
<td>Hot-working, tool steels for HSLA steels</td>
<td>410</td>
</tr>
<tr>
<td>application</td>
<td>422</td>
</tr>
<tr>
<td>chemical composition</td>
<td>151</td>
</tr>
<tr>
<td>composition</td>
<td>422</td>
</tr>
<tr>
<td>elongation</td>
<td>425</td>
</tr>
<tr>
<td>formability</td>
<td>151</td>
</tr>
<tr>
<td>properties</td>
<td>425</td>
</tr>
<tr>
<td>tensile strength</td>
<td>151</td>
</tr>
<tr>
<td>toughness</td>
<td>151</td>
</tr>
<tr>
<td>weldability</td>
<td>151</td>
</tr>
<tr>
<td>Hunting tooth ratio</td>
<td>109</td>
</tr>
<tr>
<td>Hydrant screw thread</td>
<td>579</td>
</tr>
<tr>
<td>Hydraulic, Baume’s, and specific gravity</td>
<td>108</td>
</tr>
<tr>
<td>Hyperbola</td>
<td>360</td>
</tr>
<tr>
<td>area</td>
<td>58</td>
</tr>
<tr>
<td>area construction</td>
<td>58</td>
</tr>
<tr>
<td>eccentricity</td>
<td>58</td>
</tr>
<tr>
<td>foot</td>
<td>58</td>
</tr>
<tr>
<td>general equation</td>
<td>58</td>
</tr>
<tr>
<td>major and minor axis</td>
<td>58</td>
</tr>
<tr>
<td>Hypocycloidal curves, areas</td>
<td>93</td>
</tr>
<tr>
<td>Hypoid gears</td>
<td>2083</td>
</tr>
<tr>
<td>applications of</td>
<td>2083</td>
</tr>
<tr>
<td>Hypotenuse</td>
<td>58</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>614</td>
</tr>
</tbody>
</table>

| INDEX | 2627 |

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

2628

Inch
 millimeters into decimals of
 148
 Inch
 584
 inclined plane
 124
 force for moving body on
 221
 forces on
 124
 motion on
 221

Inconel metals
 89, 90

Incremental programming, NC
 278

Index plates, one hole moves of angular
 values
 609

Indexable
 carbide inserts
 560
 insert holder
 560
 boring
 662
 chamfering
 662
 end cutting edge angle
 561
 facing
 660
 561
 grooving
 662
 identification system
 insert shape
 567
 569
 lead angle
 611
 NC
 258
 544
 511
 512
 planing
 612
 614
 raker angle
 611
 selection
 611
 shank sizes
 610
 shape
 612
 tracing
 612
 614
 turning and back-facing
 612
 614
 turning and facing
 612
 614

Indexing
 angular
 109
 207
 block or multiple
 208
 Brown and Sharpe milling machine
 101
 106
 compound
 106
 compound gradient ratio
 559
 differential
 505
 ratio of gearing
 505
 gear ratio
 505
 finding
 505
 head angular position for
 milling end mills and angular
 cutters
 811
 821
 head (bore with 64 teeth
 542
 hole circles
 580
 milling machine
 103
 108
 movements
 505
 509
 512
 515
 517
 number of holes
 505
 ratio of gearing
 505
 reamer teeth for irregular spacing
 413
 simple
 505
 509
 512
 simple and differential
 505
 509
 512
 smaller angles
 tables
 505
 509
 512
 Indicator drop method
 505

Induction
 annealing
 30
 brazing
 30
 hardening
 130
 139
 141
 equipment
 139
 gear teeth
 111
 normalizing
 139

Inertia
 electric motor
 112

Initial graphics exchange specification (IGES), NC
 728

Injection molding, metal
 378

Insert radius compensation
 418

Inserts
 hardmetal materials
 134
 135
 holders for NC
 131
 134
 135
 138
 indexable
 139
 140
 141
 141
 radius compensation, NC
 131
 132
 screw thread
 158
 self-tapping screw
 141
 throw away carbide
 121

Inspection methods
 292

Instrument maker's thread system
 758

Integration of functions
 753

Interest
 125
 126
 compound
 277
 finding unknown rate
 277
 nominal vs. effective
 277
 simple
 277

Interference
 251

Interference of threads
 allowances
 258
 British Standard
 183
 change in diameter (RAS)
 258
 coarse threads
 258
 design and application data
 157
 designation symbols
 157
 dimensions
 157
 driving speed
 156
 driving torque and length of engagement
 relation
 128
 engagement lengths
 128
 interferences
 127
 128
 lead and angle variations
 128
 lubrication
 128
 materials for
 128
 profile
 128
 spur gear
 128
 129
 surface roughness
 128
 thread dimensions
 128
 tolerances for pitch diameter
 128
 torques
 128
 variation in axial load
 128

Interferometers
 128

Internal diameters
 109

Internal gears
 109

spur
 109
 110

International System (SI) units
 744

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Interpolation
- circular, NC 1284
- helical and parabolic, NC 1286
- linear, NC 1288

Interrupted quenching 1289

Inverse
- and direct proportions combined 5
- of a matrix 122
- ratio or reciprocal 5

Investment
- casting 127
- design 126
- making procedure 127
- milling cutters 128
- materials 129

Investment casting alloy
- elongation 127
- hardness 128
- tensile strength 128
- yield strength 127

Involute
- constructing curve properties 105
- curve properties functions 105
- gear cutters, formed type 2074
- serrations 2074
- true form diameter in gears 2078

Involute splines
- American National Standard 2157
- application factor 217
- basic dimension 216
- basic rack profile 216
- bursting stress 217
- chamfers and fillets 219
- circular pitch 215
- classes of tolerances 216
- combinations 216
- combinations of types 216
- compressive stress at side teeth 218
- compressive stresses allowable 218
- crowning for misalignment 219
- diametral pitch 215
- dimensions, effective and actual 216
- drawing data 216
- effect of spline variations 218
- effective and actual dimensions 216
- clearance 218
- space width 216
- tooth thickness variation 218
- fatigue life factor 217
- fillet 216
- chamfers 216
- root splines 217
- fit classes 219
- flat root splines 217

Involute splines (continued)
- form circle 216
- form clearance 216
- form diameter 217
- formulas 218
- basic dimension 218
- 2-pin measurement 218
- fretting damage 214
- inspection methods 219
- types of gages 217
- with gages 217
- interchangeability 219
- internal splines 216
- lead variations 216
- length of engagement 219
- length of splines 217
- load distribution factors 218
- major circle 217
- major diameter in 217
- manufacturing 218
- maximum
- actual space width 217
- actual tooth thickness 216
- effective space width 216
- effective tooth thickness 216
- metric module 217
- millling cutter 218
- minimum
- actual space width 216
- actual tooth thickness 216
- effective space width 216
- effective tooth thickness 216
- minor circle 216
- minor diameter 216
- misalignment parallelism variation 218
- pin measurement of pitch 218
- circle 218
- diameter 216
- point 216
- pressure angle 216
- rack profiles 218
- reference dimensions 218
- shear stress allowable 217
- at pitch diameters 217
- at the pitch diameter of teeth 217
- under roots of external teeth 217
- side fit 216
- sizes and lengths, estimating 216
- space width and tooth thickness limits 216
- stub pitch symbols 216
- tensile stresses allowable 216
- terms and definitions 218
- tolerances 218
- tolerances and variations 218

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Involute splines

(continued)

tooth
numbers
proportions
thickness limits
thickness modification
torque capacity formulas,
total index variation
total tolerance
types and classes of fits
variations
allowance
eccentricity
effect of
effect of profile
lead
types of
wear life factors, flexible splines
width and tooth thickness

Iron
and copper-base sintered bearings

castings
coloring
copper-base sintered bearings

Iron-base powdered alloys

density
elongation
hardness
rupture strength
ultimate strength
yield strength

I-section

moment of inertia
radius of gyration
section modulus

ISO Standard
drawing symbols, compared with

ANSI

geometric dimensioning and
tolerancing

British Standard tags
grade markings on bolts
hexagon bolts, screws and nuts
limits and fits, British Standard
thread
thread system, miniature screw
threads
surface finish
surface parameter symbols
surface texture symbology
washers, compared with ANSI

ISO surface finish

Isosceles triangle

Isothermal

expansion, compression of air
quenching

Izod impact strength
carbon and alloy steels
plastics

Jacobs tapers

Jam nuts, standard
metric

Jarno tapers

Jig

boring
hole coordinate dimension factors
for
lengths of chords
transfer of tolerances
bushings
definitions
designation system for
fixed type wearing bushings
head type liner bushings
headless type liner bushings
headless type press fit
locking mechanisms for
materials
plate thickness
press fit wearing bushings
slip type
fixture
fixture definitions

Jobbers reamers

drills

Johnson, J. B., column formula

Joints

plastics pipe
riveted
toggle
universal

Journal bearing (see Bearings: journal)

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Keys and keyseats (continued)

- effect on shaft strength 305
- estimating key sizes 2169
- filleted keyseats 2378
- fitting 2367
- gib-head keys 2368, 2374, 2383
- keys and keyseats, depth of 2368
- metric 2372
- metric keys length 2370
- milling cutters and arbors 2373
- parallel and taper 2374, 2376
- plain 2368
- preferred length 2369
- rectangular parallel keys 2376, 2378
- rectangular taper keys 2379
- set screws for keys 2368
- shaft diameter 2363
- size vs. shaft diameter 2363, 2374
- square taper keys 2379
- strength considerations for shafts 2365
- taper key tolerances 2366
- taper keys 2368
- transmission chain 2373
- woodruff keys and keyseats 2368, 2380, 2385

Knurls and knurling

- automatic screw machines 1130, 1132
- concave 2366
- diagonal teeth 2366
- diametral pitch knurls 2366
- dies marking 2366
- flat tools 2366
- formulas 2366
- lathe knurls 2366
- revolutions required for top knurling 2366
- sizes, preferred 2366
- straight teeth 2366
- tools 2366
- tracking correction 2366
- work diameter tolerances 2366

K

- Kibi 2546
- Kilogram calorie 2583
- Kilograms into pounds 2571
- per cubic meter into pounds per cubic foot 2572
- per cubic centimeter into pounds per cubic foot 2572
- per square meter into pounds per square meter 2572
- per square inch into pounds per square inch 2572
- Kilometers into miles 2572
- Kilopascals into pounds per square inch 2572
- Kilowatt hour equivalents into horsepower 2572
- power required for machining 2572
- Kinematics and kinetics 83
- Kinetic energy 83
- Kingsbury thrust bearing 84
- Kirchhoff current law 84
- Voltage law 84
- K-Monel, machining 1018
- Knee tools, speeds and feeds 1145
- Knee hardness numbers 1145
- Knuckle joints proportions 1145

L

- Lag screws and threads metric 810
- Lame’s formula for internal pressure 829
- Land gear tooth drill 124
- Laps and lapping abrasives 1237
- carbide tools 973, 974
- charging laps 1237
- cutting properties 1238
- cutting qualities 1238
- flat surfaces 1236
- grading abrasives for 1236
- grading diamond dust for 1237
- lubricants 1238
- materials 1235–1236
- pressures 1239
- rotary diamond testing wear 1239
- wet and dry 1239
- Lasers 1443
- beam focusing 1443
- beams 1443
- cladding 1454
- cutting metal with 1444
- cutting speeds 1455
- heat-affected zone 1444
- kerf widths 1444
- narrow kerf 1444
- cutting nonmetals direct drilling 1444
- drilling 1453
- drilling theory 1444
- hardening rates 1444
- heat affected zones 1444

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Lasers
heat treatment 449
industrial applications 449
light marking 449
mask marking 449
materials 449, 450
nonmetallic cutting rates 449
safety 450
scanned beam marking 450
thermal properties 449
types of industrial welding 449
deep penetration keyhole joint design 449–450
helium 450, 453
rates 450–456
theory 456

Latent heat

Lathe
change gears 546
fixtures, balancing 201–202
screw constant 1946

Law of

Lead and lead alloys
element 658
lead bath 658
tempering in 621
melting temperatures 628, 629
solder 658
lead-bronze bearings 270, 276
Least material condition (LMC) 610
Least material condition (LMC), depth 610
length of rivets for forming heads 476
units and conversion of 449
Letter
addresses, NC 1272
symbols for mechanics 254
Levers 457
Light
duty Belts and pulleys
V-belts 2410–2417
laser 443
metals 443
drilling, reaming, and threading 543
milling 543
turning 543
wave interference bands, measuring surface variations with 248
Limestone
cutting speed for strength 430
Limit
elastic 454
endurance 454
proportional 454
Limits and fits
actual size 631
allowance 461
ANSI Standard preferred metric basic size 631, 632, 636, 646
British Standard for holes and shafts 636–638
cylindrical fits, ANSI Standard definitions 639
design size 631
deviations for holes 87
deviations for shafts 164
dimension

gagemakers tolerance 628
gages, plain 646
gages, thread 1914
graphical representation 636, 642
indicating on drawings 642
maximum material condition 628
metric screw threads 753
minimum material condition screw thread gages 602
side cutting edge 654

Lime and lime alloys, die casting 672
Left
angle between two conventions for drawings 48
distance between point 47
distance to external point 10
equation of 10

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Line
 geometry of ... 51
 intermediate points on 60
 of action .. 59
 parallel .. 54
 perpendicular .. 57
 slope of ... 50

Linear
 coefficient of expansion
 metals .. 62
 pipe material .. 62
 copper .. 62
 FRP ... 62
 PP & PVDF .. 62
 PVC .. 62
 steel ... 62
 plastics .. 62
 deflection of shafting 62
 interpolation, NC ... 1294
 lines, points, circles (APT) NC 1294
 L....section
 moment of inertia 41
 radius of gyration 41
 section modulus .. 41

Lubricants
 application of oils 2227
 bearings .. 2227
 cutting .. 2227
 density .. 2227
 dynamic viscosity coefficient 2227
 electric motors .. 2227
 grease ... 2227
 oil mist ... 2227
 oil types .. 2227
 operating temperature 2227
 pressure-viscosity coefficient 2227
 presswork .. 2227
 specific gravity .. 2227
 temperature vs. viscosity 2227
 viscosity .. 2227

Lubrication
 aerodynamic ... 2227
 analysis, journal bearings 2227
 anti-friction bearing 2227
 centralized systems 2227
 chain ... 2227
 density .. 2227
 drip feed .. 2227
 elastohydrodynamic 2227
 film thickness .. 2227
 films ... 2227
 gravity systems .. 2227
 grease consistency classifications 2227
 grease ... 2227
 hydrodynamic flow .. 2227
 methods .. 2227
 motors ... 2227
 oil bath ... 2227
 oil, application .. 2227
 oils ... 2227
 plain bearings .. 2227
 pressure flow ... 2227
 relubricating with grease 2227
 roller chain .. 2227
 selection for bearings 2227
 solid films ... 2227
 specific gravity .. 2227
 system, wiper type 2227
 temperature effects on grease 2227
 total flow .. 2227
 viscosity .. 2227
 pressure relationship 2227
 wiper feed .. 2227
 wicks and wick feeds 2227
 Lumber, sizes of sawn 414

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

M

Machinability
 copper alloys 168

Machine
 accuracy, effect of on part tolerances 1249
 countersinks 839
 cutting time formula 1114
 elements, subjected to compressive loads 512
 nuts coating 1605
 screw coating 1605
 screw nuts 1614
 screw taps 892, 903–913
 settings costs 1113
 settings economy 1113
 tool accuracy 1245
 efficiency 1088
 repeatability 1245
 resolution 512

Machine screws
 ANSI Standard 1587–1604
 binding head 1609
 body diameter 1609
 British Metric 1609
 British Standard 1609
 British Unified 1609
 BSW and BSF 1609
 cheese head 1609
 cheese head screw 1589, 1597–1599, 1607
 clearance holes, metric 1604
 clearance head screw 1589
 countersunk head 1602
 countersunk head screw 1589
 cross recesses 1589
 designation 1589
 diameter of head 1589
 diameter of unthreaded shank end of screws 1589
 fillister head 1593
 flange head metric 1602
 flange head 1589
 flat head 1589
 flats 1589
 header points for metric 1589
 hex and hex flange 1593
 hexagon head screw 1592
 hexagon washers 1590
 length of thread 1592
 metric counter sunk 1589
 metric countersunk head 1589
 metric thread lengths 1592
 metric, ANSI standard 1589

Machining
 aluminum bearings 1153
 aluminum economy 1153
 chip thickness 1123, 1125
 depth of cut 1123
 high speed milling 1129
 high speed forming 1125
 magnesium 1154
 micarta 1156
 monel and nickel alloys 1155–1156
 noise 1325
 nonferrous metals 1153–1156
 power constants 1084–1085
 power factors 1085
 power, estimating 1084
 power tool 1080
 work materials 1090
 metal removal rates 1088
 processess, ANSI Standard tolerance grade relationships 2634
 speeds and feeds (see Speeds and feeds)
 tolerances and variations 2634
 ultrasonic 1157
 zinc alloy die castings 1155

Macro, NC 1284

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium alloys</td>
<td>586–588, 1372</td>
</tr>
<tr>
<td>applications</td>
<td>586</td>
</tr>
<tr>
<td>bearing strength</td>
<td>588</td>
</tr>
<tr>
<td>coloring</td>
<td>587</td>
</tr>
<tr>
<td>compressive strength</td>
<td>587</td>
</tr>
<tr>
<td>cutting fluids for</td>
<td>1148–1155</td>
</tr>
<tr>
<td>die casting</td>
<td>588</td>
</tr>
<tr>
<td>elongation</td>
<td>589</td>
</tr>
<tr>
<td>extruded bars</td>
<td>589</td>
</tr>
<tr>
<td>machining</td>
<td>589</td>
</tr>
<tr>
<td>mechanical properties</td>
<td>588</td>
</tr>
<tr>
<td>plate</td>
<td>588</td>
</tr>
<tr>
<td>pressure die casting properties</td>
<td>588</td>
</tr>
<tr>
<td>sand and permanent mold</td>
<td>587</td>
</tr>
<tr>
<td>shear strength</td>
<td>585</td>
</tr>
<tr>
<td>soldering of</td>
<td>586</td>
</tr>
<tr>
<td>tensile strength</td>
<td>586</td>
</tr>
<tr>
<td>Magnesium, coating</td>
<td>1466</td>
</tr>
<tr>
<td>Magnetic clutches</td>
<td>2352–2353</td>
</tr>
<tr>
<td>Malleable</td>
<td>1361</td>
</tr>
<tr>
<td>cast iron</td>
<td>1361</td>
</tr>
<tr>
<td>iron castings</td>
<td>1361</td>
</tr>
<tr>
<td>Iron Research Institute</td>
<td>1369</td>
</tr>
<tr>
<td>strength</td>
<td>1361</td>
</tr>
<tr>
<td>Manganese</td>
<td>558</td>
</tr>
<tr>
<td>bronze castings</td>
<td>558</td>
</tr>
<tr>
<td>gear casting</td>
<td>1372</td>
</tr>
<tr>
<td>Manganese-bronze castings</td>
<td>558</td>
</tr>
<tr>
<td>Manila rope, strength</td>
<td>2125–2143</td>
</tr>
<tr>
<td>Mantissa, logarithm</td>
<td>114</td>
</tr>
<tr>
<td>Manual data input, NC</td>
<td>203–204</td>
</tr>
<tr>
<td>Manufacturers’ standard gage for sheet steel</td>
<td>355–356</td>
</tr>
<tr>
<td>Manufacturing cell, flexible, NC</td>
<td>1269</td>
</tr>
<tr>
<td>module</td>
<td>1269</td>
</tr>
<tr>
<td>system</td>
<td>1269</td>
</tr>
<tr>
<td>Marble turning</td>
<td>805</td>
</tr>
<tr>
<td>Martempering</td>
<td>811</td>
</tr>
<tr>
<td>Martensite</td>
<td>811</td>
</tr>
<tr>
<td>Mass</td>
<td>223–224</td>
</tr>
<tr>
<td>unit and conversion of</td>
<td>223–224</td>
</tr>
<tr>
<td>Materials</td>
<td>223–224</td>
</tr>
<tr>
<td>disc spring</td>
<td>555</td>
</tr>
<tr>
<td>mechanical properties of</td>
<td>555</td>
</tr>
<tr>
<td>spring, disc</td>
<td>555</td>
</tr>
<tr>
<td>Mathematical constants, frequently used</td>
<td>189–190</td>
</tr>
<tr>
<td>signs and abbreviations</td>
<td>189–190</td>
</tr>
<tr>
<td>Matrix</td>
<td>109–110</td>
</tr>
<tr>
<td>addition</td>
<td>111</td>
</tr>
<tr>
<td>adjoint</td>
<td>111</td>
</tr>
<tr>
<td>cofactors</td>
<td>111</td>
</tr>
<tr>
<td>column</td>
<td>111</td>
</tr>
<tr>
<td>determination</td>
<td>112</td>
</tr>
<tr>
<td>Matrix (continued)</td>
<td></td>
</tr>
<tr>
<td>diagonal</td>
<td>119</td>
</tr>
<tr>
<td>identity</td>
<td>119</td>
</tr>
<tr>
<td>inverse</td>
<td>119</td>
</tr>
<tr>
<td>minors</td>
<td>119</td>
</tr>
<tr>
<td>multiplication</td>
<td>119</td>
</tr>
<tr>
<td>rank</td>
<td>119</td>
</tr>
<tr>
<td>row</td>
<td>119</td>
</tr>
<tr>
<td>simultaneous equations</td>
<td>119</td>
</tr>
<tr>
<td>singular</td>
<td>119</td>
</tr>
<tr>
<td>square</td>
<td>119–120</td>
</tr>
<tr>
<td>subtraction</td>
<td>119</td>
</tr>
<tr>
<td>zero</td>
<td>119</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
</tr>
<tr>
<td>bending load, wood</td>
<td>122</td>
</tr>
<tr>
<td>material condition (MMC)</td>
<td>122</td>
</tr>
<tr>
<td>temperature, plastics</td>
<td>416</td>
</tr>
<tr>
<td>MBEC bearing tolerances</td>
<td>122</td>
</tr>
<tr>
<td>M-codes (M-words), NC</td>
<td>1278</td>
</tr>
<tr>
<td>Mean positional deviation</td>
<td>1245–1248</td>
</tr>
<tr>
<td>Measurement of backlash</td>
<td>1273</td>
</tr>
<tr>
<td>Measuring</td>
<td></td>
</tr>
<tr>
<td>angles with sine-bar</td>
<td>1056–1058</td>
</tr>
<tr>
<td>buttress thread</td>
<td>1056–1058</td>
</tr>
<tr>
<td>compound angles</td>
<td>1056–1058</td>
</tr>
<tr>
<td>dovetail slides</td>
<td>211</td>
</tr>
<tr>
<td>gear size</td>
<td>2125–2143</td>
</tr>
<tr>
<td>instruments and gaging methods over pins</td>
<td>120–126</td>
</tr>
<tr>
<td>bolt circle</td>
<td>122</td>
</tr>
<tr>
<td>gear size</td>
<td>122–126</td>
</tr>
<tr>
<td>splines</td>
<td>122</td>
</tr>
<tr>
<td>over pins, bolt circle</td>
<td>122–126</td>
</tr>
<tr>
<td>pitch diameter</td>
<td>122–126</td>
</tr>
<tr>
<td>thread ring gages</td>
<td>122–126</td>
</tr>
<tr>
<td>three wire method</td>
<td>122–126</td>
</tr>
<tr>
<td>radius or arc, over rolls</td>
<td>122–126</td>
</tr>
<tr>
<td>tapers</td>
<td>126</td>
</tr>
<tr>
<td>center distance</td>
<td>126</td>
</tr>
<tr>
<td>diameter threads</td>
<td>126</td>
</tr>
<tr>
<td>American standard</td>
<td>1890–1892</td>
</tr>
<tr>
<td>buttress</td>
<td>1891–1892</td>
</tr>
<tr>
<td>taper screw</td>
<td>1893</td>
</tr>
<tr>
<td>tapered</td>
<td>1893–1894</td>
</tr>
<tr>
<td>using micrometer</td>
<td>1893–1894</td>
</tr>
<tr>
<td>using screw thread gage</td>
<td>1893–1894</td>
</tr>
<tr>
<td>using three-wire method</td>
<td>1893–1894</td>
</tr>
<tr>
<td>Whitworth</td>
<td>1056–1058</td>
</tr>
<tr>
<td>V-shaped groove, over pins</td>
<td>122–126</td>
</tr>
<tr>
<td>with light-wave interference bands</td>
<td>122–126</td>
</tr>
<tr>
<td>with vernier</td>
<td>122–126</td>
</tr>
<tr>
<td>Measuring screw threads</td>
<td></td>
</tr>
<tr>
<td>Acme thread</td>
<td>1890–1892</td>
</tr>
<tr>
<td>Acme thread thickness</td>
<td>1891–1892</td>
</tr>
<tr>
<td>ball point micrometer</td>
<td>1893</td>
</tr>
<tr>
<td>buckingham involute helicoid formula</td>
<td>122–126</td>
</tr>
<tr>
<td>buttress thread</td>
<td>126</td>
</tr>
<tr>
<td>contact pressure, measurement</td>
<td>126</td>
</tr>
</tbody>
</table>

Machinery’s Handbook 27th Edition

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Measuring screw threads (continued)

formula for checking pitch diameter 2636
formula to taper pipe threads 698
formula, three wire method 899
diameter equivalent, pitch 899
pitch diameter equivalent 899
three wire method 899
Acme threads 899
buttress thread 899
pitch thread 899
stub Acme threads 899
wire diameters and constants 899
V thread 899
Whitworth 899
wire accuracy 899
wire sizes 899

Melt 2546
Mechanical equivalent of heat 2546
Mechanical properties
aluminum alloys 831
bolts, inch sizes 2073
bolts, metric sizes 2073
ceramics 156
iron 156
magnesium 880
nickel 880
plastics 880
powdered metal alloys 119
spring wire 121
stainless steel 882
steel 882

Mechanics of materials (continued)
differential pulley 601
dynamics 601
energy 521
flywheels 831
force 415
force of a blow 415
graphical solution of force systems 415
impulse and momentum 576
inclined plane 651
kinetic energy 576
levers 576
linear velocity 576
metric SI units 576
moment of inertia 576
momentum 576
Newton's laws 576
pendulums 656
potential energy 576
pound force 415
power 415
radius of gyration 576
radius of oscillation 576
scalar and vector quantities 415
SI metric units 576
statics 415
torque 415
units 415
vectors 415
velocity, angular 165
velocity, linear 165
wedge 415
wheels 415
work 415
and energy relation 415
and power formulas performed by forces and couples 415

Melting points
alloys of copper and zinc 1382
alloys of lead and tin 1382
aluminum 403
brazing alloys 403
cast iron 403
copper 403
copper alloys 403
solder 403
stainless steels 403
stainless steels 404

Metal
aluminum alloys 404
brazing alloys 404
bonded grinding wheel 404
casting 404
coatings 404
covering coatings 404
dsurface coatings 404

Copyright 2004, Industrial Press, Inc., New York, NY

Machinery's Handbook 27th Edition
INDEX

Metal (continued)

- coloring 1462–1464
- etching 1461–1464
- foundry patterns 169
- identification 1461, 1463
- injection molding patterns 1461
- plasma welding 1461–1464
- slitting saws 1461
- spraying process 1462
- temperature effect on strength working fluids occupational exposure 1149–1152
- working fluids 1149–1150
- Metal balls ordering specification preferred gauges tolerances 2324
- Metal washers bright metric series 1584–1585
- Metallography 1584
- Metallurgy, powder 1584
- Meters into feet 2562
- Metric basic sizes, British Standard preferred 2907
- bolts and screws, British Standard clearance holes for 3938
- conversion factors dimensions on drawings dowel pins, British Standard 735–739
- drawings, scales fasteners ANSI hex nuts ANSI nut thread series bolts and screws bolt clearance holes bolt designation bolt thread length bolt thread series cap screws clearance holes countersink diameter-length combinations drilled head counterbore sizes drilled head dimensions hex flange screws hex screws hex structural bolts identification symbols neck bolts socket head cap screws thread length 2052–2124, 2127–2129

Metric fasteners hex structural bolts nuts 1540
- ANSI Standard bearing surfaces 1560
- materials 1560 mechanical properties 1560
- heavy hex structural bolts 1560
- hex bolts 1560
- inch vernier, dual International System of Units (SI) 1560
- ISO limits and fits, British Standard keys and keyways, British Standard metric, reading module, gear cutter gear teeth 1560
- round head square bolts screw threads Aerospace screws, bolts and nuts basic profile crest diameter tolerance design profiles 1584–1585
- diameter pitch combinations 1584–1585
- dimensional effect of coating fits 1584
- fundamental deviation length of thread engagement 1584–1585
- length of engagement limiting dimensions formulae limits and fits limits and tolerance working fluid 1584–1585
- MJ profile 1584–1585
- MJ profile designations symbols 1584–1585
- root form 1584–1585
tolerance system 1584–1585
tolerances of external threads tolerances of pitch-diameter series British ISO 1584–1585
- hexagon bolts, nuts, and screws machine screws and nuts 1584–1585
- metal washers spring washers taps SI units, factors and prefixes 1584–1585
- sizes, preferred for flat metal products systems of measurement 1584–1585
Metric (continued)
threads, British (ISO) 1568 1570 1572
threads, SI 1574
Vernier, reading 904
washers, plain, ANSI 1598 1598
Metric system (SI) 1606 1614
base units 1613
in mechanics calculations 141 144
in strength of materials calculations 1566
141 144 1553 1557 1560 1562 1564 1565 1566
141 144 1553 1557 1560 1562 1564 1565 1566
Milling (continued)
speeds and feeds 802
plain carbon and alloy steels 802
Stainless steels 805 806 806
Titanium and titanium alloys 810
Tool steels 807 808 808
thread 805
Milling cutters ANSI Standard 807 807
arbor keys and keyways 810
arbor type 810
bevel gear 810
casting 813
clearance angles 805 805 806 806
concave and convex 806 806
corner rounding 806 806
double angle 806
eccentric type radial relief 806
end mills 806 806
medium helix 813
stump length 813
terminology 806
with weldon shanks 810
gearing or sharpening 810
hand of 807 807
end mill 810
rotation 808
helical gear 810
high speed steel 802
indicator drop methods of checking relief 806
and rake angles 806
keys and keyways 806
keyseat 810
metal slitting (saws) 807
mounting 803
multiple flute 806
number of teeth 807
peripheral teeth 807
pitch diameter 806
plain and ball end 806
radial relief angle 806
rake angles 806 806
relief on cutting edges 806
roll out of cutting edges 806
relieved corner rounding cutters 806
screw thread 802
with weldon shanks 810
taper and weldon shanks 807
teeth, clearance angles 824

Copyright 2004, Industrial Press, Inc., New York, NY
<table>
<thead>
<tr>
<th>Milling cutters</th>
<th>Modulus of (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminology</td>
<td>shear, G (rigidity)</td>
</tr>
<tr>
<td>tool material</td>
<td>in angular deflection</td>
</tr>
<tr>
<td>T-slot</td>
<td>formula</td>
</tr>
<tr>
<td>816</td>
<td>nonferrous metals</td>
</tr>
<tr>
<td>weldon shanks</td>
<td>in simple stresses</td>
</tr>
<tr>
<td>800</td>
<td>spring materials</td>
</tr>
<tr>
<td>taper shanks</td>
<td>mixed numbers</td>
</tr>
<tr>
<td>Woodruff keysheal 814</td>
<td>Mol</td>
</tr>
<tr>
<td></td>
<td>Mold</td>
</tr>
<tr>
<td></td>
<td>dispensable patterns</td>
</tr>
<tr>
<td></td>
<td>Molding</td>
</tr>
<tr>
<td></td>
<td>green sand</td>
</tr>
<tr>
<td></td>
<td>shell</td>
</tr>
<tr>
<td></td>
<td>Molds, steels for</td>
</tr>
<tr>
<td></td>
<td>permanent</td>
</tr>
<tr>
<td>Milling machine</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>Brown & Sharpe</td>
<td>in combined stresses</td>
</tr>
<tr>
<td>2011</td>
<td>in simple stresses</td>
</tr>
<tr>
<td>centering plugs</td>
<td>unit conversion</td>
</tr>
<tr>
<td>2011</td>
<td>Moment and torque</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>in angles, steel</td>
</tr>
<tr>
<td>2017–2020</td>
<td>built-up sections</td>
</tr>
<tr>
<td>cutters for</td>
<td>channels, aluminum</td>
</tr>
<tr>
<td>14.5-deg.</td>
<td>2113</td>
</tr>
<tr>
<td>pressure angle</td>
<td>channels, steel</td>
</tr>
<tr>
<td>816–817</td>
<td>circle</td>
</tr>
<tr>
<td>indexing</td>
<td>411</td>
</tr>
<tr>
<td>spindle noses</td>
<td>circular ring</td>
</tr>
<tr>
<td>800–812</td>
<td>cross-sections</td>
</tr>
<tr>
<td>tapers for</td>
<td>ellipse</td>
</tr>
<tr>
<td>tool shanks</td>
<td>formulas for various</td>
</tr>
<tr>
<td>V-flange, NC</td>
<td>sections</td>
</tr>
<tr>
<td></td>
<td>half circle</td>
</tr>
<tr>
<td>M's law of linear damage</td>
<td>411, 412</td>
</tr>
<tr>
<td></td>
<td>hollow circle</td>
</tr>
<tr>
<td></td>
<td>I or S shapes, steel</td>
</tr>
<tr>
<td></td>
<td>L-beams, aluminum</td>
</tr>
<tr>
<td></td>
<td>1890</td>
</tr>
<tr>
<td></td>
<td>L-beams, steel</td>
</tr>
<tr>
<td></td>
<td>410, 411</td>
</tr>
<tr>
<td></td>
<td>I-section</td>
</tr>
<tr>
<td></td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>L-section</td>
</tr>
<tr>
<td></td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>octagon</td>
</tr>
<tr>
<td></td>
<td>411</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>of complex areas</td>
</tr>
<tr>
<td>threads</td>
<td>pipe</td>
</tr>
<tr>
<td>aero-thread</td>
<td>560, 561</td>
</tr>
<tr>
<td>809</td>
<td>plane</td>
</tr>
<tr>
<td>flexible</td>
<td>560</td>
</tr>
<tr>
<td>manufacturing, NC</td>
<td>562</td>
</tr>
<tr>
<td>splines, metric</td>
<td>560</td>
</tr>
<tr>
<td>2011</td>
<td>cone, frustum</td>
</tr>
<tr>
<td>system gearing</td>
<td>187</td>
</tr>
<tr>
<td>187</td>
<td>cylinder, hollow</td>
</tr>
<tr>
<td>diametral pitch</td>
<td>222</td>
</tr>
<tr>
<td>222</td>
<td>ellipsoid</td>
</tr>
<tr>
<td>formulas</td>
<td>184</td>
</tr>
<tr>
<td>222</td>
<td>paraboloid</td>
</tr>
<tr>
<td></td>
<td>prism</td>
</tr>
<tr>
<td></td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>pyramid</td>
</tr>
<tr>
<td></td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>solid ring</td>
</tr>
<tr>
<td></td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>sphere</td>
</tr>
<tr>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>spherical sector and</td>
</tr>
<tr>
<td></td>
<td>segments</td>
</tr>
<tr>
<td></td>
<td>torus</td>
</tr>
<tr>
<td></td>
<td>rectangles</td>
</tr>
<tr>
<td></td>
<td>188, 189</td>
</tr>
<tr>
<td></td>
<td>round shafts, table</td>
</tr>
<tr>
<td></td>
<td>138, 139</td>
</tr>
<tr>
<td></td>
<td>structural channels</td>
</tr>
<tr>
<td></td>
<td>138, 139</td>
</tr>
<tr>
<td></td>
<td>trapezoid</td>
</tr>
<tr>
<td></td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>triangle</td>
</tr>
<tr>
<td></td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>T-section</td>
</tr>
<tr>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Moments of inertia (continued)</td>
<td>Motors, electric (continued)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>units conversion</td>
<td>ball or roller bearings</td>
</tr>
<tr>
<td>wide flange, steel</td>
<td>characteristics</td>
</tr>
<tr>
<td>Z-section</td>
<td>classes of standards</td>
</tr>
<tr>
<td>Momentum</td>
<td>compound-wound motors</td>
</tr>
<tr>
<td>Monel metals, machining</td>
<td>constant speed motors</td>
</tr>
<tr>
<td>Monotron for hardness testing</td>
<td>control</td>
</tr>
<tr>
<td>Morse</td>
<td>current definitions</td>
</tr>
<tr>
<td>reamers for sockets</td>
<td>DC motors</td>
</tr>
<tr>
<td>stub taper shank</td>
<td>design letters</td>
</tr>
<tr>
<td>taper shank twist drill</td>
<td>direction of rotation</td>
</tr>
<tr>
<td>tapers</td>
<td></td>
</tr>
<tr>
<td>Mortising wood</td>
<td></td>
</tr>
<tr>
<td>Motion</td>
<td></td>
</tr>
<tr>
<td>first law</td>
<td></td>
</tr>
<tr>
<td>second law</td>
<td></td>
</tr>
<tr>
<td>third law</td>
<td></td>
</tr>
<tr>
<td>on inclined plane</td>
<td></td>
</tr>
<tr>
<td>uniformly accelerated</td>
<td></td>
</tr>
<tr>
<td>Motion control</td>
<td></td>
</tr>
<tr>
<td>analog transducers</td>
<td></td>
</tr>
<tr>
<td>closed loop system</td>
<td></td>
</tr>
<tr>
<td>control systems</td>
<td></td>
</tr>
<tr>
<td>features of controllers</td>
<td></td>
</tr>
<tr>
<td>damping system response</td>
<td></td>
</tr>
<tr>
<td>driving power</td>
<td></td>
</tr>
<tr>
<td>electric motors</td>
<td></td>
</tr>
<tr>
<td>electromechanical system</td>
<td></td>
</tr>
<tr>
<td>electronic control</td>
<td></td>
</tr>
<tr>
<td>feedback transducers</td>
<td></td>
</tr>
<tr>
<td>gearing</td>
<td></td>
</tr>
<tr>
<td>hydraulic fluids</td>
<td></td>
</tr>
<tr>
<td>hydraulic pumps</td>
<td></td>
</tr>
<tr>
<td>hydraulic systems</td>
<td></td>
</tr>
<tr>
<td>control systems</td>
<td></td>
</tr>
<tr>
<td>electronic controls</td>
<td></td>
</tr>
<tr>
<td>proportional control</td>
<td></td>
</tr>
<tr>
<td>pumps and fluids</td>
<td></td>
</tr>
<tr>
<td>mechanical stiffness and vibration</td>
<td></td>
</tr>
<tr>
<td>motor types</td>
<td></td>
</tr>
<tr>
<td>open loop systems</td>
<td></td>
</tr>
<tr>
<td>pneumatic systems</td>
<td></td>
</tr>
<tr>
<td>proportional system</td>
<td></td>
</tr>
<tr>
<td>synchros and resolvers</td>
<td></td>
</tr>
<tr>
<td>system application factors</td>
<td></td>
</tr>
<tr>
<td>torsional vibration</td>
<td></td>
</tr>
<tr>
<td>Motors, electric</td>
<td></td>
</tr>
<tr>
<td>adjustable speed motors</td>
<td></td>
</tr>
<tr>
<td>adjustable-voltage</td>
<td></td>
</tr>
<tr>
<td>alternating current</td>
<td></td>
</tr>
<tr>
<td>armature rotors</td>
<td></td>
</tr>
<tr>
<td>Mounting wheels and points</td>
<td></td>
</tr>
<tr>
<td>Mounting bearings</td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Multiple or block indexing 203, 204

Multiplication of matrix 148

Multiplying decimals 25

fraction and mixed numbers 31

numbers written in powers-of-ten notation 30

Music wire 650

Music wire, gages 830

M-words, NC 779

Nonferrous metals

- modulus of elasticity 544
- modulus of shear 544
- shear strength 544
- strength 520, 544
- tensile strength 544
- yield strength 544

Normal distribution curve 323, 248

Normalizing 650

temperatures, alloy steel 43, 331

Norton Company 1180

Nose radius 44

carbide tools 573

single point tool 573

Nozzles, flow of water through 241

Number of nails and spikes in a pound 754

Number of teeth 2031

Numbering systems

- for aluminum alloys 775
- for aluminum alloys, wrought 773
- for metals and alloys 640, 643

Numbers

- associative law 4
- commutative law 4
- distributive law 4
- identity law 4
- inverse law 4
- positive and negative 4
- powers-of-ten notation 4
- preferred series 19
- prime 23
- progressions 204

Numerical control

- absolute programming 1260
- accuracy, repeatability and resolution 204
- adaptive control 1260
- addresses, letter 1274
- APT programming 1274, 1276
- circles 1208
- computational statements 1204
- example program 1204
- for turning 1207
- geometry statements 1204
- lines 1209
- motion statements 1209
- planes 1205
- points 1209
- postprocessor statements 1204
- tabulated cylinder 1207
- automatically programmed tool (APT) 1204
- axis nomenclature 1204
- block 1205
- byte 1225
- CAD/CAM 1244
- central processing unit 1225

Nails and spikes, standard 2479

National Tube Co. 298

Nautical measure 1490

NC programming 1490

Negative and positive numbers 4

Negative functions of angles 527

NEMA standards for electric motors 99

Net present value 537

Newton's laws of motion 143

Newton's Raphson method 143

Newton-Raphson method 143

Newtonian fluids 143

Newton’s laws of motion 143

Newtons into rounds force 538

Nickel alloys 359, 369

- applications 359
- chemical composition 359
- chromium steels, SAE strength 424
- coefficient of expansion 359
- density 359
- elongation 138
- Elongation 359
- g.e. 359
- g.e. 359
- hardness 359
- machining 358
- melting points 369
- plating 359
- specific heat 359
- tensile strength 359
- thermal conductivity 359
- yield strength 359

Nitinol, machining 775

Nitroalloy steels 667

Nitriding 2050, 2057

- high-speed steel tools 433
- ion nitriding 657

Nitrogen, liquid temperature 428

**Nodular cast iron 2023

Noise, machining 1125

Nomenclature

- bevel gears 208
- gear teeth 208
- spur gears 208

Nominal clearance 2259

Nominal vs effective interest rates 538

Nondestructive testing symbols 1244

Nonferrous metals 527

- modulus of elasticity 644
- modulus of shear 644
- shear strength 644
- strength 520, 644
- tensile strength 644
- yield strength 644

Normal distribution curve 323, 248

Normalizing 650

temperatures, alloy steel 43, 331

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Numerical control (continued)
circular interpolation 2738
closed-loop system 2738
computer-aided part programming 2740
counter compensation 2735
cutter location data 2737
decimal point programming 2739
feed rate override 2739
fixed (canned) cycles 2757
flexible manufacturing cell 2760
module 2760
format detail 2777
G-code addresses 2727
insert holders for NC 2710
insert radius compensation 2710
interpolation
 circular 2738
 helical and parabolic 2738
letter addresses 2727
macro 2780
manual data input 2769
microprocessor 2723
miscellaneous functions 2756
parabolic interpolation 2738
parametric expressions and macros 2762
programming
 NC 2730
 subroutine 2757
part programming 2767
part tolerance symbols
 ANSI 2725
 compared to ISO 2725
 points, lines, circles (APT) 2725
 postprocessor 2723
 preload registers (G92) 2727
 preparatory word 2727
 programmable controllers 2758
 incremental 2777
 absolute 2777
 NC 2726
 repeatability, accuracy, and resolution 2744
 sequence number 2743
 standards 2746
 stepper motors 2740
 subroutine 2785
 S-word 2785
tapping 2786
Numerical control (continued)
thread cutting
 compensation 2714
 length offset nose radius compensation 2738
 offset
 total indicator reading
 turning cycles 2773
T-word 2780
T-type machine screw 2757
Unified
 ANSI metric
 ISO metric
British Standard 2710
 unified
 Whitworth
 crown, low and high (SAE) 2733
 eye nuts 2725
 friction coefficients 2710
 high, SAE 2723
 slotted, hex (SAE) 2724
 taper
 3/8-16
 1/2-13
 3/4-16
 wing nuts 2750
 wrench clearances 2763
 wrench openings 2763
Nylen
 bearings 2706
 properties 2716
 rope, strength of 2759
Obtuse-angle triangles solution 2748
Octagon
 area 276
 moment of inertia 2761

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Octagon (continued) radius of gyration 241
section modulus 241
Offset method of determining yield strength 241
Offset method of determining strength 241
Oil feeding and groove of bearings 221
Oil lubrication 241
Oilless bearings 215, 216
Oils and compounds, machining 114, 115
emulsifying or soluble mineral 114, 115
sulfurized and chlorinated 114, 115
lubricating 211, 216
viscosity unit conversion 211
tempering 211
Open-end wrench clearances 153
Open-loop system 237, 238
Operations on complex numbers 5
Orbit 153
Order of performing arithmetic 8
Ordering method of determining 5
applications 240
diametral clearance 240
flurocarbon 240
gland depth 240
groove dimensions and clearances 240
hydraulic 240
nitrile 240
reciprocating seals 240
rubber material 240
silicon 240
squeeze 240
static seals 240
surface finish in contact with 240
washers, backup 240
Oscillation, center and Radius of 234
Ounces, avoirdupois, into grams 257
Out of roundness 221
Oval head machine screws 208
Overhead 208
machine-hour distribution 237
man-hour distribution 237
man-rate distribution 237
Oxygen gas in welding 249, 249

P
Pack hardening 164
Packing 234
in circles 234
in rectangles 234
Palladium, plating 199
Pan head machine screws 209
Paper, bonding 108
Pappus or Guldinus rules 6
Parabola 26
area 26
center of gravity 26
constructing 26
directrix 6
focus 6
general equation 6
latus rectum 6
segment of area 6
vertex 6
Parabolic interpolation, NC 128
Paraboloid 26
center of gravity 26
poles of medusa 14
radius of gyration 26
segment volume 26
volume 26
Parallel lines 6
Parallelogram 6
area 6
center of gravity 26
geometry of 6
of forces 6
radius of gyration 26
Parametric subroutine, NC 128
Passivation of copper 164
Patterns for castings dispensable master mold 173
materials 173
metal 173
shrinkage allowances 173
vormis 173
weight of casting from 173
wood selection 173
Payback period 134
Pearlite 167, 168
Pearlite, malleable iron 168
Pebi 168
Pendulum 168
Degree of 168
formulas for 168
physical 168
simple and compound 168
torsional types of 168
Percentage 7
Percussion, center of 159
Perforated metals, strength and stiffness of 6
Permanent mold, casting process 165
Permanganic, machining 165
Permutation 8
Perpendicular lines 6
Petroleum oils, application 177, 178
Phenolic plastics 206
Philadelphia carriage bolt thread 199

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Pipe and pipe fittings (continued)
section modulus 932, 933
steel, welded and seamless 932
Briggs and Whitworth 941
taps, dimensions 941
internal dryseal 950
power for driving 951
straight taper 952, 953–954
threads
American National Standard 890
British Standard 890, 891
designation and notation 890
wall thickness 891
weight per foot 892–893
welding 893
fill passes 893
flux cored electrode 893
fusion 893
position 893
flat 896
horizontal 896
overhead 896
vertical up and down 897
procedure 897
carbon steel 897
MIB 897
root 897
thin wall 897
root passes 898
thin wall 898
wrought steel 898

Pitch
broach teeth 2149, 2150
circle 2149
circular, of gears 2149
diameters, gear circular pitch 2149
helical 2149
pin method of checking 2149
spur 2149
worms 2149
diameters, roller chain sprockets 2149, 2150
diameters, thread
checking 2150
for tensile stress area 2150
metric, M profile 277, 278
unified 277, 278
wire sizes for measuring 2150

diameters, thread unified
gear 2150
plane 2150
rivets 987, 988
screw threads, measuring 987
worms 987

Pivot tube 259
Plain bearing (see Bearings: plain) 259
Plain milling cutters 509

Copyright 2004, Industrial Press, Inc., New York, NY
Plain washers
- inch 1532–1535
- metric 1568

Plane figures, areas and dimensions
- Plane of rotation 63–74
- Planetary gear 1519–1520
- compound drive 1519
- direction of rotation 1519
- Planetary thread milling 1526

Planning
- estimating cutting speeds 1528
- power required 1528–1528
- speeds and feeds 1528
- tool grinding 1526
- wood 1518

Planning insert holder 1522–1528

Plastics
- aging at elevated temperature 1524
- anti-friction 1527
- laminated, plain bearings 1526
- sleeve 1520
- bending strength 1521
- bending stress 1527
- bonding 1516
- brittleness 1515
- characteristics 1522
- chemical resistance of 1527
- coefficient of expansion 1527
- compressive strength 1527
- creep 1524
- deflection 1524
- density 1516
- design analysis 1527
- for assembly 1515
- for injection molding 1531
- for developing prototypes 1534–1535
- draft angles and depth of draw 1534
- driling speeds and feeds 1534
- ductility 1515
- effects of temperature 1531–1535
- elasticity 1526–1530
- electrical properties 1545
- comparative tracking index 1526
- conductivity 1545
- dielectric constant 1545
- dielectric strength 1526
- permittivity 1526
- surface resistivity 1548
- volume resistivity 1549
- strain 1549
- stress 1549
- thermal conductivity 1549
- toughness 1514
- tracking 1526
- tracking index 1526
- tracking resistance 1526
- ultraviolet resistance 1526
- water absorption 1549
- waxing, sawing, and numbers of teeth 1526
- wear 1526
- wood 1515

Plastics flammability ratings 1504
- flexural modulus 1516
- gearings 1525
- accuracy 1528
- backlash 1528
- service factors 1527
- tooth form factors 1526
- glass transition point 1516
- hardness 1516
- heat dissipation factor 1516
- hoop stress 1509
- impact loading and testing 1517
- impact resistance 1517
- injection molding 1518
- molded 1523
- linear thermal expansion 1518
- lubricity 1525
- machining 1521
- cutting off 1522
- drilling 1522–1523
- molded 1523
- sawing thermoset cast 1521
- tapping 1521
- threading 1521
- turning 1522
- material 1520–1521
- elastomers 1521
- thermoplastic 1503
- thermoset 1503
- maximum temperature 1517
- mechanical fasteners 1516
- mechanical properties 1509
- effect of temperature on 1524
- related to time 1524
- milling 1524
- mixtures 1524
- copolymers 1524
- reinforcing fiber 1524
- modulus of elasticity 1507
- normal strain 1507
- notch sensitivity 1507
- opacity 1514
- physical properties 1507
- density 1524
- shrinkage 1524
- specific gravity 1524
- water absorption 1524
- pipe and fittings 1532–1533
- pipe threads 1525
- plasticity 1507
- press fits 1509
- pressure vessels 1509
- proportional limit region 1508
- relaxation 1508
- sawing, speed and numbers of teeth 1526
- secant modulus 1504
- shear modulus 1504
- shear stress 1509

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Plastics (continued)
- snap-fit 616
- specific gravity 416
- normal stress 526
- stress relaxation 507
- structural analysis 507
- safety factors 507
- structures 507
- temperature effect 504
- temperature index 504
- tensile impact 525
- tensile modulus 525
- thermal conductivity 525
- thermal properties 525
- thermal stresses 525
- thermal welding 525
- thermoplastic 525
- toughness 525
- ultimate strength 525
- yield point 525

Plates
- flat, strength and deflection of shells and cylinders, strength of 292–294
- shells and cylinders, strength of 292–298

Plating
- chromium 547
- magnesium anodic treatment 547
- magnesium, coating 547
- phosphate coating 547
- surface coatings 547
- zinc 547

PLC (programmable logic control) 248

Powder haulage rope, strength of 572

Plunge angle 502

Positioning accuracy 1263

Positive clutches 2157

Positive functions of angles 99

Postprocessor, NC 1258

Potential energy 173

Poundal 2578

Pounds
- force 142
- into newtons 2577
- mass 258
- per cubic foot into kilograms per cubic meter 257
- per cubic inch into grams per cubic centimeter 257
- per square foot into kilograms per square meter 257
- per square inch into kilograms per square centimeter 257
- per square inch into kilopascals 258

Powder metallurgy 1379

Polygon shafts 1380
- dimensions of 1380
- strength of connections 1380
- three- and four-sided designs 1380

Polyphase motors 2467

Polypropylene plastics 2533

Polyurethane plastics 2506

Porosity, pressure die castings 1370

Porous bearings 2265

Portable grinding 1229

Portable tools
- hexagonal chucks for 657
- spindles and drives for 658

Positional deviation, mean 1245

Positioning accuracy 1245–1248

Positive and negative numbers 4

Positive clutches 1257

Positive functions of angles 99

Postprocessor, NC 1272

Potential energy 173

Poundal 579

Poundal
- force 142
- into newtons 2577
- mass 258
- per cubic foot into kilograms per cubic meter 257
- per cubic inch into grams per cubic centimeter 257
- per square foot into kilograms per square meter 257
- per square inch into kilograms per square centimeter 257
- per square inch into kilopascals 258

Powder metallurgy 1379

Briquetting tools design 1379

Limiting factors 1379

Metal process 379

Next page: Machinery’s Handbook 27th Edition
INDEX

Powdered metal alloys
- copper base 419
- density 419
- elongation 419
- hardness 419
- iron base 419
- tungsten base 419

Powdered metal bearings 2647

Power
- calculating by dynamometer 2647
- consumption spade drilling 2647
- cutting tool 2647
- feed factors 2647
- for driving pipe fans 2647
- general formulas 2647
- in mechanics 2647
- motor 2647
- required for machining 2647
- transmission 2647
- by friction wheels 2647
- chain 2647
- disc clutch 2647
- friction wheels 2647
- units conversion 2647

Power brush
- brush finishing 2647
- brush uses 2647
- deburring 2647
- standard sizes 2647
- tooth profile of gears 2647

Power constant
- alloy steels 2647
- high temperature alloys 2647
- nonferrous metals 2647
- plain carbon steels 2647
- stainless steels 2647
- tool steels 2647
- wrought steels 2647

Power of ten notation 2647
- expressing numbers in 2647

Power transmission
- roller chain 2647
- units 2647

Precipitation hardening 2647
- heat-treatment 2647

Precision
- bolts and screws, British 2647
- gage blocks 2647
- investment casting 2647

Preferred
- basic sizes, ANSI Standard 2647
- hole basis metric fits, ANSI Standard 2647
- metric sizes 2647
- ANSI Standard 2647
- British Standard 2647

Preferred (continued)
- numbers, ANSI Standard 2647
- numbers, British Standard 2647
- roughness average values 2647
- roughness values and roughness grades 2647
- series for tolerances and allowances 2647
- series maximum waviness height values 2647
- shaft basis metric fits, ANSI Standard 2647
- thicknesses for flat metal products, metric 2647

Preload measurements 2647
- preload registers, (G-114 word) NC 2647
- preload relaxation 2647
- preparatory word, (G-word) NC 2647
- present value and discount 2647

Pressure
- and flow of water 2647
- angle 2647
- angle, cams 2647
- composite checking of fine-pitch gears 2647
- cylinders and tubes, collapsing pressure 2647
- definition and units for 2647
- effect on wood property 2647
- head in foot to psia relation 2647
- Lame’s formula for internal 2647
- psia to head in feet relation 2647
- radial on sheave or drum 2647
- spherical shells, strength to resist internal pressure 2647
- tube, collapsing pressure 2647
- unit conversion 2647
- viscosity coefficient for lubricants 2647

Prime numbers and factors 2647
- principle reference planes 2647

Prism
- polar moment of inertia 2647
- volume 2647
- volume formula 2647

Prismoidal formula for volume 2647

Profile checking, gearing 2647

Programmable logic controller, NC 2647

Programming
- absolute, NC 2647
- APT 2647
- G-code 2647
- incremental, NC 2647
- numerical control 2647

Progression
- arithmetical 2647
- geometrical 2647

Prony brake dynamometer 2647

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Properties
commercial petroleum oils 2333
mechanical P 205–206, 420
compressive 205
fatigue 205
modulus of elasticity values 204
Poisson’s ratio values 204
shear 205
strength 205, 206, 420–421, 464–465
thermal 205, 420–421
yield point values 204
of materials
air 524
aluminum alloys 524
b 524
copper alloys 524
copper-zinc-tin alloys 524
magnesium alloys 524
nickel alloys 524
nonferrous alloys 524
plastics 524
powdered metal alloys 524
specific gravity 408
spring wire 524
standard steels 524
stainless steels 524
tool steels 524
water 524
wood 524

Pulleys and belts (continued)
lengths of open and crossed belts 336
lengths of V-belt 336
rules for calculating diameters and speeds 336
sheave size 336
speed in compound drive 336
speed ratio correction factors 336
speeds, rpm into feet per minute 336
V-belt wrap angles 336
Pull-up torque 336
Pump
head and horsepower relation 674
horsepower at different head 674
Punch presses speeds and pressures 1340
Punches and dies
pressures required 1331
PVC plastics 2533
Pyramid
center of gravity 229
frustum center of gravity 229
polar moment of inertia 229
volume 229
volume of frustum 70

Q
Quadrant 99
Quadratic equations 31
Quenching 519
baths
high speed steel interrupted 519
media 519
air cooling 519
salt bath 519

R
Rack 203
geometric milling, indexing 203
spline, metric 176
Radial per second conversion from rpm 65
Radii
of arc, checking 177–178
of curvature 72
of gyration 72
angles, steel 174
bar of small diameter 174
bar, small diameter 174
channels, aluminum 174
channels, steel 174
circle 72
INDEX

Radius

Radius (continued)

of gyration

of gyration

circular disk, thin 233

circular disk

circular ring, thin flat 235

circular ring

cone 234

cone, frustum 234

cylinder 235

cylinder, hollow 235

eclipse 235

ellipsoid 236

Rate of return (interest)

Rate of return (interest) (continued)

reversing 236

Ratchet gearing

Ratchet gearing (continued)

shape of wheel teeth types 236

types 236

types 236

types 236

Rake angles

Rake angles (continued)

strength of 237

strength of 237

strength of 237

Lead angles

Lead angles (continued)

checking milling cutter 238

checking milling cutter 238

checking milling cutter 238

Single-point cutting tools

Single-point cutting tools (continued)

milling cutters 239

milling cutters 239

milling cutters 239

Lead angles

Lead angles (continued)

checking milling cutter 239

checking milling cutter 239

checking milling cutter 239

Single-point cutting tools

Single-point cutting tools (continued)

milling cutters 240

milling cutters 240

milling cutters 240

Turning tool

Turning tool (continued)

reverse 241

reverse 241

reverse 241

Rank of a matrix

Rank of a matrix (continued)

Rank of a matrix 242

Rank of a matrix 242

Rank of a matrix 242

Rankine’s formulas for columns

Rankine’s formulas for columns (continued)

Rankine’s formulas for columns 243

Rankine’s formulas for columns 243

Rankine’s formulas for columns 243

Rasps

Rasps (continued)

Rasps 244

Rasps 244

Rasps 244

Aluminum

Aluminum (continued)

Aluminum 245

Aluminum 245

Aluminum 245

Ratchet gearing

Ratchet gearing (continued)

frictional 245

frictional 245

frictional 245

pitch of wheel teeth

pitch of wheel teeth

pitch of wheel teeth

Copyright 2004, Industrial Press, Inc., New York, NY
Reamers (continued)
- Taper shank: 841
- Taper, milling teeth: 821
- Threaded end: 831
- Wire gage sizes: 846

Retaining rings (continued)
- Failure of: 870
- Groove bottom radius: 869
- Groove design and machining: 870
- Groove diameter: 870
- Groove diameter tolerances: 870
- Groove failure: 870
- Groove width: 870
- Groove width tolerances: 870
- Industrial: 870
- Internal: 870
- Internal spiral: 870
- Load capacity: 870
- Material: 870
- Metric performance data: 869
- Ring free diameter: 869
- Rotation between parts: 869
- Seated in groove: 869
- Selection: 869
- Self locking: 869
- Self locking types: 869
- Spiral: 869
- Standards: 869
- Tapered: 869
- Thickness: 869
- Thickness tolerances: 869
- Thrust load capacities: 869
- Thrust load safety factors: 869
- Width capacity: 869

Retarded motion
- 877

Relocation of terms in formulas
- 20

Reciprocals of numbers
- 5, 8

Rectangle
- Area: 83
- Moment of inertia: 239
- Radius of gyration: 239
- Section modulus: 239
- Table of section moduli: 254

Rectangular coordinates
- 8

Refrigeration of steel
- 804

Relief and rake angles
- For single-point cutting tools: 514
- Indicator drop method of checking: 838

Relief angles
- For single-point cutting tools: 512
- Turning tool: 510

Repeatability, accuracy, and resolution
- Replacement-gear dimensions: 214

Resinoid bonded wheels
- Thread grinding: 871

Resistance brazing
- Retaining rings: 608
- ANSI Standard: 655
- Centrifugal capacity: 328
- Compressed in bore: 606
- Diameter tolerances: 825
- Dimensions in inches: 825
- Expanded over shaft: 669
- External dimensions: 826
- External spiral: 609
- External taper: 609

Retaining rings
- Failure of: 870
- Groove bottom radius: 869
- Groove design and machining: 870
- Groove diameter: 870
- Groove diameter tolerances: 870
- Groove failure: 870
- Groove width: 870
- Groove width tolerances: 870
- Industrial: 870
- Internal: 870
- Internal spiral: 870
- Load capacity: 870
- Material: 870
- Metric performance data: 869
- Ring free diameter: 869
- Rotation between parts: 869
- Seated in groove: 869
- Selection: 869
- Self locking: 869
- Self locking external and internal: 869
- Self locking inch series: 870
- Self locking types: 870
- Spiral: 870
- Standards: 870
- Tapered: 870
- Thickness: 870
- Thickness tolerances: 870
- Thrust load capacities: 870
- Thrust load safety factors: 870
- Width capacity: 870

Rivets
- Allowable stresses: 648
- ANSI Standard: 648
- Belt: 648
- British Standard: 648
- Cold forged: 648
- Hot forged: 648
- Lengths: 649
- Snap head: 649
- Universal head: 649
- Button head: 649
- Cooper's countersunk: 649
- Cooper's countersunk: 649

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Rivet (continued)
diameters for given plate thicknesses 1474
dimension countersink head 1485
dimension snap head 1492
excess length to form head 1481
flat head 1493
hold-on or dolly bar sets 1482
large rivets, standard 1488
material 1479
mushroom head 1494
pan head 1486
pitch 1484
sets, dimensions of impressions in shearing strength 1482–1483
spacing 1478
steel 1479
strength 1480–1481
tinner’s 1482
truss 1484

Riveted joints
allowable stresses 1479
double and triple 1483
efficiency 1479–1480
failure 1478
holes for joint failure 1479
joint strength 1479–1480
rivet length for forming heads 1483
rivet materials 1479
strength 1479
types of riveted joints 1478
working strength 1479

Rockwell hardness
conversion to Brinell hardness 1486
number 1486
scales 1486

Rod gages 2468
Roebling wire gage 2479
Rolled threads, electric socket and lamp base 1858
Roller bearing (see Bearings: roller)
Roller chain, double pitch 2444
Rolling contact bearings 2379
friction resistance 2460

Rolling screw threads

cylindrical die machines 1238
diameter of blank 1234
diameter of thread 1235
flat die machines 1235
in automatic screw machines 1236
shapes and kind of thread 1236
speeds, and feeds 1236
steels for 1236

Root diameter, greasing 1236

Roots
and powers of numbers 14
finding square and cube roots 14

Rope
manila, safe loads and strength 387, 391
nylon, safe loads and strength 389
safes, and strength 387, 389
weight per 100 feet 387
wire 387

Rose chucking reamers 141
fractional sizes 141
Rotary file or burs 146
Rotary motion formulas 161
Rotating parts, balancing 161–163

Roughness
cutoff and height values 22
parameters 22
rules for determining 22
rules for measurement of 22
symbols indicating degree of 22

Round head machine screws 1596
Royal Microscopical Society thread 1886–1887

Rubber
bearings 1186
bonded grinding wheels 1183
bonding 1183
turning 1183

Running balance 197

Rupture strength

copper-base powdered alloys 419
iron-base powdered alloys 419
tungsten-base powdered alloys 419

S

SAE Standards
babbit metals 2158
bearing metals 2158
crown or acorn nuts 1233
die casting alloys 1396
high nuts 1396
taper shaft ends 1396
V-belts 2429
Woodruff keyseat cutters 1829

SAE steels
basic numbering system 140

Copyright 2004, Industrial Press, Inc., New York, NY
SAE steels (continued)
 composition [150, 142, 460, 467]
 heat treatments for 412
Safe loads for wire rope 1202, 1214
Safe speeds grinding wheels 68, 69
Safety factors of flange couplings 640
 for wire rope 534, 578
Salt baths for heat treating 516
Sand blast cleaning 305
Sanders, spindles for portable 501
Sandstone and limestone, strength 626
Saw tooth clutches 337
Sawn lumber size 111
Saws
 band 336, 341
 circular, arbors for metal-cutting, speeds 308
 metal-slitting 343
 sharpening files 344
 slitting 347
Scalar and vector quantities 45
Screw machines
 automatic 346, 347
 automatic box-tools 316
 drilling speeds and feeds 315
 drills 306, 307
 forming tools with rake 234, 235
 knurling 341, 312
 reaming speeds and feeds 316
 stock required for given production of threading cans 158
Screws
 and bolts 350
 angularity and eccentricity 157
 ANSI head recesses 604
 breaking load 527
 British Standard
 BSF 387
 inch 468, 477, 508, 509, 605, 606
 metric 404, 405, 408, 409, 509
 Unified
 Whitworth 504, 505
 UNC 506, 507
 UNF 508, 509
 cap
 metric 431
 cap, metric 491
 drive 595, 596
 force for turning 561
 form 352
 grade markings for steel head recesses 564
 heavy hex 616
 hex cap 448
 inserts 448
 jig and fixture
 button head 1907
 heavy hex 434
 jig and fixture
 hex 531
 lag screw 432
 metric 442
 length of engagement 432
 length of thread 431
 mechanical principle of metric
 British Standard cap 443
 diameters 444
 flange 404, 425
 formed 443
 heavy hex 443
 ISO 439
 reduced body diameter 440
 set
 self-threading 400
 shoulder 402
 sockets for
 sockets metric series 463
 strength of 504
 stress area 519
 Unified Standard
 wing 456, 457
 wood 478, 568
 worm threads 454
 scalants 449
 anaerobic pipe gasket materials 180
 pipe joining 380
 silicone rubber gasketing 630
 tapered pipe threading 454
 types 448
 Sealant compounds (plastics) 605
 Section listing, standard for drawings 532
 Section modulus
 angles 513, 514
 circle 411
 circular ring 411
 ellipse 419
 for torsion 541
 formulas for various sections 420
 half circle 447
 hexagon 448
 hollow circle 411
 I-beams 400, 401, 402
 I-section 422
 L-section 430
 octagon 454
 pipe 429, 430, 434
 polar 429, 430, 434

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Section modulus (continued)
rectangle
rectangles, table for
round shafts, table for
structural shapes
angles, steel
channels, aluminum
I-beams or S-shapes
aluminum
steel
wide flange, steel
triangle
T-section
Z-section

Segment, circular
area
height for given angle and radius

Seizing and cutting wire rope
Self alignment roller bearings
Self-threading screws (continued)
metric
tapping
thread forming
thread tapping
thread types
in asbestos
in cast metals
in plastics
in plywood
in sheet metal

Self-threading screws (continued)
metric
tapping
thread forming
thread tapping
thread types
in asbestos
in cast metals
in plastics
in plywood
in sheet metal
self-tapping inserts
sheet metal hole sizes
slotted pan head
steel thread cutting
thread and point dimensions
types
tapping
thread forming
thread tapping
torsional strength requirements
trace head

types of
Sellers screw thread
Sensitivity factor
Sequence number, NC
Series, infinite
Set-screws
British Standard
metric
Whitworth
cone point
cup point
dog point
flat point
headless
hexagon and spline
hexagon socket
hexagon socket type
holding power
oval point

Sewolutive functions
Shackle and end-link chain
Shaft conditions
checking
out of roundness
no. of lobes
V-block angles
out-of-roundness, lobing
Shafs
allowances and tolerances for fits

Copyright 2004, Industrial Press, Inc., New York, NY
Shafts (continued)
brittle materials, formulas for checking for various conditions of 497
critical speeds of 496
deflection, linear 492
deflection, torsional 492
effect of keyways on strength 495
factor of safety 495
hollow 497
horsepower transmitted by linear deflection 495
maximum allowable working stress 495
moment of inertia, polar 495
polygon type connections 498
round, section modulus 498
steel, diameters of 494
strength 497
taper ends, SAE Standard 473
torsional deflection 497
strength 497
hollow vs. solid 497
transmission, design of 497
Shanks taper 425, 437
Shapes of grinding wheels of mounted wheels and points 452-454
Shaping wood 424
Shaping, speeds and feeds 408
Sharpening 722
carbide tools 472
circular saws 401
diamond wheels for 401
drills 402
milling cutters 421, 423, 424
Shear 438
formulas for 438
modulus of G spring materials of various materials properties 448, 449
spirit design 448
stress 448, 449
combined with tension or compression 448
in beams 448
Shear strength 472
cast iron 472
magnesium alloys 488
nonferrous metals 474
rivets 488
steel 474
wood 474
wrought iron 474
Shear tooth files 606
Sheaves for V-belt drives 539
for wire rope 533, 570
Sheet metal 468
allowances and wire gages 468
bending allowances 468
formula 468
edging process 468
joining process 468
angle frame 468
button punch snap lock 468
clinch bar slip and angle 468
clinch type flanged connections 468
corner standing seam 468
double flanges and cleats 468
double seam flange 468
flange and flange corner 468
flanged duct connections 468
flanged end and angle 468
flat drive slip 468
flash lap 468
formed flanges 468
groove seam 468
hem 468
hemmed S slip 468
pitsburg pit lap 468
plain lap 468
raw and flange corner 468
slide corner 468
standing drive slip 468
standing seam 468
screws 468
stock allowances 468
Sheet sizes for drawings 460
Shell 410
blanks, diameters 410
mills 410
molding 410
plates and cylinders, strength 418
reamers 410
Shielded metal arc welding (SMAW) 410
Shielding gases 410
Shaping measures 410
Shock-resisting 410
tool steels 410
chemical composition 410
heat treatment 410
Shocks, stresses in springs 410
stresses produced by 410
Shore’s scleroscope 410
Shoulder screws 410
Shrinkage allowance, patterns 410
Shrinkage fits 410
allowances 410
Shut height, power press 410

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

SI system units in strength of materials calculations 253
metric 441
SI, binary prefixes 244
Side cutting edge 43
Side milling cutters 203
Sigma (standard deviation) 2247, 2247
Significance of accuracy 2245, 2246
Signs and abbreviations: mathematical 446
scientific and engineering 446
Silicon carbide grinding wheels 971
Sinking funds 228
Sintered carbide tools
ANSI Standard tool materials 906, 906
gear materials 907
metal bearings 909
Sixty (60)-degree stub threads 224
Size factor cover 207
Sizes of sawn lumber 184
Slate cutting speed for 203
Sleeve bearings 222
Sleeves, Morse taper 335
Slenderness ratio, columns 335, 336
Slides, measuring 314, 317
Slix, and fittings for wire rope strength of rope and chain 1624
Slipping clutches, couplings 1624
Slitting saws, metal 184
Slope of a line 335
Slots for T-bolts, ANSI Standard 558
Sling 424
S-N diagrams 253, 257
Sock
ANSI hexagon and spline head, screw type 1079
British Standard metric cap 1079
dowel and counterbore sizes for keys and bits for set 1077
shoulder 1072
reamers, Morse taper 1071
taper shank 1070
threads for electric wrench 1070
wrench clearances 1071
Solders and soldering alloys for 1085
aluminum 1330
fluxes 1305
forms 1330
magnesium 1330
methods 1305
stainless steel 1305
ultrasonic fluxless 1330
Solid film lubricants 1330
Solidification temperature 1330
Solids, volumes and dimensions 256
Soluble oils for machining operations 246
Solution heat treatment 244
Sorbite 721
Sound level specifications 314
Space cutters, roller chain sprockets 558
Spacing holes on jig bore 558
Spade drills and drilling blades 2071
drilling 2070
feed rates 1073
geometry of 1070
1576
Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Spline keys and bits 2167
Spline application factors 2177
data and reference dimensions 2179
dimensions, formula 2186
fatigue-life factors for 2172
fittings 2183, 2188
fits, torque capacity 188
for large misalignments 2177
formulas for SAE standard involute 2163, 2183
(see also Involute splines)
involute, socket keys and bits 1630
machining tolerances and variations 2180
milling cutter 824
SAE standard splined fittings 2184–2185
terms, symbols, and drawing data 2167
variations 2165

Spray transfer (welding) 1002
Spraying process, flame (metal) 1472
Spring 308–353
arbor diameters for 353
Belleville 348, 354–368
clock 348
compression, formulas for 321–322
conical 354–368
conical compression 348
constant force 348
copper-base spring alloys 311–312
deflections for compression 325–328
discrimination 353
extension 324–333
extension spring design 331–333
failure in 352
force, disc 358
heat treatment of 348–350
helical compression spring design 320–324
helical, shock stresses produced in 283
high-carbon spring steels 309
index 319
materials 309–313
miscellaneous 348
nomenclature 354
stacking 356
stress 358–360
stresses produced by shocks 326

torsion 343–346
torsion bars 347

design 335–341
modulus 348–350
volute wire diameters for 309
maximum working temperature 312

Spring pins 1683
coiled type designation 1684
lengths and sizes 1685
materials 1682
slotted type 1683

Spring washers
double coil rectangular section 1583
single coil square section 1582

Sprockets
chain transmission
idler 1545

Spur gearing 2033
addendum modifications 2029
AGMA tolerances for fine pitch gears 2033
American National Standard tooth forms 1500
angular backlash 1507
backlash range 1504
basic dimensions 1501
blanks for fine pitch gears 1504
British Standard bronze and brass gears 1503
caliper measurement of tools 1505
center distance 1506
variable 1506
center distance for enlarged pinion 1508
checking gear size 1525
chordal addendum measurement 1511
thickness 1509

circular pitch system 1520
thickness given outside diameter composite error inspection 1524

Spring washers

Copyright 2004, Industrial Press, Inc., New York, NY
Spur gearing

(continued)

contact

diameter

lowest point of single tooth

ratio

data on drawings

diameters for hobbing, preshaving, and

shaping

diametral pitch shown full size

dimensions and formulas

drawing data

enlarged pinion

external

Fellows stub tooth systems

finishing gear milling cutters

formulas for base dimension

full-depth, teeth

gear milling cutters, series of

metric module

gear tooth parts

checking

German standard tooth form

hob tip radius, maximum

interference, avoiding

internal arc thickness

internal gear and pinion sizes

internal gears rule

involute curve properties

lowest point of single tooth contact

measurement of tooth with caliper

measurement over pins

measurement over wires

mesh with enlarged pinion

millng cutters

metric module

minimum number of teeth

module system

nonmetallic

outside and root diameters

pinion arc thickness

pitch diameters, tabulated

profile checker settings

reduced gear

replacement gear dimensions

root and outside diameters

specifications

to avoid undercutting by hob

tooth

contact of highest point

forms

measurements over wires

proportions

thicknes measurement

true involute form (TIF) diameter

undercut, limit for hobbed gears

Square

area

circles of area equal to

distances across corners

diameter

of wire diameters

prism volume

recesses, for machine screws

for self-tapping screws

roots of numbers

Square thread

Squeeze casting

Squirrel cage induction motors

s-shapes, structural steel

moment of inertia

radius of gyration

section modulus

weight per foot

Stabilizing gages

Stacking disc springs

Stainless steels

application

characteristics and applications

chemical compositions

coefficient of expansion

compositions

cutting, flame

density

electrodes (welding) current to use

elongation

hardness

heat treatments

mechanical properties

melting points

properties

soldering

ultrasonic

specific heat

speeds

for drilling, reaming, and

threading

for milling

for turning

strength

tensile strength

thermal conductivity

yield strength

Stamping

blank diameters

die clearances

fine blanking

lubricants for pressures required

steel rule dies

Standard

deviation

NC

nomenclature

organizations

wire gage (SWG)
Machinery’s Handbook 27th Edition

INDEX

<table>
<thead>
<tr>
<th>Steel (continued)</th>
<th>Static balancing</th>
<th>equivalent load, bearings</th>
<th>load rating, bearings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitriding numbers for pipe</td>
<td>ANSI standard</td>
<td>columns, allowable concentric loads</td>
<td>rimmed rivets</td>
</tr>
<tr>
<td>Rolled sections, shape designations</td>
<td>rule dies</td>
<td>cutting edges</td>
<td>dimensions</td>
</tr>
<tr>
<td>Heat treatment makes</td>
<td>SAE specification numbers</td>
<td>sheet, standard gage</td>
<td>silicon-manganese SAE compositions</td>
</tr>
<tr>
<td>Stainless strength</td>
<td>and hardness data</td>
<td>structural shapes</td>
<td>subzero treatment</td>
</tr>
<tr>
<td>Structural shapes</td>
<td>of heat-treated materials</td>
<td>tension strength</td>
<td>tool tension</td>
</tr>
<tr>
<td>Compositions compositions high-speed tool twist drill wrought</td>
<td>yield strength</td>
<td>wrought</td>
<td>Steel wood</td>
</tr>
<tr>
<td>Steel-threading screws</td>
<td>SAE specification numbers</td>
<td>cast metals</td>
<td>depth of penetration</td>
</tr>
<tr>
<td>Drill sizes</td>
<td>hole sizes</td>
<td>plastics</td>
<td>SAE specification numbers</td>
</tr>
<tr>
<td>SAE specification numbers</td>
<td>Step bearings</td>
<td>bevel gears</td>
<td>line</td>
</tr>
<tr>
<td>Stepper motors</td>
<td>High-speed rolls</td>
<td>Designation of screws</td>
<td>Screw thread</td>
</tr>
<tr>
<td>Stock, amount required for screw machine production</td>
<td>Straight bevel gears</td>
<td>line</td>
<td>mnemonic</td>
</tr>
<tr>
<td>Stove</td>
<td>Straight bevel gears</td>
<td>line</td>
<td>mnemonic</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
Index

Strength

- hollow vs. solid shafts
- of polygon connections
- of screws and bolts
- riveted joints
- struts or columns
- tensile ultimate
- yield perforated metal

Strength of materials

- angles, lengths of semi
- beams
- shock stresses in
- columns
- AISC formula
- AREA formula
- Euler formula for
- Gordon formula
- Johnson formula
- combined stresses
- critical speeds of shafts
- curved beams
- cylinders
- definitions
- deflection of beams
- Euler formula
- factors of safety
- ferrous metals
- flat plates
- heat-treated steels
- hoop stress
- thin-walled tube
- influence of temperature
- Izod impact test
- J. B. Johnson column formula
- keyways in shafts
- linear deflection in shafts
- mechanical properties
- metals, properties of
- modulus of elasticity
- modulus of shear
- moment of inertia
- built-up sections
- perforated metals
- pipe columns
- plates, shells, and cylinders
- polar moment of inertia
- section modulus
- rails
- Rankine column formula

Strength of materials (continued)

- section moduli tables
- shafts
- American Standard design code
- brittle material formula for critical speeds of
- effect of keyways on strength of
- horsepower transmitted by
- torsional strength of
- shear
- shells, spherical
- shocks, stresses produced by
- simple stresses
- springs, shock stresses in
- steels
- straight-line column formula
- stress areas of screw threads
- concentration factors
- grooved shaft in torsion
- shaft with transverse hole in bending
- relieving
- working
- struts or columns
- taper pins, strength of
- temperature effects
- tensile stress
- torsional strength of shafting
- tubes
- wood

Stress

- alternating
- area of threads
- bending in flywheels
- centrifugal in flywheels
- combined concentration factors
- grooved shaft in torsion
- shaft with transverse hole in bending
- contact in cans
- cyclic
- disc springs
- hoop in flywheels
- in beams
- in bolts when tightening
- in flywheels
- in involute splines
- in loaded ring
- in rotating disks
- in shafting in splines
- allowable contact stress
- allowable shear
- in springs

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

<table>
<thead>
<tr>
<th>Surface</th>
<th>(continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>grinding 222, 228</td>
<td>advantages 222</td>
</tr>
<tr>
<td>common faults and possible causes 228</td>
<td></td>
</tr>
<tr>
<td>common faults and possible causes in 228, 229</td>
<td></td>
</tr>
<tr>
<td>principal systems 228</td>
<td></td>
</tr>
<tr>
<td>process data for selection of grinding wheels for 228</td>
<td></td>
</tr>
<tr>
<td>wheel recommendations 228, 229, 230, 231</td>
<td></td>
</tr>
<tr>
<td>of revolution, area 230</td>
<td></td>
</tr>
<tr>
<td>roughness measurements 230</td>
<td></td>
</tr>
<tr>
<td>produced by common production methods 230, 231</td>
<td></td>
</tr>
<tr>
<td>produced by laser cutting 230</td>
<td></td>
</tr>
<tr>
<td>relationship to tolerances, speeds, diameters and rpm 230, 231, 232, 233</td>
<td></td>
</tr>
<tr>
<td>grinding wheels 230, 231, 232, 233</td>
<td></td>
</tr>
<tr>
<td>pulleys and sheaves 230, 231, 232, 233</td>
<td></td>
</tr>
<tr>
<td>specific diameters and rpm cutting speeds 230, 231, 232, 233</td>
<td></td>
</tr>
<tr>
<td>formula for determining diameters 232, 233</td>
<td></td>
</tr>
<tr>
<td>Surface texture 232, 233</td>
<td></td>
</tr>
<tr>
<td>applying symbols 232, 233</td>
<td></td>
</tr>
<tr>
<td>castings 232, 233</td>
<td></td>
</tr>
<tr>
<td>comparing measured values to specified limits 234</td>
<td></td>
</tr>
<tr>
<td>control and production 234</td>
<td></td>
</tr>
<tr>
<td>cutoff for roughness measurements 234</td>
<td></td>
</tr>
<tr>
<td>definition of terms 234, 235, 236</td>
<td></td>
</tr>
<tr>
<td>drawing practices for symbols 236, 237</td>
<td></td>
</tr>
<tr>
<td>error of form 237, 238</td>
<td></td>
</tr>
<tr>
<td>finish 238, 239, 240</td>
<td></td>
</tr>
<tr>
<td>differences between ISO and ANSI symbology 238, 239</td>
<td></td>
</tr>
<tr>
<td>flaws 239, 240</td>
<td></td>
</tr>
<tr>
<td>graphical centerline 239</td>
<td></td>
</tr>
<tr>
<td>instruments of measurements 240</td>
<td></td>
</tr>
<tr>
<td>lay 242, 243</td>
<td></td>
</tr>
<tr>
<td>symbols 243, 244</td>
<td></td>
</tr>
<tr>
<td>measurement 244</td>
<td></td>
</tr>
<tr>
<td>area averaging methods 244</td>
<td></td>
</tr>
<tr>
<td>instruments 244, 245</td>
<td></td>
</tr>
<tr>
<td>non-contact 245</td>
<td></td>
</tr>
<tr>
<td>probe microscope 245</td>
<td></td>
</tr>
<tr>
<td>skidded instruments 245</td>
<td></td>
</tr>
<tr>
<td>skillless instruments 245</td>
<td></td>
</tr>
<tr>
<td>max rule 246</td>
<td></td>
</tr>
<tr>
<td>profile 246</td>
<td></td>
</tr>
<tr>
<td>measured 246</td>
<td></td>
</tr>
<tr>
<td>modified 246</td>
<td></td>
</tr>
<tr>
<td>nominal 247</td>
<td></td>
</tr>
<tr>
<td>real 247</td>
<td></td>
</tr>
<tr>
<td>total 247</td>
<td></td>
</tr>
<tr>
<td>variation 248</td>
<td></td>
</tr>
<tr>
<td>root mean square 248</td>
<td></td>
</tr>
<tr>
<td>roughness average (Ra) 248, 249</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress</th>
<th>(continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>shear 224</td>
<td>in beams 215, 219</td>
</tr>
<tr>
<td>simple 224</td>
<td>compressive 224</td>
</tr>
<tr>
<td>spline teeth 224</td>
<td>strain curves 224</td>
</tr>
<tr>
<td>superposition of 224</td>
<td>three-dimensional, or triaxial 224</td>
</tr>
<tr>
<td>units and conversion 224</td>
<td></td>
</tr>
<tr>
<td>working, of various materials 224</td>
<td></td>
</tr>
<tr>
<td>Structural shapes</td>
<td>(continued)</td>
</tr>
<tr>
<td>aluminum 841</td>
<td>steel 841, 841</td>
</tr>
<tr>
<td>angles, properties of 841</td>
<td></td>
</tr>
<tr>
<td>channels, properties of 841</td>
<td></td>
</tr>
<tr>
<td>I- or S-shapes, properties of 841</td>
<td></td>
</tr>
<tr>
<td>standard designations 841</td>
<td></td>
</tr>
<tr>
<td>strength 842</td>
<td>wide flange, properties of 842</td>
</tr>
<tr>
<td>Structure of carbon steel 843</td>
<td></td>
</tr>
<tr>
<td>Stub Acme screw threads 843, 843, 843, 844</td>
<td></td>
</tr>
<tr>
<td>ANSI Standard 844, 845, 846</td>
<td></td>
</tr>
<tr>
<td>basic dimensions 846, 846</td>
<td></td>
</tr>
<tr>
<td>designations 846, 846</td>
<td></td>
</tr>
<tr>
<td>formula for determining diameters 846, 846</td>
<td></td>
</tr>
<tr>
<td>limiting dimensions 846, 846</td>
<td></td>
</tr>
<tr>
<td>shear area 847</td>
<td>stress area 847</td>
</tr>
<tr>
<td>thread data 848</td>
<td>thread form 848, 848</td>
</tr>
<tr>
<td>wire sizes for checking 848</td>
<td></td>
</tr>
<tr>
<td>29- and 60-degree 848</td>
<td></td>
</tr>
<tr>
<td>29- and 60-degree 848</td>
<td></td>
</tr>
<tr>
<td>Stub screw machine reamers 847</td>
<td></td>
</tr>
<tr>
<td>Stub tooth gearings 847, 848</td>
<td></td>
</tr>
<tr>
<td>Fellows 848</td>
<td></td>
</tr>
<tr>
<td>former American Standard 848</td>
<td></td>
</tr>
<tr>
<td>outside and root diameters 848</td>
<td></td>
</tr>
<tr>
<td>Stub’s iron and steel wire gage 849</td>
<td></td>
</tr>
<tr>
<td>Studs</td>
<td>(continued)</td>
</tr>
<tr>
<td>British 852</td>
<td>drive 852</td>
</tr>
<tr>
<td>S80 852</td>
<td></td>
</tr>
<tr>
<td>Studs and pins</td>
<td>(continued)</td>
</tr>
<tr>
<td>designation 852</td>
<td>hole sizes 852</td>
</tr>
<tr>
<td>material 852</td>
<td>standard sizes 852</td>
</tr>
<tr>
<td>Subprogram, NC 852</td>
<td>Subroutines, NC 852, 853</td>
</tr>
<tr>
<td>Subtracting</td>
<td>(continued)</td>
</tr>
<tr>
<td>decimal fractions 85</td>
<td></td>
</tr>
<tr>
<td>fractions 85</td>
<td>matrices 85</td>
</tr>
<tr>
<td>Subzero treatment of steel 85</td>
<td></td>
</tr>
<tr>
<td>carburized parts 850</td>
<td></td>
</tr>
<tr>
<td>Surface tool materials (CBN) 850, 851</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>(continued)</td>
</tr>
<tr>
<td>coatings for metals 854, 854</td>
<td></td>
</tr>
<tr>
<td>finish and hardness of bearings 854</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Surface texture (continued)

roughness
evaluation length 728
parameters 728
profile 726
sampling length 727
spacing 727
topography 727
roughness average (Ra) 728
roughness sampling length 734
sampling length 727
spatial resolution 727
standard roughness sampling lengths 734
symbols 630, 731, 735
lay 725, 726
material removal 729
proportions of system height resolution 727
topography measured 727
modified 727
traversing length 729
use of symbols 727
valley 727
waviness 725, 727
height 725, 726
long-wavelength cutoff 727
parameters 727
profile 727
sampling length 727
short-wavelength cutoff 727
spacing 727
topography 727

Surveyor’s measure 2549
Swing frame grinding 1229
Swiss pattern files 965
S-word, NC 1280
Sychronous belts (see Belts and pulleys: synchronous belts)

Symbols (continued)
cams and cam design 818
chemical elements 668
concentricity, ANSI 1251
contour and finish 1243
diameter, ANSI 1251, 1252
diamond wheel marking 630
drawing practices for surface texture 630, 631
geometric characteristics 633
geometric controls forms 633
locations 631
orientation profiles 630
runout 634
straightness 634
Greek 2540
grinding wheel markings 1179, 1180
hole basis 1061, 1067
involute splines 1509, 1505, 1517
lines for drawings 697, 698
mechanics 633
metric module involute splines 2177
nondestructive testing 1441, 1442
parallelism, ANSI 633, 1252
perpendicularity, ANSI 633, 1253
reference line 630
roundness, ANSI 633, 1251
runout, ANSI 633, 634, 635
screw thread, for tap marking 917
section lining 630
aluminum 1062
bronze 1062
cast and malleable iron 1067
earth 1061
insulation 1062
magnesium 1062
materials 1062
rock 1063
sand 1062
steel 1067
white metal 1062
shaft basis 509
standard geometric characteristic engineering drawing section lining 630
statistical tolerance, ANSI 633
surface profile, ANSI 633, 635
surface texture 1232, 1234, 1235
tolerances 665
total runout, ANSI 633, 634
welding 1243, 1244
System of measurement absolute 634
gravitational 634
Système International d'Unites (SI) in mechanics calculations 415

Copyright 2004, Industrial Press, Inc., New York, NY
Tangent 88
Tangential force 2078
Tasks
- contents at given level 61–62
 cylindrical, capacity in gallons quenching bath 115-116
Tantung alloy 1012
Tap drill diameters, Acme 919
Tap drill selection (see Taps and tapping: tap drills)
Tap
- American (ANSI) Standard applications of standard 1930–1938
- British Standard 1939–1940
- Brown & Sharpe collets 1941–1942
- for given angle 1943
- gages for self-holding 1944
- Jacobs 1945
- Jarno 1946
- keys 1947
- machine tool spindle measurement method measuring with V-block and sine bar 1948
- method of dimensioning 1949
- milling machine spindles, arbors and spindle noses 1950–1951
- Morse 1952–1953
- stub taper shanks 1954
- per foot and corresponding angles 1955
- pin reamers 1956
- pins 1957
- diameter designation 1958
- drilling specifications 1959
- drills for hole sizes 1960
- materials 1961
- small ends 1962
- strength 1963
- pipe taps 1964
- reamers 1965
- Brown & Sharpe Morse 1966
- rules for figuring 1967
- self-holding and self-releasing 1968
- shaft ends, SAE Standard 1969
- steel machine 1970
- Taper pipe threads angle of thread basic dimension external form 1980
- internal 1981
- lead 1982
- Taper pipe threads (continued)
- pitch diameter formula 1983
- railing joint 1984
- taper 1985
- thread length 1986
- tolerances on taper 1987
- Taps and tapping automatic screw machine 1988
- clearance holes 1989
- ISO metric bolts and screws 1990
- CNC machine 1991
- cold form tapping 1992
- coolant 1993
- cutting oils 1994
- cutting speeds 1995
- hole size before tapping 1996
- Unified miniature thread length of engagement and tolerances 1997
- lubrication methods of tapping 1998
- nitriding of numerically controlled 1999
- pipe power for driving 2000
- tap drills for pipe threads 2001
- drill sizes 2002
- power required 2003
- pitch increased to compensate for shrinkage 2004
- rake angles for various materials removing a broken tap 2005
- serial taps and close tolerances speeds 2006
- spiral fluted 2007
- pointed 2008
- square threads 2009
- steel 2010
- surface treatment of tap drills 2011
- Acme threads 2012
- American National threads 2013
- machine screws 2014
- diameter of tap drill 2015
- ISO metric threads 2016
- coarse pitch 2017
- cold form pipe Briggs (NPT) 2018
- Whitworth 2019
- Unified thread system 2020
- cold form miniature 2021
- tapping specific materials 2022
- alloy steel 2023
- aluminium 2024
- carbon steel 2025
- copper alloys 2026

Copyright 2004, Industrial Press, Inc., New York, NY
Taps and tapping
(continued)
tapping specific materials
free cutting steel 262
grey cast iron 262
high temperature alloys 262
high tensile strength steels 262
modular cast iron 262
stainless steel 262
titanium and titanium alloys 262
Acme 895
adjustable
ANSI Standard taps 895
British Standard ISO metric series
collapsing fits, classes obtained for Class 2B and 2C threads 912
fractional inch sizes 895
hand, dimensions of standard hand, types of limits
cut thread 1023
machine screw 1023
pipe 1023
ground thread 1023
H- and L- limits 1023
machine screw markings
multiple-start threads 1023
over or under-size pitch diameter 1023
metric D or DU limit standard symbols for identifying 1023
metric sizes 1023
multiple-thread taps, marking nut 1023
pipe 1023
straight limits 1023
taper 1023
tolerances 1023
spiral fluted pointed
square thread straight fluted terms 1023
thread series designations tolerances, types of 1023
Taps and tapping (continued)
tolerances on minor diameter
Unified thread form 272
Taps and tapping tap drills
Acme threads 272
Taylor tool life equation 272
T-bolts and T-slots, ANSI Standard 272
Teflon (TFE) bearings 272
Temper designations, aluminum alloy 272
Temperature absolute 272
boiling points, various substances changes in length due to 272
critical, heat treating of steel 272
effect on working stresses, of springs 272
fahrenheit and celsius 272
ignition 272
influence on strength of metals 272
judging by color, steel 272
of carbon dioxide, solid 272
of freezing mixtures of ignition, various materials 272
of lead bath alloys 272
of nitrogen, solid 272
required to develop tightening stress in bolt 272
Temperature effects on grease 272
Tempering 272
double 272
in oil 272
in sand 272
insalt baths 272
lead bath temperatures 272
Modulus of elasticity 272
temperature 272
carbon steel tools 272
Tensile modulus (see Modulus of elasticity) strength 272
aluminum alloys 272
brittle 272
ceramics 272
cobalt alloys 272
copper alloys 272
copper-beryllium alloys 272
copper-silicon alloys 272
copper-zinc-tin alloys 272
Everdur 272
 magnesium alloys 272
nickel alloys 272
nonferrous metals 272
spring wire 272
stainless steel 272
steel 272
heat-treated 272
high-strength, low-alloy 272
relation to hardness 272

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Tensile strength
- titanium alloys
- wood
- strength, alloy steel
- strength, carbon steel
- strength, steel
- stress
- test

Thermal conductance
- conductance units conversion
- aluminum
- cast iron
- copper alloys
- nickel alloys
- titanium alloys
- cracking of cutting tools
- energy
- expansion coefficients
- stresses
- plastics

Thermometer scales
- plastic
- metal products
- uncoated metals and alloys

Thin flat plate

Thin spherical shell

Radius of gyration

Thread locking

Thread rolling, screw machine
- cutting speeds, threading data

Threads and threading
- ANSI Standard
 - standard series, tables of
 - thread form, data and formulas
 - thread series
 - uniform 4-, 6-, 8-, 12-, 16-, 20-, 28-, and 32-pitch series
- British Standard
 - metric
 - ISO metric
 - pipe
 - UNI profile
 - Whitworth
- ASA Standard
 - series
- ASA National Form
 - thread form
- American microscope objective
 - designations
- American National form
 - angle, wire method of testing
- ANSI Standard
 - Acme thread
 - buttress thread
 - form or profile
 - M profile thread
 - allowances
 - coarse pitch
 - coated threads
 - design profile, M series

Threads and threading (continued)
- external thread design
- external thread root
- fine pitch
- lengths of engagement
- limiting dimensions
- limits and fits
- major diameter tolerances
- minor diameter tolerances
- pitch diameter tolerances
- profile data
- profile series
- thread series
- tolerance grades
- Unified thread system
 - allowances
 - basic dimensions
 - coarse thread series
 - coated
 - definitions
 - design profile
 - designation
 - dimensions
 - external and internal thread
 - fine and extra fine series
 - hole sizes for tapping
 - internal and external profile
 - limits
 - miniature screw thread
 - miniature, design dimensions
 - pitch diameter tolerances
 - standard series, tables of
 - thread classes
 - thread form, data and formulas
 - thread series
- Briggs pipe thread
- change gears for lathe
- for fractional output
- modifying the quick change gearbox
- output
- changing pitch slightly
- chasing, cutting speeds for

INDEX

Threads and threading (continued)

- checking by three-wire method, 1190
- tables 1260, 1268
- classes of tolerance 1266, 1269, 1282, 1287
- Cordeaux thread 878, 880
- crest diameter tolerance 851
- cutting 1264
- numerically controlled square 1273, 1276
- change gears 848
- fractional ratios 724
- Dardelet thread 860
- definitions 1272, 1273
- design and application data 857
- design dimensions and tolerances 872
- designation of Unified threads 837
- designation symbols for class of work 1276, 1278
- deviation formulas 848, 851
- diameters of wires for measuring dies, maximum pitches 1292
- dimensional effect of coating 1294
- drunken thread 1290
- dryseal pipes 864
- Echols thread 861
- electric socket and lamp base 1294
- electrical fixture threads for electrical machines 868
- external thread tolerances 854
- formulas for three-wire measurement 856, 858
- French thread 861
- fundamental deviation gages for screw threads 1290
- classification 1291
- for unified screw threads 1291
- standard tolerances 1291
- grinding 1295, 1296
- centerless method 1290
- Harvey grip thread 1289
- helix angle 1274, 1276, 1279
- hole size for tapping 1276
- hose coupling 874, 880
- instrument maker's 884
- interference fit 1274, 1276, 882
- internal threads in pipe couplings 864
- International Metric thread system 827
- ISO metric 820, 821
- design profile 1284
- designation 1286, 1287
- fundamental deviation formulas 828
- lengths of thread engagements 1288
- lead angle 1286
- length of thread engagement 1290
- 820
- limiting dimensions formula 1290
- metric screw threads
- ANSI Standard 878, 879
- M profile tolerance allowance 873
- comparison with inch threads 873
- MF profile 878, 879
- designations 880
- diameter-pitch combinations 878
- symbols 878
- British Standard ISO metric 874, 875
- ISO metric 875
- British Standard miniature 871
- trapezoidal 1287, 1288
- micrometers for measuring pitch diameters 890
- microscope objective thread 1288
- milling 895, 896
- changing pitch of thread slightly 896
- classes of work 896
- multiple cutter method 898
- on numerically controlled machines 898
- planetary method 898
- Single cutter method 898
- miniature ISO metric 881
- Unified 829
- minor diameter tolerances 873
- modified square thread, 10-degree multiple, designation 899
- National standard form of profile 900
- Philadelphia carriage bolt thread pipe
- ANSI Standard 850
- dryseal 850, 854
- taper 850, 852
- pitch 853
- pitch diameter 856
- pitch, changing slightly 856
Threads and threading (continued)

- pitch, maximum when die cut pressure tight joints 1862
- rolled lamp base threads 1862
- SAE standard screw thread saw-tooth 1862
- screw thread, definition 1862
- self-forming screws 1862
- self-tapping screws 1862
- Sellers screw thread 1862
- sharp V-type thread 1862
- spark plug threads 1862
- square thread 1862
- ten-degree modified 1862
- stress area 1862
- Acme thread 1862
- Unified fine thread 1862
- stub Acme screw threads 1862
- stub thread, 60-degree 1862
- tap drill sizes 1862
- taper, measurement by wire method 1862
- thread forms 1862
- thread grinding accuracy obtainable from the solid 1862
- multi-ribbed wheels 1862
- number of wheel passes 1862
- ribbed wheel for fine pitches 1862
- single edge wheel 1862
- and work rotation 1862
- grain size 1862
- hardness of grade 1862
- truing types for 1862
- work speeds 1862
- thread rolling advantages of process 1862
- automatic screw machines 1862
- blank diameter 1862
- dies, cylindrical 1862
- dies, flat 1862
- in automatic screw machines 1862
- precision thread rolling 1862
- production rates 1862
- speeds and feeds 1862
- thread selection 1862
- tolerance system 1862
- tolerances 1862
- grade dimensions of external threads 1862
- of pitch diameter tools relief angles, single-point 1862

Threads and threading (continued)

- tools for square threads 1862
- trapezoidal metric thread 1862
- trapezoidal non-metric thread 1862
- US Standard watch 1862
- Whitworth truncated 1862
- wire sizes for checking pitch diameters 1862
- Three-dimensional stress 1862
- Three-wire measurement 1862
- screw threads 1862
- Thrust bearing (see Bearings: thrust) 1862
- Thumb screws dimensions 1862
- flat-head types 1862
- lengths 1862
- materials 1862
- points 1862
- cone point 1862
- cup point 1862
- dog point 1862
- flat point 1862
- oval point 1862
- threads 1862
- types 1862
- Tin-lead, tin 1862
- Tin plating 1862
- Tin-base alloys, die casting 1862
- Tin-lead alloys for soldering 1862
- Titanium and titanium alloys 1862
- coefficient of expansion 1862
- density 1862
- melting points 1862
- properties 1862
- specific heat 1862
- thermal conductivity 1862
- Titanium Metals Corp. 1862
- Titanium carbides as cutting tool materials 1862
- T-nuts, ANSI Standard 1862
- Toggle joint 1862
- Tolerances 1862
- ANSI Standard application of tolerances 1862
- bilateral and unilateral symbols 1862
- ANSI symbols 1862
- ball and roller bearing 1862
- bilateral 1862
- British Standard 1862
- British Standard buttress threads 1862
- clearance fit 1862
- compression spring 1862
- core drill, metric cylindrical fits 1862

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

2670

Transmission chains (continued)
roller chains
 tolerances 2448
 tooth form 2444
 tooth profile dimension 2444
 ultimate tensile strength 2444
Transmission shafting design
 Transpose of a matrix 120
Trap rock, strength 420
Trapezoidal screw threads
 data 1809–1813
 formulas 1808
Trapezium area
 center of gravity 226
 moment of inertia 240
 radius of gyration 240
 section modulus 240
Trapezoidal screw threads
 data 1809–1813
 formulas 1808
Trepansng 1081, 1454
Tresca shear theory (plastics) 609
Triangle
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radious of gyration 240
 right-angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 oblique angle 94–95
 right angle 91–93
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95
 acute 64
 area 64
 center of gravity 226
 equilateral 88
 geometry of 49
 isosceles 88
 moment of inertia 240
 obtuse 64
 radius of gyration 240
 right angle 64
 section modulus 240
 solution 64
 oblique angle 94–95
 right angle 91–93
 section modulus 240
 solution 88–95

T-section
 radius of gyration 245
 section modulus 245
 T-slots and T-bolts, ANSI Standard 2665
 T-slot cutters, standard 30
 Tube
 collapsing pressure 297–298
 maximum allowable pressures 298
 strength of subjected to external pressure 298
 thickness and working pressure 297–298
 wall thickness gages 2608–2610

Tungsten carbide tools grinding
 carbide tools materials 1011
 electrodes, welding 1409–1414
 powdered alloys 197–198
 hardness 197–198
 rupture strength 197–198
 ultimate strength 199
 yield strength 199
 compositions 197–198
 high-speed heat-treatment of tool steels 197–198
 T-turner's sclerometer 551
 Turning
 and facing, insert holder 762–764
 cutting speeds for copper alloys 608
 ferrous cast metals 608
 hard-to-machine materials 1038
 light metals 1038
 plain carbon and alloy steels 608
 stainless steels 608
 superalloys 608
 titanium and titanium alloys 608
 tool steels 608
 unusual materials 1082
 cutting time 608
 cycles, NC 1291–1294
 insert holder 762–764
 speed adjustment factors
 depth of cut 1035
 feed 1035
 lead angle 1035
 speeds and feeds 1018–1021
 wood 114
 Twist drills 862–864
 equivalent of gage or reamer size 862–864
 grinding (sharpening) 862–864
 length of point on parallel shank jobber 883
 parallel shank jobber 883
 parallel shank long series 883
 tool steels 762–764
 Tension and Dressing Grinding Wheels 1018–1020
 Tension moment of inertia 445

Copyright 2004, Industrial Press, Inc., New York, NY
U.S. Board of Supervising Inspectors	525
Dept. of Commerce, formula for pressure in tubes	207
standard screw threads	172
standard sheet metal gage	222
UK gallons to liters	506
Ultimate strength	519
common materials	202
compressive, copper-base powdered alloys	509
iron and steel	210
iron-base powdered alloys	519
nonferrous metals	219
plastics	228
shear	216
tungsten-base powdered alloys	491
Uncoated metals and alloys, preferred thicknesses, metric	528
Unified numbering system for metals (see UNS number)	422
Unified thread system	204
cold form tap drill sizes	516
screw thread form	228
British UNJ	202
diameter-pitch combinations	201
hole sizes for tapping	222
miniature screw thread	530
standard series	500
coarse thread	509
constant pitch	516
extra-fine thread	516
fine thread	516
thread classes	516
thread designation	516
thread formulas	516
thread fasteners	516
belts, screws, and nuts	516
belted anti-rotation brass washers	516
bleeds	502
tensile stress area	506
tensile stress due to tightening	506
Uniform motion	506
Unit systems	506
cgs	506
MKS	506
MKSA (m-kgs^-1-A)	506
U.S. customary	506
Energy	506
force	506
heat	506
inertia and momentum	506
length	506
mass and weight	506
Apothecaries' weight	506
Troy weight	506
Avoirdupois or commercial	506
Miscellaneous	506
Nautical	506
power	506
pressure and stress	506
shipping	506
surveys	506
temperature	506
thermal conductivity	506
velocity and acceleration	506
viscosity	506
volume	506
work	506
Universal joints	506
angular velocity of driven shaft	506
intermediate shaft	506
maximum and minimum velocities	506
UNS number	506
copper alloys	506
copper and copper alloys	506
number	506
plain carbon, alloy and tool steel	491
series of different metal	491
stainless steel	491
Upsetting, steel for cold	506

V. Van Keuren gear measuring tables	515
Variable speed belts (see Belts and pulleys: variable speed belts)	515
Varnish, pattern	506
V-belts (see Belts and pulleys: V-belts)	506
Velocity	506
Angular	506
INDEX

Weight
- nails and spikes 427
- per feet of wood 427
- pipe, per foot 253
- solid fuels 425
- steel S-sections 251
- water 172

Wood
- of natural piles 409
- per feet of wood 412

Weldability
- HSLA steels 463

Welding
- (continued)
 - aluminum 411
 - ANSI welding symbols 411
 - application of nondestructive testing 412
 - arc cutting of metals with electric arc 410
 - with lasers 411
 - definitions and symbols designations 410
 - duct welds 411
 - electrodes 412
 - AWS E60XX 409
 - AWS E70XX 409
 - carbon steels 409
 - characteristics 411
 - composition 411
 - current ranges 411
 - diameters 409
 - sizes 409
 - stainless steels 411
 - thoriated 411
 - zirconiated 411
 - electron beam welding 417
 - FCAW (flux-cored arc) 405
 - all position electrodes 405
 - alloys steels 408
 - carbon steels 408
 - contact tip recess 408
 - deposition rates 409
 - electrodes 408
 - deposition rates 409
 - gas shielded 408
 - material condition 409
 - pipe welding 409
 - porosity and worm tracks 409
 - FCAW (flux-cored arc) selection 409
 - settings 409
 - shielding gases 409
 - stainless steels 409
 - weld requirements 409
 - filler metals 410
 - fluxes 409
 - gas shielded, all position 409
 - GMAW (gas metal arc) 410
 - electrode diameters 409
 - metal thickness 410
 - optimum settings 410
 - shielding gases 409
 - alloy steels 410
 - aluminum 410
 - carbon steels 410
 - stainless steels 410
 - spray transfer 410
 - welding sheet steel 409
 - GTAW (gas tungsten arc) 412
 - aluminum 413
 - current 413
 - EWP electrode 413
 - filler metals 413
 - selecting tungsten electrode shielding gases 413
 - hard-facing 413
 - horizontal pipe welding 413
 - laser cutting 413
 - welding letter designations for processes 414
 - materials used in welding 414
 - nondestructive testing 414
 - PAW (plasma arc) 415
 - applications 416
 - cutting equipment 415
 - fusion gases 416
 - gases for welding of aluminum 416
 - surface coating 417
 - surfacing 417
 - pipe welding 417
 - fill and cover pass procedures 417
 - positioning of joint components 417
 - root welding procedure 418
 - tack welding procedures 418
 - thin-wall 418
 - plasma arc welding 418
 - gases 418
 - shielding gases 419
 - argon 419
 - helium 419
 - hydrogen 419
 - process letter designation 415
<table>
<thead>
<tr>
<th>INDEX</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding (continued)</td>
<td>580</td>
</tr>
<tr>
<td>process names</td>
<td>580</td>
</tr>
<tr>
<td>root passes</td>
<td>581</td>
</tr>
<tr>
<td>shielding gas</td>
<td>582</td>
</tr>
<tr>
<td>SMAW (shielded metal arc)</td>
<td>582</td>
</tr>
<tr>
<td>characteristic of electrodes specifications</td>
<td>582</td>
</tr>
<tr>
<td>supplementary symbols symbol</td>
<td>583</td>
</tr>
<tr>
<td>arrow side</td>
<td>583</td>
</tr>
<tr>
<td>bead type</td>
<td>583</td>
</tr>
<tr>
<td>bevel groove</td>
<td>583</td>
</tr>
<tr>
<td>built up surface</td>
<td>583</td>
</tr>
<tr>
<td>electron beam</td>
<td>583</td>
</tr>
<tr>
<td>fillet</td>
<td>583</td>
</tr>
<tr>
<td>intermittent fillet</td>
<td>583</td>
</tr>
<tr>
<td>letter designations</td>
<td>583</td>
</tr>
<tr>
<td>melt thru weld</td>
<td>584</td>
</tr>
<tr>
<td>plug groove</td>
<td>585</td>
</tr>
<tr>
<td>process</td>
<td>585</td>
</tr>
<tr>
<td>resistance-seam</td>
<td>585</td>
</tr>
<tr>
<td>single pass back</td>
<td>585</td>
</tr>
<tr>
<td>square groove</td>
<td>585</td>
</tr>
<tr>
<td>U-groove</td>
<td>585</td>
</tr>
<tr>
<td>V-groove</td>
<td>586</td>
</tr>
<tr>
<td>tungsten electrode compositions</td>
<td>586</td>
</tr>
<tr>
<td>use of flux cored electrodes</td>
<td>586</td>
</tr>
<tr>
<td>vertical-up, vertical-down</td>
<td>586</td>
</tr>
<tr>
<td>wire extension</td>
<td>587</td>
</tr>
<tr>
<td>Weldon shanks</td>
<td>587</td>
</tr>
<tr>
<td>dimensions</td>
<td>587</td>
</tr>
<tr>
<td>end mills</td>
<td>587</td>
</tr>
<tr>
<td>Wheel life in grinding (see Grinding: wheel life)</td>
<td>588</td>
</tr>
<tr>
<td>Wheels</td>
<td>588</td>
</tr>
<tr>
<td>abrasive cutting</td>
<td>588</td>
</tr>
<tr>
<td>and pulleys in mechanics</td>
<td>588</td>
</tr>
<tr>
<td>buffing</td>
<td>588</td>
</tr>
<tr>
<td>diamond</td>
<td>588</td>
</tr>
<tr>
<td>dressing</td>
<td>588</td>
</tr>
<tr>
<td>flywheel</td>
<td>589</td>
</tr>
<tr>
<td>balance wheels</td>
<td>589</td>
</tr>
<tr>
<td>flywheel pulley</td>
<td>589</td>
</tr>
<tr>
<td>Geneva</td>
<td>589</td>
</tr>
<tr>
<td>grinding</td>
<td>589</td>
</tr>
<tr>
<td>diamond</td>
<td>590</td>
</tr>
<tr>
<td>mechanical limits of polishing</td>
<td>590</td>
</tr>
<tr>
<td>silicon carbide</td>
<td>590</td>
</tr>
<tr>
<td>White cast iron</td>
<td>590</td>
</tr>
<tr>
<td>White metal bearing alloys</td>
<td>590</td>
</tr>
<tr>
<td>Whitworth</td>
<td>590</td>
</tr>
<tr>
<td>bolts, screws, nuts, washers, and studs</td>
<td>590</td>
</tr>
<tr>
<td>screw thread form</td>
<td>590</td>
</tr>
<tr>
<td>threads</td>
<td>590</td>
</tr>
<tr>
<td>tensile for pipe taps</td>
<td>590</td>
</tr>
<tr>
<td>measuring</td>
<td>590</td>
</tr>
<tr>
<td>truncated thread</td>
<td>590</td>
</tr>
<tr>
<td>wire size for measuring threads</td>
<td>590</td>
</tr>
<tr>
<td>Windlass</td>
<td>590</td>
</tr>
<tr>
<td>Wing nuts and screws types</td>
<td>590</td>
</tr>
<tr>
<td>nuts dimensions</td>
<td>590</td>
</tr>
<tr>
<td>finish</td>
<td>590</td>
</tr>
<tr>
<td>materials</td>
<td>590</td>
</tr>
<tr>
<td>standard</td>
<td>590</td>
</tr>
<tr>
<td>taper screws</td>
<td>590</td>
</tr>
<tr>
<td>dimensions</td>
<td>590</td>
</tr>
<tr>
<td>diameters, raised to powers</td>
<td>590</td>
</tr>
<tr>
<td>EDM</td>
<td>590</td>
</tr>
<tr>
<td>music</td>
<td>590</td>
</tr>
<tr>
<td>nails and spikes</td>
<td>590</td>
</tr>
<tr>
<td>preferred thicknesses</td>
<td>590</td>
</tr>
<tr>
<td>rod gages</td>
<td>590</td>
</tr>
<tr>
<td>rope</td>
<td>590</td>
</tr>
<tr>
<td>sheet metal gages</td>
<td>590</td>
</tr>
<tr>
<td>size for checking gears</td>
<td>590</td>
</tr>
<tr>
<td>for external spur gears</td>
<td>590</td>
</tr>
<tr>
<td>for helical gears</td>
<td>590</td>
</tr>
<tr>
<td>for internal gears</td>
<td>590</td>
</tr>
<tr>
<td>for spur and helical gears</td>
<td>590</td>
</tr>
<tr>
<td>spring</td>
<td>590</td>
</tr>
<tr>
<td>tensile strength</td>
<td>590</td>
</tr>
<tr>
<td>tubing, wall thickness gages</td>
<td>590</td>
</tr>
<tr>
<td>wire gages</td>
<td>590</td>
</tr>
<tr>
<td>Wire</td>
<td>590</td>
</tr>
<tr>
<td>checking screw threads</td>
<td>590</td>
</tr>
<tr>
<td>buttress threads</td>
<td>590</td>
</tr>
<tr>
<td>contact pressure</td>
<td>590</td>
</tr>
<tr>
<td>formulas for large lead angles</td>
<td>590</td>
</tr>
<tr>
<td>taper screws</td>
<td>590</td>
</tr>
<tr>
<td>circular mill measurement</td>
<td>590</td>
</tr>
<tr>
<td>diameters, raised to powers</td>
<td>590</td>
</tr>
<tr>
<td>EDM</td>
<td>590</td>
</tr>
<tr>
<td>music</td>
<td>590</td>
</tr>
<tr>
<td>preferred thicknesses</td>
<td>590</td>
</tr>
<tr>
<td>rod gages</td>
<td>590</td>
</tr>
<tr>
<td>rope</td>
<td>590</td>
</tr>
<tr>
<td>sheet metal gages</td>
<td>590</td>
</tr>
<tr>
<td>size for checking gears</td>
<td>590</td>
</tr>
<tr>
<td>for external spur gears</td>
<td>590</td>
</tr>
<tr>
<td>for helical gears</td>
<td>590</td>
</tr>
<tr>
<td>for internal gears</td>
<td>590</td>
</tr>
<tr>
<td>for spur and helical gears</td>
<td>590</td>
</tr>
<tr>
<td>spring</td>
<td>590</td>
</tr>
<tr>
<td>tensile strength</td>
<td>590</td>
</tr>
<tr>
<td>tubing, wall thickness gages</td>
<td>590</td>
</tr>
<tr>
<td>wire gages</td>
<td>590</td>
</tr>
<tr>
<td>Wire</td>
<td>590</td>
</tr>
<tr>
<td>bending stresses</td>
<td>590</td>
</tr>
<tr>
<td>breaking strengths</td>
<td>590</td>
</tr>
<tr>
<td>classes</td>
<td>590</td>
</tr>
<tr>
<td>construction</td>
<td>590</td>
</tr>
<tr>
<td>cutting and seizing</td>
<td>590</td>
</tr>
<tr>
<td>definitions of term</td>
<td>590</td>
</tr>
<tr>
<td>drum or reel capacity</td>
<td>590</td>
</tr>
<tr>
<td>drum score for winding</td>
<td>590</td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire rope</td>
<td></td>
</tr>
<tr>
<td>factors of safety</td>
<td>376</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td>376</td>
</tr>
<tr>
<td>life</td>
<td>376</td>
</tr>
<tr>
<td>lubrication</td>
<td>381</td>
</tr>
<tr>
<td>maintenance</td>
<td>381</td>
</tr>
<tr>
<td>plow steel, strength of properties</td>
<td>372</td>
</tr>
<tr>
<td>rated capacities of</td>
<td>372</td>
</tr>
<tr>
<td>replacement</td>
<td>373</td>
</tr>
<tr>
<td>rope loads due to bending</td>
<td>380</td>
</tr>
<tr>
<td>safe loads for</td>
<td>375</td>
</tr>
<tr>
<td>sheave and drum dimensions</td>
<td>378</td>
</tr>
<tr>
<td>simplified practice recommendations</td>
<td></td>
</tr>
<tr>
<td>sizes</td>
<td>372</td>
</tr>
<tr>
<td>slings and rigging</td>
<td>381</td>
</tr>
<tr>
<td>specification</td>
<td>370</td>
</tr>
<tr>
<td>strength</td>
<td>372</td>
</tr>
<tr>
<td>weight</td>
<td>372</td>
</tr>
<tr>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>bearings</td>
<td>226</td>
</tr>
<tr>
<td>bonding</td>
<td>226</td>
</tr>
<tr>
<td>boring</td>
<td>414</td>
</tr>
<tr>
<td>compression strength</td>
<td>111</td>
</tr>
<tr>
<td>crushing strength</td>
<td>111</td>
</tr>
<tr>
<td>dimensions of sawn lumber</td>
<td>413</td>
</tr>
<tr>
<td>hardwood tooling for</td>
<td></td>
</tr>
<tr>
<td>ignition temperatures</td>
<td>413</td>
</tr>
<tr>
<td>maximum bending load</td>
<td>412</td>
</tr>
<tr>
<td>mechanical properties of wood</td>
<td>412</td>
</tr>
<tr>
<td>effect of pressure treatment</td>
<td>412</td>
</tr>
<tr>
<td>mechanical property</td>
<td>412</td>
</tr>
<tr>
<td>modulus of rupture</td>
<td>111</td>
</tr>
<tr>
<td>mortising</td>
<td>111</td>
</tr>
<tr>
<td>planing</td>
<td>111</td>
</tr>
<tr>
<td>sanding</td>
<td>111</td>
</tr>
<tr>
<td>screws</td>
<td>111</td>
</tr>
<tr>
<td>shaping</td>
<td>111</td>
</tr>
<tr>
<td>shear strength</td>
<td>112</td>
</tr>
<tr>
<td>tensile strength</td>
<td>112</td>
</tr>
<tr>
<td>tooling for wood and nonmetals</td>
<td></td>
</tr>
<tr>
<td>Woodruff keys and keyseats</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>236</td>
</tr>
<tr>
<td>cutters</td>
<td>236</td>
</tr>
<tr>
<td>key</td>
<td>232</td>
</tr>
<tr>
<td>dimensions</td>
<td>370</td>
</tr>
<tr>
<td>number</td>
<td>370</td>
</tr>
<tr>
<td>keyseat</td>
<td>232</td>
</tr>
<tr>
<td>dimensions</td>
<td>370</td>
</tr>
<tr>
<td>hub</td>
<td>370</td>
</tr>
<tr>
<td>milling cutter</td>
<td>237</td>
</tr>
<tr>
<td>shaft</td>
<td>370</td>
</tr>
<tr>
<td>British Standard</td>
<td></td>
</tr>
<tr>
<td>Woodworking cutters</td>
<td>831</td>
</tr>
<tr>
<td>Word address format</td>
<td>492</td>
</tr>
<tr>
<td>Word, NC</td>
<td>492</td>
</tr>
<tr>
<td>Work</td>
<td></td>
</tr>
<tr>
<td>formulas</td>
<td>711</td>
</tr>
<tr>
<td>formulas for work and power</td>
<td>711</td>
</tr>
<tr>
<td>maximum load in bending wood</td>
<td>711</td>
</tr>
<tr>
<td>relation to energy</td>
<td>711</td>
</tr>
<tr>
<td>units conversion</td>
<td></td>
</tr>
<tr>
<td>Working stress</td>
<td></td>
</tr>
<tr>
<td>at elevated temperature</td>
<td>119</td>
</tr>
<tr>
<td>factors of safety</td>
<td>682</td>
</tr>
<tr>
<td>flywheels</td>
<td>591</td>
</tr>
<tr>
<td>of bolts</td>
<td>591</td>
</tr>
<tr>
<td>shafts</td>
<td>591</td>
</tr>
<tr>
<td>springs</td>
<td>591</td>
</tr>
<tr>
<td>numbered</td>
<td></td>
</tr>
<tr>
<td>addendum</td>
<td></td>
</tr>
<tr>
<td>ANSI Standard, fine-pitch</td>
<td></td>
</tr>
<tr>
<td>effect on profile and pressure angle of cutting diameter</td>
<td></td>
</tr>
<tr>
<td>fine-pitch</td>
<td></td>
</tr>
<tr>
<td>formulas for dimensions</td>
<td></td>
</tr>
<tr>
<td>hobs for</td>
<td>682</td>
</tr>
<tr>
<td>lead angles</td>
<td>682</td>
</tr>
<tr>
<td>material</td>
<td>682</td>
</tr>
<tr>
<td>number of threads or “starts”</td>
<td>682</td>
</tr>
<tr>
<td>multi-thread worms</td>
<td></td>
</tr>
<tr>
<td>single-thread worms</td>
<td></td>
</tr>
<tr>
<td>pitch diameters, radius of</td>
<td></td>
</tr>
<tr>
<td>pitch, standard</td>
<td></td>
</tr>
<tr>
<td>pressure angles</td>
<td></td>
</tr>
<tr>
<td>proportions</td>
<td></td>
</tr>
<tr>
<td>ratio of teeth to thread starts</td>
<td></td>
</tr>
<tr>
<td>tooth form of worm and wormgear</td>
<td></td>
</tr>
<tr>
<td>Worm wheel, indexing movements</td>
<td></td>
</tr>
<tr>
<td>Wrapped spring clutches</td>
<td></td>
</tr>
<tr>
<td>Wrench</td>
<td></td>
</tr>
<tr>
<td>clearances</td>
<td></td>
</tr>
<tr>
<td>for box wrenches</td>
<td></td>
</tr>
<tr>
<td>for open end wrenches</td>
<td></td>
</tr>
<tr>
<td>for socket wrenches</td>
<td></td>
</tr>
<tr>
<td>for spacing of bolts openings, ANSI Standard</td>
<td></td>
</tr>
<tr>
<td>torque</td>
<td></td>
</tr>
<tr>
<td>cap screws</td>
<td>1496</td>
</tr>
<tr>
<td>steel bolts</td>
<td>1496</td>
</tr>
<tr>
<td>stud</td>
<td>1496</td>
</tr>
<tr>
<td>Wrought</td>
<td></td>
</tr>
<tr>
<td>copper alloys</td>
<td></td>
</tr>
<tr>
<td>copper-beryllium</td>
<td>568</td>
</tr>
<tr>
<td>iron</td>
<td></td>
</tr>
<tr>
<td>strength</td>
<td>420</td>
</tr>
<tr>
<td>temperature effect on thickness gauge</td>
<td>420</td>
</tr>
<tr>
<td>thickness gage for sheet steel pipe</td>
<td></td>
</tr>
<tr>
<td>steel pipe</td>
<td></td>
</tr>
</tbody>
</table>

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX

Y

Yield point 204
for various materials 204
heat-treated steels 186, 188
iron and steel 174
plastics 306
steel 334

Yield strength 204
aluminum alloys 417, 475, 483
carbon steel 304
cobalt alloys 415
compressive copper alloy 416, 450, 488
Cu-base powdered alloys 419
Cu-beryllium alloys 415
Cu-silicon alloys 399
Everdur 419
iron-base powdered alloys 419
magnesium alloys 488
nickel alloys 418, 459, 492
nonferrous metals 345
perforated metal
plastics 306
shear 334
spring wire 411
stainless steel 188, 172, 474
steel 417, 454, 471
high-strength, low-alloy 353
titanium alloys 391
tungsten-base powdered alloys 319
Young's modulus (see Modulus of: elasticity)

Z

Zero suppression, NC 279
Zero, absolute 280
Zerol bevel gears 1281, 3082
Zinc plating 4471
Zinc-base alloys, die casting 1372
Z-section
moment of inertia 243
radius of gyration 247
section modulus 247

Copyright 2004, Industrial Press, Inc., New York, NY