INDEX OF INTERACTIVE EQUATIONS

Additional Indexes
- Primary Index
- Index of Standards
- Index of Materials

A

Air
- Compressed, Velocity of Escaping
- Density of
- Expansion and Compression
- Adiabatic
- Isothermal
- Horsepower Required to Compress
- Volume Given Pressure and Temperature
- Volume Transmitted through Pipes
- Work Required to Compress

Angle
- Conversion
 - Decimal to Degree-Minute-Second
 - Degree-Minute-Second to Decimal
 - Degree-Minute-Second to Radian
 - Radian to Degree-Minute-Second

Area
- Acute-angle Triangle
- Circle
- Circular Ring
- Circular Ring Sector
- Ellipse
- Enclosed by Cycloid
- Hyperbola
- Obtuse-angle Triangle
- Parabola
- Parallelogram
- Rectangle
- Regular Polygon
- Right-angle Triangle
- Spandrel or Fillet
- Square
- Trapezium
- Trapezoid

B

Beam
- Both Ends Overhanging Supports
- Load at Any Point Between
- Single Overhanging Load

Beam (continued)
- Both Ends Overhanging Supports
 - Symmetrical Overhanging Load
 - Unsymmetrical, Uniform Load
- Combined Stresses
 - Direct Compression and Bending
 - Cantilever, Circular
 - Cantilever, Rectangular
 - Circular or Shaft
 - Direct Compression and Torsion
 - Circular or Shaft
 - Direct Compression, Offset Link
 - Direct Tension and Bending
 - Cantilever, Circular
 - Cantilever, Rectangular
 - Circular or Shaft
 - Rectangular
 - Direct Tension and Torsion
 - Circular Shaft
 - Direct Tension, Offset Link
- Continuous, Two Equal Spans
 - Equal Loads at Center of Each
 - Uniform Loads
 - Continuous, Two Unequal Spans
 - Unequal Loads at any Point
 - Unequal Uniform Loads
- Design Example
 - Fixed at Both Ends
 - Load at any Point
 - Load at Center
 - Uniform Load
 - Fixed at One End
 - Free but Guided at the Other
 - Load at Free End
 - Uniform Load
 - Intermediate Load
 - Load at Other End
 - Supported at the Other
 - Load at Any Point
 - Load at Center
 - Uniform Load
 - Supported at Both Ends
 - Load at Any Point
 - Load at Center
 - Single Load in Middle
 - Single Unsymmetrical Load
 - Two Symmetrical Loads

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX OF INTERACTIVE EQUATIONS

Beam (continued)
Supported at Both Ends
Uniform Load
Uniform Load Part of Length
Deflection
Three Dimensional Stresses

Bearings
Journal Bearing
Thrust
Flat Plate Type
Step Type
Tapered Land Type
Tilting Pad Type

Combined Stresses (continued)
Direct Tension and Bending
Rectangular Beam
Direct Tension and Torsion
Circular Shaft
Direct Tension, Offset Link

Complex Numbers
Addition
Division
Multiplication

Contents of Cylindrical Tank

Conversion
Complex Number to Polar Form
Coordinates
Cylindrical to Rectangular
Polar to Rectangular
Rectangular to Polar
Rectangular to Spherical
Spherical to Rectangular
Cutting Speed to RPM
Letter Drill Sizes
Numbered Drill Sizes
RPM to Cutting Speed
Specific Gravity to Density
Temperature
Critical Speed Formulas

Cutting Speed
Convert from RPM
Convert to RPM
Letter Drill Sizes
Numbered Drill Sizes

Density of Wood
Diameter of Circle Enclosing N Circles
Distance Across Squares and Hexagons

Drilling
Thrust, Torque, and Power Required
Inch
Metric
Spade Drills

Economic Analysis
Annuity to Gradient
Depreciation
Future Value to Annuity
Future Value to Gradient
Net Present Value
Present Value to Annuity
Present Value to Future Value
Present Value to Gradient

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX OF INTERACTIVE EQUATIONS

F
- Factorial of a Number: 18
- Find Equation of Circle Given Point: 45
- Finding Depth of Keyseat: 374
- Flat Belts and Pulleys:
 - Belt Lengths: 238
 - Length of Belt Traversing Three Pulleys: 194
 - Pulley Diameters and Speeds: 38
 - Pulley Diameters in Compound Drive: 39
 - Speed of Pulley in Compound Drive: 39
- Force System Solution:
 - Components of Single Force Resultant of Non-intersecting Forces: 154
 - Three or More Forces: 149
 - Two Concurrent Forces: 149

G
- Gears:
 - Calculating Dimensions of Bevel:
 - Circular Thickness, Circular Addendum: 204
 - Examples: 200
 - Formulas for Milled Gears: 205
 - 14.5 and 20 Degree Full Depth: 214
 - Helical:
 - Fellows 20 Degree Stub: 213
 - Fine Pitch Tooth Proportions: 201
 - 14.5 and 20 Degree Full Depth: 215
 - 20 Degree Stub: 215
 - Spur:
 - Fellows 20 Degree Stub: 213
 - Fine Pitch Tooth Proportions: 201
 - Outside and Root Diameters: 201
 - Standard Dimensions: 201
 - 14.5 and 20 Degree Full Depth: 215
 - 14.5 Degree Involute Full Depth Tooth Parts: 204
 - 20 Degree Involute Full Depth Tooth Parts: 204
 - 20 Degree Stub: 215
 - Helical Gearing:
 - Shafts at Right Angles: 200
 - Center Distance Approximate: 210
 - Center Distance Exact: 200
 - Shafts Parallel: 200
 - Center Distance Approximate: 210

H
- Hardness:
 - Brinell, Calculate from Indentation:
 - Tensile Strength Equivalent to Brinell: 517

M
- Machining:
 - Cutting Speed to Utilize Max Power:
 - Milling: 200
 - Turning: 200
 - Power Required:
 - Turning: 200
- Matrix:
 - Addition: 118
 - Determinant: 120
 - Inverse: 122
 - Multiplication: 20
 - Solution of Simultaneous Equations: 20
 - Transpose: 120
- Measurement Over Pins:
 - Checking Radius of Arc:
 - Concave: 719
 - Convex: 719
 - Checking V-groove:
 - Distance across Bolt Circle: 217
 - Dovetail Slides: 711
- Measuring Screw Threads:
 - Acme Thread: 200
 - American National Standard Unified Thread: 200
 - British Association Screw Thread: 380
 - British Standard and Whitworth Screw Thread: 380
 - Buckingham Exact Involute Helicoid: 200
 - Constants for Measuring American Standard and Whitworth Screw Threads: 200
INDEX OF INTERACTIVE EQUATIONS

Measuring Screw Threads (continued)

- International Standard Screw Thread
 - Limiting Dimensions
- Lowenherz Screw Thread
 - Limiting Dimensions
- Pitch and Number of Threads per Inch
- Sharp V-Thread Screw Thread
- Whitworth Thread
 - Limiting Dimensions
- Wire Diameters

Moment of Inertia

- Circle
- C-Section
- Elliptical Section
- Elliptical Ring
- Elliptical Sector
- Half Circular Section
- Hexagon
- Hollow Circular Section
- Hollow Elliptical Section
- Hollow Rectangular Section
- Hollow Square
- I-Section
- L-Section
- Polar Area
 - Circle
 - Circular Section with Hexagon
 - Hole
 - Hole with Square
 - Hexagon
 - Hollow Circular Section
 - Inverted Triangle
 - Rectangle
 - Square
- Polar Mass
 - Cone
 - Cylinder
 - Ellipsoid
 - Frustum of Cone
 - Hollow Cylinder
 - Paraboloid
 - Prism
 - Pyramid
 - Spherical Sector
 - Spherical Segment
 - Torus
 - Rectangle
 - Square
 - Trapezium
 - Triangle
 - T-Section
 - X-Section
 - Z-Section

Packing of Circles

- Packing of Circles in Circles
- Packing of Circles in Rectangles

Prismoidal Formula for Volume

Radius of Gyration

- Bar of Small Diameter
 - Circular
- Cone
 - Cylinder
- Ellipsoid
- Frustum of Cone
- Hollow Cylinder
- Hollow Sphere
- Parallelepiped
- Parallelogram
- Rectangular Prism
- Sphere
- Thin Circular Section
- Thin Hollow Cylinder
- Thin Spherical Shell

Ratio of Volumes

Rearrangement of Formulas

Screw Threads

- External Metric Thread - M Profile
- Limiting Dimensions
- Internal Metric Thread - M Profile
- Limiting Dimensions
- Pitch and Threads per Inch
- Unified Miniature Screw Threads
- Unified Screw Threads
- Dimension

Shaft

- Design of a Transmission Shaft
- Design of Transmission Shafting
- Diameter of Solid Circular Shaft
 - Inch
 - MKS unit
- Diameter of Solid Circular Shaft (MKS unit)
- Torsional Deflection of Circular Shafts

Sheet Metal

- Allowance for Bends

Simple Mechanism

- Inclined Plane Wedge

Copyright 2004, Industrial Press, Inc., New York, NY
INDEX OF INTERACTIVE EQUATIONS

Solution
Cubic Equation 33
First Degree Equation, Two Unknowns 31
Quadratic Equation 31
Factor 32
Specific Gravity
Conversion to Density 327
Spline
Basic Dimensions 315
Dimensions and Tolerances 317
Spring
Closed and Ground End 327
Open or Plain End
Ends Ground 327
Ends not Ground 323
Round Wire Spring Formula 322
Square Wire Spring Formula 322
Squared or Closed End, Ends not Ground 322
Taper
Angle given Diameter and Length 713
Angle given Taper 713
Center Distance given Diameter and Angle 716
Center Distance given Diameter and Taper 716
Center Distance given Taper Measured from One Side 716
Diameter of Disk in Contact with Another Disk 716
Measuring with V-block 718
Taper at Right Angle to One Side 718
Taper given Angle 718
Taper given Diameter and Length 718
Temperature
Adjusting Lengths for Changes of Length Change Due to 405
Radius of Ring Change Due to 405
Temperature Conversion 458
Triangle
Obtuse

One Side and Two Angles Known 94
Three Sides Known 95
Two Sides and Angle Opposite One Side Known 95
Two Sides, Angle Between Known 95

Right

Hypotenuse and Angle Known 91–92
Side and Angle Known 91–92
Side and Hypotenuse Known 91–92
Two Sides Known 91–92

Trigonometric Functions
Involute and Sevolute Functions 93
Table Values 99
Versed Sine and Versed Cosine 93

Volume
Barrel 80
Cone 80
Cube 85
Cylinder 81
Ellipsoid 85
Frustum of Cone 89
Frustum of Pyramid 89
Hollow Cylinder 80
Hollow Sphere 79
Paraboloid 83
Paraboloidal Segment 80
Portion of Cylinder 80
Prism 82
Pyramid 83
Sphere 83
Spherical Sector 84
Spherical Segment 84
Spherical Wedge 82
Spherical Zone 80
Square Prism 85
Torus 85
Wedge 85

Water
Velocity of, in Pipes 424

Copyright 2004, Industrial Press, Inc., New York, NY