Growth differentiation factor 11 (GDF11) – a promising anti-ageing factor – is highly concentrated in platelets

J. L. Bueno, 1 M. Ynigo, 2 C. de Miguel, 1 R. M. Gonzalo-Daganzo, 1 A. Richart, 3 C. Vilches, 4 C. Regidor, 1 J. A. García-Marco, 1 E. Flores-Ballester 3 & J. R. Cabrera 1

1 Haematology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
2 Immunology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
3 Centro de Transfusión, Madrid, Spain
4 Immunogenetics & Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro.

Introduction

Ageing is a complex process characterized by progressive loss of cellular fitness as a consequence of accumulated cellular damage [1]. Recent studies suggest that blood from young donors could reverse age-related diseases. This hypothesis is based on experiments, which show that blood from young mice could rejuvenate aged tissues in older ones [2–4]. After analysing several circulating factors, Loffredo et al. [3] suggested that GDF11 could be responsible for these effects. These studies suggested a new paradigm in the treatment of aged-related diseases, where blood from young donors could be used as a GDF11-rich source to reverse some aged-related diseases. On the other hand, new studies have undermined this hypothesis by indicating that GDF11 concentration in serum does not decrease with age but, conversely, increases [5]. In addition to this debate, the tissue source of GDF11 found in circulating blood remains unknown [6]. We hypothesized that GDF11 could be stored in circulating platelets and also that serum may contain higher concentrations than plasma as a result of sample manipulation. The aim of this study was to test these hypotheses by comparing GDF11 content in three blood products: serum, platelet-poor plasma (PPP) and platelet lysate (PL) obtained from the same volunteers.

Materials and methods

Platelet Rich Plasma (PRP) and PPP samples were collected by apheresis from 23 volunteers as previously described [7]. Whole blood was also collected in EDTA and dry tubes for cell counting and serum separation. Briefly, all the samples were maintained overnight at 20°C to allow platelet disaggregation in PRP, and then, cell counting was performed. Samples underwent a double freeze–thaw cycle to disrupt cell membranes to allow cell content release. PRP is converted to platelet lysate during this process. The levels of GDF11 and PDGF-ββ were measured using an ELISA kit (Cusabio). Finally, the content of both cytokines was compared in PPP, serum and PL samples using Friedman’s, ANOVA and paired t-
tests. In addition, multivariate regression analyses were performed to search for any relationship between GDF11 concentrations in samples and other variables, such as volunteer age. The study was approved by the Hospital Research Ethics Committee.

Results

Median (range) volunteer age was 39.3 (18.5–85.8) years. PRP platelet concentration was 1476.3 (95% CI: 1361.4–1591.1) × 10^9/l. Leucocyte and red blood cell counts in PRP were virtually zero. Mean GDF11 concentrations were 331 (95% CI: 248.1–413.9) pg/ml in platelet lysate, 23.30 (95% CI: 21.3–25.3) pg/ml in plasma and 34.30 (95% CI: 29.3–39.3) pg/ml in serum. Mean PDGF-ββ concentrations were 375.6 (95% CI: 352.8–398.4) pg/ml in platelet lysate, 127.2 (95% CI: 116.3–118.1) pg/ml in plasma and 27.3 (95% CI: 15.6–39) pg/ml in serum.

Mean GDF11 concentration in PL was 10.2 (95% CI: 7.6–12.9) and 15.0 (95% CI: 10.4–19.7) times higher than in serum and PPP, respectively (p < 0.0001 in both analyses). Mean GDF11 concentration in serum was 1.5 (95% CI: 1.3–1.8) times higher than in plasma (p < 0.0001) (Fig. 1). The multivariate analysis showed that older individuals had significantly higher levels of GDF11 in serum (p = 0.004) (see Fig. 2a). This relationship with age was not observed in plasma samples.

Discussion

This study shows that GDF11 is at least ten times more concentrated in platelet lysate than in serum or plasma, indicating that GDF11 is stored in platelets. Very low levels of GDF11 were detected in serum and plasma, which agrees with a previous report and could indicate that circulating GDF11 may have little physiological relevance [8]. In addition, we observed that GDF11 was more concentrated in serum than in plasma, suggesting that GDF11 could be released from platelets as described for other platelet-contained factors [9].

No relationship was found between GDF11 levels in plasma and age. Interestingly, when serum was analysed, we found that GDF11 levels increased with age. This agrees with a previous report [5] and may be explained by the fact that platelet activation is enhanced in older humans [10], which would lead to greater release of factors during the clotting process ‘in tube’ to obtain serum.

We used PDGF-ββ as a control, as it is a well-known intraplatelet protein, and we expected a higher concentration in serum than in plasma, as observed for GDF11. However, PDGF-ββ concentrations in serum were lower. This may be explained by the presence of specific binding proteins that may increase PDGF-ββ clearance as has been previously described [11].

Fig. 1

© 2016 International Society of Blood Transfusion

Vox Sanguinis (2016)
The main strength of our study is that plateletpheresis was used to obtain a product enriched in platelets with virtually no leucocytes or red cells, and this allows us to infer that GDF11 is stored in platelets. On the other hand, PPP collection through an apheresis machine provided a virtually acellular plasma product, which is better for evaluating proteins circulating in human blood. We are also aware that our study has weaknesses. Our GDF11 concentration results require confirmation using other or more sensitive biochemical methods in a larger cohort of volunteers and also to explore if GDF11 could also be present in other blood cells that were not analysed in this study.

In conclusion, our results suggest that GDF11 is highly concentrated in platelets, which allows us to infer that, if GDF11 really possesses an anti-ageing or any other biological effect, platelets obtained from volunteers of any age should be used as a biological source of GDF11 instead of, or as an alternative to, serum (or plasma) from young people [12]. On the other hand, we believe that GDF11 levels in serum are not representative of the GDF11 really possesses an anti-ageing or any other biological effect, platelets obtained from volunteers of any age should be used as a biological source of GDF11 instead of, or as an alternative to, serum (or plasma) from young people [12]. On the other hand, we believe that GDF11 levels in serum are not representative of the GDF11 that is really circulating in human blood. Therefore, further studies should be performed that focus on detecting circulating GDF11 in plasma rather than serum.

Acknowledgements

The authors wish to thank our Transfusion Unit Supervisor, María Jesús Nuñez, and the Nursing and Technician Staff for their invaluable co-operation. We also thank Milan García Milanovic & Martin Hadley-Adams for correcting the English manuscript. This study was supported with funds from the Department of Haematology and Haemotherapy.

Author contributions

JLB involved in conceptualization; JLB and MY involved in methodology; JLB, MY, CdM, and RMG involved in investigation; JLB and MY involved in writing of the original draft; JLB, MY, CV, CdM, RMG and JAGM involved in writing, review and editing of the manuscript; RC, CV, CR, AR and EF involved in the collecting the resources RC provided funding support; and JLB and RC involved in supervision and project administration.

Sources of funding

This study was supported with funds from the Department of Haematology and Haemotherapy.

Disclosures

Dr. Bueno is the founder and Medical Director of the company registered as ‘PRoPosit Bio SL’. The other authors do not declare any conflict of interest.

References

8 Rodgers BD, Eldridge JA: Reduced circulating GDF11 is unlikely responsible for age-dependent changes in mouse heart, muscle, and brain. Endocrinology 2015; 156:3885–3888
12 The PLasma for Alzheimer SymptoM Amelioration (PLASMA) Study - Full Text View - ClinicalTrials.gov.