Integrated CMOS/MEMS Devices

- CMOS Electronics thru standard MOSIS Foundry
- MEMS Post Processing through commercial fabrications and specialized laboratories.
 - Maskless Post Processing – (Mostly sensors)
 - Aligned front and back Post Processing
 - Actuator structures.
A CMOS Thermal Isolated Gas Flow Sensor

- **Basic structures:**
 Two polysilicon resistors sandwiched by a thermally isolated SiO$_2$ membrane and two CVD oxides.

- **Fabrication process:**
 1. CMOS technology
 2. Anisotropic etching as a postprocessing to form the thermal isolated SiO$_2$ membrane.

- **Operation principle:**
 Two polysilicon resistors is used as an electrical heater and a temperature sensor. When a current is passed through the heater, the temperature of the heater element increases, which can be observed by measuring the change in resistance of the sensor element.

Post-Process Etch for CMOS Micromachining

![Diagram of micromachining process](image)

TABLE 4.9 Principal Characteristics of Four Different Anisotropic Etchants

<table>
<thead>
<tr>
<th>Etchant/Diluent/Additives/Temperature</th>
<th>Etch Rate (100) (μm/min)</th>
<th>Etch Rate Ratio (100)/(111)</th>
<th>Remarks</th>
<th>Mask (Etch Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOH/water, isopropyl alcohol additive, 85°C</td>
<td>B > 10⁷ cm⁻³ reduces etch rate by 20</td>
<td>1.4</td>
<td>400 and 600 for (110)/(111)</td>
<td>IC incompatible, avoid eye contact, etches oxide fast, lots of H₂ bubbles</td>
</tr>
<tr>
<td>Ethylene diamine pyrocatechol (water), pyrazine additive, 115°C</td>
<td>≥5 × 10¹⁹ cm⁻³ reduces the etch rate by 50</td>
<td>1.25</td>
<td>35</td>
<td>Toxic, ages fast, O₂ must be excluded, few H₂ bubbles, silicates may precipitate</td>
</tr>
<tr>
<td>Tetramethyl ammonium hydroxide (TMAH) (water), 90°C</td>
<td>>4 × 10¹⁰ cm⁻³ reduces etch rate by 40</td>
<td>1</td>
<td>From 12.5 to 50</td>
<td>IC compatible, easy to handle, smooth surface finish, few studies</td>
</tr>
<tr>
<td>Hydrozine water, 115°C</td>
<td>≥1.5 × 10¹⁰ cm⁻³ practically stops the etch</td>
<td>3.0</td>
<td>10</td>
<td>Toxic and explosive, okay at 50% water</td>
</tr>
</tbody>
</table>

Given the many possible variables, the data in the table are only typical examples.

Xenon Difluoride Etching: XeF₂ is a silicon etch that does not appreciably etch SiO₂ or Al. It can be used as a post-process etch to make silicon a sacrificial layer for CMOS micromachining.
Review of Resistor Design

Resistance of the rectangular block of uniform doped material in figure below is

\[R = \rho \frac{L}{A} \]

Where \(\rho \) is material’s resistivity

\(L \) and \(A \): the length and cross sectional area of the block.

\(A=Wt \) (\(W \) is width of the sample and \(t \) is the thickness of the sample).

\[R = (\frac{\rho}{t}) \left(\frac{L}{W} \right) = R_{\square}(L/W) \]

Where \(R_{\square}=(\rho/t) \) is called the sheet resistance of the layer of material and its unit is the ohm. \(L/W \) is unitless.

To avoid confusion between \(R \) and \(R_{s} \), sheet resistance \(R_{\square} \) is given the special unit of ohms per square. The ratio \(L/W \) can be interpreted as the number of unit squares of material in the resistor.

\[R = \rho \frac{L}{A} \quad \rho = \frac{1}{\sigma} \quad \sigma = q(\mu_{n}n + \mu_{p}p) \]

=> Given the sheet resistance \(R_{\square} \), a circuit designer need calculate the number of “squares” of the resistor in order to define its resistance \(R \).
$R = \rho \frac{L}{A} = \left(\frac{\rho}{\gamma} \right) \left(\frac{L}{W} \right) = R_o \left(\frac{L}{W} \right)$

Corner = 0.56 squares

0.35 squares
Sheet Resistance of MOSIS

<table>
<thead>
<tr>
<th>AMI</th>
<th>ABN (1.5 micron N-well)</th>
<th>0.80</th>
<th>SCNA, SCNE, SCN, Tight Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETERS</td>
<td>N+ACTV</td>
<td>P+ACTV</td>
<td>POLY</td>
</tr>
<tr>
<td>Sheet Resistance</td>
<td>54.8</td>
<td>79.5</td>
<td>30.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMI</th>
<th>G5N (0.5 micron N-well)</th>
<th>0.35</th>
<th>SCN3M, SCN3ME, Tight Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETERS</td>
<td>N+ACTV</td>
<td>P+ACTV</td>
<td>POLY</td>
</tr>
<tr>
<td>Sheet Resistance</td>
<td>81.8</td>
<td>101.1</td>
<td>25.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HP</th>
<th>AMOS14TB (0.5 micron N-well)</th>
<th>0.35</th>
<th>SCN3M, SCN3MLC, Tight Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETERS</td>
<td>N+ACTV</td>
<td>P+ACTV</td>
<td>POLY</td>
</tr>
<tr>
<td>Sheet Resistance</td>
<td>2.6</td>
<td>2.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSMC</th>
<th>0.35 micron 2P4M (4 Metal Polycided, 3.3 V/5 V)</th>
<th>0.25</th>
<th>SCN4ME, Tight Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETERS</td>
<td>N+ACTV</td>
<td>P+ACTV</td>
<td>POLY</td>
</tr>
<tr>
<td>Sheet Resistance</td>
<td>81.0</td>
<td>154.1</td>
<td>8.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TSMC</th>
<th>0.35 micron 1P4M (4 Metal Silicided, 3.3 V/5 V)</th>
<th>0.25</th>
<th>SCN4M, Tight Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS PARAMETERS</td>
<td>N+ACTV</td>
<td>P+ACTV</td>
<td>POLY</td>
</tr>
<tr>
<td>Sheet Resistance</td>
<td>4.7</td>
<td>3.4</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Temperature Coefficient of Resistance

\[R(T) = R_o \left[1 + \alpha(T-T_o) \right] \]

where

- \(R(T) \): resistance at temperature \(T \)
- \(R_o \): resistance at temperature \(T_o \)
- \(\alpha \): Temperature coefficient of resistance

\[\alpha = T_c = \frac{\Delta R}{R_o \Delta T} \]

\(\alpha \sim 1.17 \times 10^{-3}/^\circ\text{C} \) for Poly

Overheat Ratio:

\[\alpha_R = \frac{\Delta R}{R} \]

Electrothermal Response of Gas Flow Sensor

\[R(T) = R_0 \left[1 + \alpha (T - T_0) \right] \]

\[T = T_0 + \left\{ \frac{R(T)}{R_0} - 1 \right\} / \alpha \]

Fig. 5. Electrothermal response of the sensor (a) with thermal isolation (b) without thermal isolation.
Test of Gas Flow Sensor

\[R(T) = R_o [1 + TcT] \]

\[P = I^2R = I^2R_o [1 + TcT] \]

\[R \sim I^2 [1 + TcT] \]

Fig. 6. Variation of resistance \(R_2 \) with \(I^2(1 + TcT) \).

Fig. 7. The response of the sensor to flows (a) 0, (b) 5, and (c) 12.5 m/s.
Thermal Structures

• Systematical design:

Thermal resistance \(R_{th} = \Delta T/P \) (unit: KW\(^{-1}\))

To optimize the conversion of the power \(P \) to the temperature difference \(\Delta T \).

Heat conduction:

Power \(P = \) heat flux \(Q = \kappa A \Delta T/L \)

\[R_{th} = \frac{\Delta T}{P} = \frac{L}{(\kappa A)} = \frac{L}{(\kappa D W)} = \frac{1}{(\kappa D)}(L/W) \]

Thermal resistance:

\[
R_{th} = \left(\frac{L}{W} \right) \left(\frac{1}{\kappa D} \right)
\]

Thermal sheet resistance:

\[
R_{st} = (\kappa D)^{-1}
\]

<table>
<thead>
<tr>
<th>material</th>
<th>(\kappa [\text{W/(°C-cm)}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_2)</td>
<td>0.014</td>
</tr>
<tr>
<td>Si</td>
<td>1.57</td>
</tr>
<tr>
<td>Al</td>
<td>2.36</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
</tr>
</tbody>
</table>
Electrical-Thermal Analogies

Thermal power and electrical power are equivalent in physical sense, but they are not equivalent in the above analog.

- Thermal conductance: \(G = \frac{1}{R_{th}} = \frac{P}{\Delta T} \) (unit: \(\text{WK}^{-1} \))

- Thermal capacitance: \(C = \frac{dH}{dT} = mC_p \) (unit: \(\text{JK}^{-1} \))

<table>
<thead>
<tr>
<th>Thermal Parameter</th>
<th>Electrical Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature: (T) (K)</td>
<td>Voltage: (V) (V)</td>
</tr>
<tr>
<td>Heat flow, Power: (P) (W)</td>
<td>Current: (I) (A)</td>
</tr>
<tr>
<td>Heat: (Q) (J = W s)</td>
<td>Charge: (Q) (C = A-s)</td>
</tr>
<tr>
<td>Resistance: (R) (K/W)</td>
<td>Resistance: (R) ((\Omega = V/A))</td>
</tr>
<tr>
<td>Conductance: (G) (W/K)</td>
<td>Conductance: (G) ((S = \Omega^{-1}))</td>
</tr>
<tr>
<td>Capacity: (C) (J/K)</td>
<td>Capacitance: (C) ((F = A\cdot s/V))</td>
</tr>
<tr>
<td>Thermal resistivity: (\rho_{th}) (K-m/W)</td>
<td>Electrical resistivity: (\rho_{el}) ((\Omega \cdot m))</td>
</tr>
<tr>
<td>Thermal conductivity: (\kappa) (W/K-m)</td>
<td>Electrical conductivity: (\sigma) ((S/m))</td>
</tr>
<tr>
<td>Specific heat: (c_p) (J/kg-K)</td>
<td>Permittivity: (\varepsilon) ((F/m))</td>
</tr>
</tbody>
</table>
Thermal Model (I)

- **Suspension SiO₂ beams:**
 \(1/R_{\text{beam}}\): thermal conductance of the suspension beams.

- **Floating SiO₂ membrane:**
 \(G_{\text{film}}\): parasitic conductance for the undesired heat loss in the SiO₂ membrane caused by convection, conduction and radiation through the gas or substrate.
 \(C_{\text{film}}\): heat capacity of the membrane.

- **Polysilicon sensor:**
 \(G_{\text{sen}}\): the desired conductance created by the physical signal (i.e. heat convection of the sensor caused by gas flow).

\[
C \frac{dT}{dt} = P - G \Delta T_{\text{film}}
\]

\[
G = \frac{1}{R_{\text{beams}}} + G_{\text{film}} + G_{\text{sen}}
\]
\[C \frac{dT}{dt} = P - G \Delta T_{film} \]

\[G = \frac{1}{R_{beams}} + G_{film} + G_{sen} \]

In a steady state situation:
\[\Delta T_{film} = T - T_{ambient} = \frac{P}{\left(\frac{1}{R_{beams}} + G_{film} + G_{sen} \right)} \]

In a transient situation:
\[\Delta T_{film}(t) = \frac{P}{1/R_{beam} + G_{film} + G_{sen}} (1 - \exp(-t/\tau_{film})) \]

\[\tau_{film} = \frac{C_{film}}{G_{film} + G_{sen} + 1/R_{beam}}. \]
Suspension SiO$_2$ beam:

Field Oxide = 0.6 μm

$O_{X1}=0.8$ μm \{D=2.0 μm\}

$O_{X2}=0.6$ μm

$L/W=3$

$\kappa=0.014 [W/(^\circ C-cm)]$ for SiO$_2$

$$R_{\text{beam}} = \left(\frac{L}{W}\right)\left(\frac{1}{kD}\right) = (3)\left(\frac{1}{0.014 \times 2.0 \times 10^{-4}}\right) = 1.07 \times 10^6$$

$$R_{\text{beams}} = \frac{R_{\text{beam}}}{4} = 2.68 \times 10^5 \, [^\circ C/W]$$

Assume no heat loss in membrane $G_{\text{film}} = 0$ and no flow $G_{\text{sen}} = 0$

$$R_{\text{th}} = R_{\text{beams}} = \frac{\Delta T}{P}$$

$$P = \frac{\Delta T}{R_{\text{beams}}} = \frac{300}{2.68 \times 10^5} = 1.12 \text{mW}$$

\Rightarrow only 1.12 mW power required to raise the temperature 300$^\circ$C:
Thermal RC Circuit and Time Constant

\[\Delta T_{\text{flm}}(t) = \frac{P}{1/R_{\text{beam}} + G_{\text{flm}} + G_{\text{sen}}} (1 - \exp(-t/\tau_{\text{flm}})) \]

\[\tau_{\text{flm}} = \frac{C_{\text{flm}}}{G_{\text{flm}} + G_{\text{sen}} + 1/R_{\text{beam}}} \]
Sensor Signal and Interface

Constant current mode:

Saturation: \(V_{ds} = V_{gs} - V_t \)

\[
I_{ds} = \frac{\beta}{2} (V_{gs} - V_t)^2
\]

Eq(2-5) in Ch1

Free standing polysilicon resistor \(R \)

Apply current \(I \) ⇒ self heating by \(P = I^2R \)

Flow velocity \(v \) ⇒ Cool by convection ⇒ Resistance ↓ (positive TCR)

\[\Rightarrow V_{\text{sensor}} = IR \]