Groundbreaking Scientific Results Prove that the Proposition of Human Medical Biostasis has Potential and Needs to Be Brought into Mainstream Scientific and Medical Focus

Recently we have seen scientific evidence that long-term memory is not modified by the process of whole organism cryopreservation through vitrification and revival in simple animal models (C. elegans nematode), supplementing knowledge that other small animals with nervous systems can also be healthily revived after storage in liquid nitrogen at a temperature of –196°C (O. jantseanus leech).

Earlier we also knew that in mammalian hippocampal brain slices viability, ultrastructure, and the electrical responsiveness of the neurobiological molecular machinery that elicits long-term potentiation, a mechanism of memory, can be preserved without appreciable damage following cryopreservation. Published transmission and scanning electron microscopic images from a whole brain cryopreserved through vitrification and also indicate structural integrity.

And now, a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC) provides a strong proof that brains can be preserved well enough at low temperature for neural connectivity (the connectome) to be completely visualized. The connectome is believed to be an important encoding mechanism for memory and personal identity (sense of self/where the mind lives) within the brain.

Frames from a FIB-SEM stack of rabbit neuropil near the CA1 band of the hippocampus. “Overall structural preservation is excellent: processes are clearly defined and organelles are intact. When observing slices of this volume in sequence, it is easy to track the progression of any process through the stack, demonstrating that connectivity in this region was not impaired by our preservation method (see full video available in online supplemental materials)”. “KR8H washout solution. Vitrified; CPA removed by diffusion. Experiment date: 2015-04-15.” Source: R.L. McIntyre, G.M. Fahy / Cryobiology 71 (2015).

This is a truly groundbreaking result and puts the proposition of human medical biostasis as a way to save humans who otherwise would die squarely within the realm of what may be possible.

This technology and these results were recently published by Robert McIntyre and Dr. Gregory Fahy in the journal Cryobiology of the Society for Cryobiology. Dr Fahy is the inventor of large tissue vitrification (Cryobiology 21, 407-426 (1984) and Nature 313, 573 - 575 (1985)), the Chief Science Officer of organ banking R&D firm, 21st Century Medicine, Inc., and a Fellow of the Society for Cryobiology. Lead scientist Robert McIntyre is a recent MIT graduate and neuroscientist.
First demonstration that long-term structural preservation of an intact mammalian brain is achievable and wins the Brain Preservation Prize

“This result directly answers what has been the main scientific criticism against cryonics - that it does not provably preserve the delicate synaptic circuitry of the brain - and sets the stage for renewed interest, research, and debate within the mainstream scientific and medical communities”

Brain Preservation Foundation a press release

These results come five years after the Brain Preservation Foundation (BPF) launched the Brain Preservation Prize. According to the BPF, 21st Century Medicine narrowly beat a team led by Dr. Shawn Mikula at the Max Planck Institute of Neurobiology, which focused on chemical preservation and plastic embedding without cryopreservation (published last year in Nature Methods).

In addition to proof of this accomplishment, and the full “Aldehyde-Stabilized Cryopreservation” protocol recently being published in the journal Cryobiology by 21CM it has also been independently verified by the BPF through extensive electron microscopic examination (link also includes videos). The prize was independently judged by neuroscientists Dr. Sebastian Seung, Professor at Princeton University and Dr. Kenneth Hayworth, President of the BPF.

“Imagine being able save, and at low temperatures, indefinitely preserve people who can no longer be sustained by contemporary medicine so that future medicine can both revive them and restore their health – these results provide strong support of that being possible”

Dr. JP de Magalhães, Chair
The UK Cryonics and Cryopreservation Research Network

“In the winning of the Brain Preservation Prize, one of the, if not THE, most important scientific results in the history of medical biostasis and cryonics has been accomplished”

Aschwin de Wolf, President
The Institute for Evidence-Based Cryonics

“Every neuron and synapse looks beautifully preserved across the entire brain. Simply amazing given that I held in my hand this very same brain when it was a vitrified glassy solid... This is not your father’s cryonics”

Dr. Kenneth Hayworth, BPF President and Co-Judge of Brain Preservation Prize
What Does This Breakthrough Mean (and NOT Mean) for Cryonics - Our Perspectives

(Any of the below can be attributed as quotes from Aschwin, Chana or João Pedro)

• Aldehyde Stabilized Cryopreservation (ASC) is a proof-of-concept that brains can be preserved well enough at low temperature for neural connectivity (the connectome) to be completely visualized using current technology. The connectome is believed to be an important encoding mechanism for memory and personal identity (sense of self/where the mind lives) within the brain.

• This is a truly groundbreaking result and puts the proposition of human medical biostasis as a way to save humans who otherwise would die squarely within the realms of what may be possible. Medical biostasis now clearly warrants mainstream scientific discussion, evaluation and focus.

• The avoidance of freezing damage in ASC is based on vitrification, a technology from mainstream organ banking research that was introduced in cryonics in 2001 by Alcor Life Extension Foundation.

• The implementation of ASC that is winning the first Brain Preservation Prize also utilized a blood-brain barrier opening technology first studied for cryonics use by cryobiologist Dr. Yuri Pichugin at the Cryonics Institute ten years ago.

• The idea of ASC (even including specific use of the chemical glutaraldehyde) originated with Dr. Eric Drexler’s book Engines of Creation in 1986 under the name “fixation and vitrification” where it was specifically suggested for use in cryonics.

• At the same time it is crucial to note that we primarily see this accomplishment as an important stepping stone towards biologically reversible stasis through cryopreservation/vitrification without the destructive nature of fixation and cross-linkages. Such approaches better meet precautionary/conservative principles about ensuring that everything that is needed in order to preserve a human’s entire self actually been preserved.

 • In fact, even though the general idea of ASC has existed since 1986, the field of cryonics has preferred to avoid use of chemical fixation because the resulting chemical changes (the same as embalming) are extreme and difficult to evaluate in the absence of at least residual viability.

 • Fixation is also known to increase freezing damage if cryoprotectant penetration is inadequate, further adding to the risk of using fixation under non-ideal conditions that are common in cryonics.

 • If future research shows that ASC can indeed preserve enough information to permit computer emulation of animal brains, this will have to be reevaluated.

• The first proposed revival method for ASC was actually reversal of chemical cross-links and repair by molecular nanotechnology resulting in revival of a biologically natural human, not mind uploading (see Engines of Creation).

 • Therefore, while the combination of ASC, destructive scanning, and mainstream brain emulation research may provide a route to cryonics revival, ASC is also compatible with revival in natural biological form by using foreseeable molecular nanotechnology.

For more color, references and suggestions on scientistics to talk with contact:

Aschwin de Wolf, President
+1 503 432 5515

Chana Phaedra, Executive Director
+1 503 756 0864

Institute for Evidence-Based Cryonics
contact@evidencebasedcryonics.org

Dr. JP de Magalhães, Chair, The UK Cryonics and Cryopreservation Research Network
+44 151 7954517

aging@liverpool.ac.uk

Appendix – Context in which You May Want to Cover This

• Ever more leading people believe that it may be possible to arrest aging within a generation. Just two examples of significant efforts towards this end include
 o Google starting a new company called Calico with at least $1.5 billions in “seed funding” that has the aim defeating death and that has recruited world class scientific and business talent, including former Genentech CEO and Apple Chairman Dr. Art Levinson
 o Meanwhile, Dr. Craig Venter, who famously tied the US government to sequence the first human genome and then created the first organism with a synthetic genome, has formed Human Longevity, Inc to work on ending aging
 o And Peter Thiel, who co-founded PayPal and is a successful biotech investor is making big investments in life and health extension via his investment firms and the SENS Foundation

• But without a path towards medical time travel through medical biostasis or human cryopreservation millions, if not billions, of humans will die before achieving “longevity escape velocity”

• As of now, 69 scientists are signatories to the “Scientists’ Open Letter on Cryonics” that is administrated by the Institute for Evidence-Based Cryonics
 o Signatories encompass all disciplines relevant to cryonics, including Biology, Cryobiology, Neuroscience, Physical Science, Nanotechnology and Computing, Ethics and Theology.
 o The signatories include leading scientists from institutes such as MIT, Harvard, NASA and Cambridge University to name a few.

• Just last years scientists began to come together in the UK and founded The UK Cryonics and Cryopreservation Network

• The definition of what constitutes death continues to evolve and there now is a consensus that it is a process and not an event that occurs at a given moment
 o More and more cases are reported and document in leading journals like the Lancet of people who in accidents in the cold enter a state of suspended animation for hours without heart beat or brain activity and are then resuscitated after being considered clinically dead
 o And more and more surgical procedures rely on this phenomenon, intentionally arresting brain activity with the help of hypothermia and drugs.
 o Recently the FDA even approved Defense Department funded clinical trials to induce profound hypothermia (<10°C) in critically injured trauma victims, effectively shutting the brain down and restarting it later to buy time to save the patient’s life

• The public’s interest has increased after for instance
 o The New York Time’s Cover on "A Dying 23 Year Young Woman’s Hope in Cryonics and a Future"
 o Media from all over the world featured the youngest person to be cryogenically preserved
 - a two year old baby
 Each of these recent 2015 stories generated perhaps the largest amount of public discussion of cryonics since Ted Williams was cryopreserved

• Leading to mainstream scientists and physicians entering the debate in support of the concept of cryonics – see for instance the recent piece: The Science Surrounding Cryonics in the MIT Technology Review

• And “More than 1/5th of Germans Imagining Doing Cryonics” as published in a recent peer-reviewed article
• There is a growing momentum towards organ cryobanking among the worlds scientists and government agencies where the remaining sub-challenges were codified last year at a global scientific summit (Note: The high level and main sub-challenges in the banking of a heart, kidney or liver are almost identical to those of banking a brain).

• Just within the last year or so we have seen we have seen scientific evidence and publication on
 o That long-term memory is not modified by the process of whole organism cryopreservation through vitrification and revival in simple animal models:
 • For decades, C. elegans roundworms have been cryopreserved at liquid nitrogen temperatures and later revived successfully. And in October 2015 it was published, that using well-established assays for assessing recall of long-term memories practically 100% of C. elegans can survive cryopreservation through vitrification, and retain learned behaviors acquired before cryopreservation.

Right: Regardless of cryopreservation method (vitrification / slow freezing) or cryoprotectant use, memory scores of trained C. elegans after cryopreservation and warming do not differ significantly from trained but untreated controls. Left: Vitrified and revived C. elegans having healthy offspring (for generations).

 o that other animals can be healthily revived after storage in liquid nitrogen at a temperature of −196°C (ozobranchid leech)
 o [and less relevant, the 2016 publication and story in new news this month about healthily revival after 30 years of high-subzero cryopreservation (water bears)]

• Perhaps this means that we are closing in on the vision of US Founding Father (and polymath) Benjamin Franklin, who in 1773 wrote to Jacques Dubourg (French physician and inventor):

 “It appears that the doctrine of life and death in general is yet but little understood...

 I wish it were possible... to invent a method of embalming drowned persons, in such a manner that they might be recalled to life at any period, however distant; for having a very ardent desire to see and observe the state of America a hundred years hence, I should prefer to an ordinary death, being immersed with a few friends in a cask of Madeira, until that time, then to be recalled to life by the solar warmth of my dear country!

 But... in all probability, we live in a century too little advanced, and too near the infancy of science, to see such an art brought in our time to its perfection...”