Course 57
NURBS
(NonUniform Rational B-splines)
a Primer

Course Notes for SIGGRAPH 2002
San Antonio, Texas
Wednesday, July 24, 2002

David F. Rogers
Professor of Aerospace Engineering
United States Naval Academy
Annapolis, Maryland
Course Summary

A working knowledge of the underlying mathematics of NURBS is provided. An engineering approach is taken, i.e., just enough mathematics is presented to get the job done. We will concentrate on the fundamentals with the final goal the development of a fast rational B-spline (NURBS) surface algorithm.

Topics

Bézier Curves
Nonrational B-spline Curves
Rational B-spline (NURBS) Curves
Bézier Surfaces
Nonrational B-spline Surfaces
Rational B-spline (NURBS) Surfaces
A Fast NURBS Algorithm
Speaker Biography

Dave Rogers is the author of the computer graphics classics, *Mathematical Elements for Computer Graphics* and *Procedural Elements for Computer Graphics* as well as *An Introduction to NURBS, With Historical Perspective*. He is also the coeditor of four books from the state-of-the-art series on computer graphics and has published two fluid dynamics texts – *Laminar Flow Analysis* and *Computer Aided Heat Transfer Analysis*. His books have been translated into six foreign languages.

Dr. Rogers was founder and former director of the Computer Aided Design/Interactive Graphics Group at the United States Naval Academy. His early classic work in the use of B-splines and NURBS for dynamic real-time manipulation of ship hull surfaces spawned both commercial and research programs. His early work was featured in the SIGGRAPH film *The Story of Computer Graphics*.

He was series editor for the Springer-Verlag series *Monographs in Visualization* and a founding editor of the journal *Computers & Education*. He is also a member of the editorial boards of *The Visual Computer* and *Computer Aided Design*.

He was the Fujitsu Scholar at the Royal Melbourne Institute of Technology in Australia, where he helped design and establish the computer graphics laboratory. He was also a Visiting Professor at the University of New South Wales in Australia, where he lectured on computer graphics. He studied naval architecture with the Royal Corps of Naval Constructors while an Honorary Research Fellow at University College London in England.

Professor Rogers was one of the original faculty who established the Aerospace Engineering Department at the United States Naval Academy in 1964. He is currently Professor of Aerospace Engineering and Director of Aeronautics at the Academy.

Kevin Sharer, CEO of Amgen and former student of Professor Rogers, recently endowed the David F. Rogers Chair of Aerospace Engineering at the United States Naval Academy in his honor.

Dave Rogers has both an experimental and a theoretical research background. His research interests include highly interactive graphics, computer aided design and manufacturing, numerical control, computer aided education, hypersonic viscous flow, boundary layer theory, computational fluid mechanics and flight dynamics.

He is an active pilot and holds an ATP (Air Transport Pilot) rating. He is chief pilot for the flight test course at the Academy. He has flown extensively throughout the Canadian High Arctic, including to Alert at 82 degrees 30 minutes north; across the North Atlantic to Iceland, Norway, Scotland and Ireland; to Alaska; and throughout the Bahamas and the Caribbean. His photographs of the Canadian High Arctic have been featured in a photography art show. Dave frequently flies his Bonanza to SIGGRAPH. He holds a Ph.D., as well as Bachelor’s and Master’s degrees, in aeronautical engineering from Rensselaer Polytechnic Institute.
Schedule and Contents

1:30 Bèzier and B-Spline Curves
 The Genesis of NURBS (10 mins)
 A Bit of History
 Bèzier Curves (15 mins)
 Why study Bèzier curves?
 Definition
 Bernstein Basis Functions
 Examples
 Continuity
 B-spline curves (30 mins)
 A Bit of History
 Definition and Characteristics
 Convex Hulls
 Knot Vectors
 Basis Functions
 Controls
 Examples
 General Questions (5 mins)

2:30 Advanced B-Spline Curves
 Rational B-spline Curves (NURBS) (30 mins)
 A Bit of History
 Definition and Characteristics
 Rational B-Spline Basis Functions
 Examples
 Conic Sections
 Circles
 Examples
 General Questions (5 mins)

3:00 Break (30 mins)

3:30 Bèzier and B-Spline Surfaces
 Bèzier Surfaces (30 mins)
 A Bit of History
 Definition and Characteristics
 Controls
 Examples
 B-Spline Surfaces (30 mins)
 Definition and Characteristics
 Convex Hulls
 Local Control
 Examples
 General Questions (5 mins)
4:35 **Rational B-Spline Surfaces (NURBS)**
Rational B-Spline Surfaces (NURBS) (30 mins)
 - A Bit of History
 - Definition and Characteristics
 - Homogeneous Weight Effects
 - A Simple Algorithm
 - A Fast Rational B-Spline Algorithm
 - A Naive Algorithm
 - A More Efficient Algorithm
 - The Incremental Algorithm
 General Questions (10 mins)

5:15 **Course Ends**
NURBS
(NonUniform Rational B-splines)
a Primer

David F. Rogers
Professor of Aerospace Engineering
United States Naval Academy
Bézier’s Contribution
How it was
Cubic Splines

Late 1960s early 1970s
Standard for fairing
 Ship hulls
 Automobile bodies
 etc.
Cubic Splines

Data needed

- 2 End points
- 2 Slopes (tangent vectors)
Cubic Splines

Can calculate P_2'

Curvature continuity at P_2
Cubic Splines

Problem – wiggles
Cubic Splines

Creating smooth curve
Cubic Splines

Digitize points along the curve

List of digitize points

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45</td>
<td>2.93</td>
<td>10.00</td>
<td>7.10</td>
</tr>
<tr>
<td>3.00</td>
<td>3.18</td>
<td>11.00</td>
<td>7.58</td>
</tr>
<tr>
<td>4.00</td>
<td>3.65</td>
<td>12.00</td>
<td>7.92</td>
</tr>
<tr>
<td>5.00</td>
<td>4.17</td>
<td>13.00</td>
<td>8.15</td>
</tr>
<tr>
<td>6.00</td>
<td>4.77</td>
<td>14.00</td>
<td>8.25</td>
</tr>
<tr>
<td>7.00</td>
<td>5.35</td>
<td>14.20</td>
<td>8.27</td>
</tr>
</tbody>
</table>
Cubic Splines

A cubic spline curve generated from the digitized points

Notice the wiggles
Bézier’s contribution

Divorced the manipulation from the mathematics
A Bézier curve

Slope at B_1
Defining polygon
Slope at B_4
Bézier curve – Controls

Same slope – changed height
Bézier curve – Controls

Changed slope – original height
Bézier curve – Convex hull

Convex hull
Bézier curve – Convex hull
Bézier curve – Drawing slopes

Convex hull
Bézier curve — Drawing slopes

Convex hull

$B_1 \quad B_4 \quad B_2 \quad B_3$
Bézier curve — Drawing curves

Convex hull

B_1, B_2, B_3, B_4
Bézier curve – Drawing curve

Convex hull
Bézier curve – Mathematics

\[P(t) = \sum_{i=1}^{n} B_i J_{n,i}(t) \]

where

\[J_{n,i} = \binom{n-1}{i-1} t^{i-1}(1 - t)^{n-i} \]

and

\[\binom{n-1}{i-1} = \frac{(n-1)!}{(i-1)! (n-i)!} \]
Bézier curve – Mathematics

\[P(t) = \sum_{i=1}^{n} B_i J_{n,i}(t) \]

What does this mean?
Bézier curves – Mathematics

Assume $n = 4$

\[P(t) = \sum_{i=1}^{n} B_i J_{n,i}(t) = \sum_{i=1}^{4} B_i J_{4,i}(t) \]

\[= B_1 J_{4,1}(t) + B_2 J_{4,2}(t) + B_3 J_{4,3}(t) + B_4 J_{4,4}(t) \]

But what is this thing t?
Bézier curve – Mathematics

But what is this thing t?

t is a parameter

Bézier curves are parametric

t runs along the curve $0 \leq t \leq t_{\text{max}}$
Bézier curves – Mathematics

Be careful, there are three (3) components

Assume \(n = 4 \)

\[
X(t) = \sum_{i=1}^{n} x_i J_{n,i}(t) = \sum_{i=1}^{4} x_i J_{4,i}(t) = x_1 J_{4,1}(t) + x_2 J_{4,2}(t) + x_3 J_{4,3}(t) + x_4 J_{4,4}(t)
\]

\[
Y(t) = \sum_{i=1}^{n} y_i J_{n,i}(t) = \sum_{i=1}^{4} y_i J_{4,i}(t) = y_1 J_{4,1}(t) + y_2 J_{4,2}(t) + y_3 J_{4,3}(t) + y_4 J_{4,4}(t)
\]

\[
Z(t) = \sum_{i=1}^{n} z_i J_{n,i}(t) = \sum_{i=1}^{4} z_i J_{4,i}(t) = z_1 J_{4,1}(t) + z_2 J_{4,2}(t) + z_3 J_{4,3}(t) + z_4 J_{4,4}(t)
\]
Bézier curves — Continuity

B_3, B_4/C_1, C_2 must lie in straight line
Bézier curves – Geometric continuity

Two curve segments joined at ends – G^0 continuity

Two curve segments joined at ends – and tangent vectors point in same direction G^1 continuity

The tangent vector magnitudes do not have to be the same

Less restrictive than parametric continuity
Bézier curves – Parametric continuity

Two curve segments joined at ends – C^0 continuity

Two curve segments joined at ends – and tangent vectors in same direction – and tangent vectors magnitudes the same C^1 continuity

More restrictive than geometric continuity
Bézier curves – Continuity comparison
Bézier Curves - Additional Topics

Degree elevation
Degree reduction
Subdivision
Reparameterization

Additional reading:
Rogers, D. F.
An Introduction to NURBS, With Historical Perspective
Morgan Kaufmann Publishers, 2001

Piegl, L. & Tiller, W.
The NURBS Book, Springer-Verlag 1995
B-spline curves
A bit of history

Robin Forrest

Robin, at Cambridge, knew French
Robin also knew about Bézier’s work
Robin knew Bill Gordon at Syracuse University
B-spline curves

A bit of history

Rich Riesenfeld

Rich Riesenfeld was Gordon’s PhD student

Gordon sent Riesenfeld to England to learn about Bézier’s work
B-spline curves
Bézier curve difficulties

Bernstein basis is global
 No local control

Order (degree) fixed
 Equal to number of control vertices

High order (degree) required for flexibility
 Wiggles

Difficult to maintain continuity
B-spline curves – Definition

\[P(t) = \sum_{i=1}^{n+1} B_i N_{i,k}(t) \quad t_{\text{min}} \leq t < t_{\text{max}}, \quad 2 \leq k \leq n + 1 \]

- \(B_i \)s are the polygon control vertices
- \(N_{i,k}(t) \) are the normalized B-spline basis functions of order \(k \)
- \(n + 1 \) is the number of control vertices
B-spline curves – Basis functions

\[N_{i,1}(t) = \begin{cases}
1 & \text{if } x_i \leq t < x_{i+1} \\
0 & \text{otherwise}
\end{cases} \]

\[N_{i,k}(t) = \frac{(t - x_i) N_{i,k-1}(t)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - t) N_{i+1,k-1}(t)}{x_{i+k} - x_{i+1}} \]

\(x_i \)s are the elements of a knot vector

Note \(0/0 \equiv 0 \)
B-spline curves – Properties

\[N_{i,k}(t) \equiv 1 \text{ for all } t \]
\[N_{i,k}(t) \geq 0 \text{ for all } t \]

Maximum order \(k_{\text{max}} = n + 1 \)

Maximum degree, \(n \), is one less than the order

Exhibits the variation diminishing property

Follows shape of the control polygon

Transform curve – transform control polygon

Everywhere \(C^{k-2} \) continuous
B-spline curves – Convex hulls

Stronger than for Bézier curves

A point on the curve $P(t)$ lies within the convex hull of k neighboring control vertices

Notice for order, $k = 2$ the degree is one – a straight line

The B-spline curve is the control polygon
B-spline curves – Convex hulls

For $k = 3$ a larger region may contain the curve

The B-spline curve will not exactly follow polygon
B-spline curves – Convex hulls

The higher the order the less closely the B-spline curve follows the control polygon
B-spline curves – Convex hulls

The higher the order the less closely the B-spline curve follows the control polygon.
B-spline curves – Convex hulls

The higher the order the less closely the B-spline curve follows the control polygon
B-spline curves – Convex hulls

\[k = 2 \]

\[k = 3 \]

\[k = 4 \]

\[k = 6 \]

\[k = 8 \]
B-spline curves – Convex hulls

Straight segments

$k = 3$

Linear curve segment

Colinear polygon vertices

Straight line results start and stop $k - 2$ spans from the ends of the colinear segments
B-spline curves – Convex hulls
Straight segments at ends

For \(\ell \) colinear vertices then the number of linear segments at the end is at least \(\ell - k + 1 \)
B-spline curves – Convex hulls

Coincident vertices

\[k - 1 \] coincident vertices are required for the curve to pass through the vertices
The curve smoothly transitions through the coincident vertices with C^{k-2} continuity.
B-spline curves – Knot vectors

Only requirement

\[x_i \leq x_{i+1} \]

Uniform – evenly spaced

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 \\
-0.2 & -0.1 & 0 & 0.1 & 0.2 & 0.3
\end{bmatrix}
\]

Typically begin at zero

May normalize to \(0 \leq x_i \leq 1.0\)

\[
\begin{bmatrix}
0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{bmatrix}
\]
Knot vectors – Open uniform

Multiplicity equal to k at the ends

$k = 2 \quad [0 \ 0 \ 1 \ 2 \ 3 \ 3]$

$k = 3 \quad [0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3]$

$k = 4 \quad [0 \ 0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3 \ 3]$

or normalized

$k = 4 \quad [0 \ 0 \ 0 \ 0 \ 1/3 \ 2/3 \ 1 \ 1 \ 1 \ 1]$
Knot vectors – Open uniform

Formal definition

\[x_i = 0 \quad 1 \leq i \leq k \]
\[x_i = i - k \quad k + 1 \leq i \leq n + 1 \]
\[x_i = n - k + 2 \quad n + 2 \leq i \leq n + k + 1 \]

\[i \leq \max \text{ knot value} \quad n + 2 \leq i \leq \max \text{ no. of knots} \]

Curves behave most nearly like Bézier curves
Knot vectors – Open nonuniform

\[[0 \ 0 \ 0 \ 1 \ 3/2 \ 2 \ 2 \ 2] \]

\[[0 \ 0 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2] \]

Repeating knot value
Basis functions

\[N_{i,1}(t) = \begin{cases} 1 & \text{if } x_i \leq t < x_{i+1} \\ 0 & \text{otherwise} \end{cases} \]

\[N_{i,k}(t) = \frac{(t - x_i)N_{i,k-1}(t)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - t)N_{i+1,k-1}(t)}{x_{i+k} - x_{i+1}} \]

\(x_i \)'s are the elements of a knot vector

Note: 0/0 \equiv 0

Recursion relation

Dependent on knot vector
Basis functions – Dependencies

Form triangular pattern

\[N_{i,k} \]
\[N_{i,k-1} \quad N_{i+1,k-1} \]
\[N_{i,k-2} \quad N_{i+1,k-2} \quad N_{i+2,k-2} \]
\[\cdots \]
\[\cdots \]
\[N_{i,1} \quad N_{i+1,1} \quad N_{i+2,1} \quad N_{i+3,1} \quad \cdots \quad N_{i+k-1,1} \]

The single basis function in the first row depends on all those in the last row.
Basis functions – Inverse Dependencies

Form triangular pattern

\[N_{i-k+1,k} \cdot N_{i+k-1,k} \quad N_{i,k} \quad N_{i+1,k} \cdot N_{i+k-1,k} \]

\[\vdots \quad \vdots \]

\[N_{i-1,2} \quad N_{i,2} \quad N_{i+1,2} \]

\[N_{i,1} \]

Influence of a single first-order basis function \(N_{i,1} \) on higher-order basis functions
Basis functions – Sum equals one at any t

Example: $n + 1 = 4$, $k = 3$

$$[X] = [0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 2 \ 2]$$

$t = 0.6$

$$N_{1,3} + N_{2,3} + N_{3,3} + N_{4,3} = 0.16 + 0.66 + 0.18 + 0.0 = 1.0$$
Basis functions – Comparisons

Uniform and nonuniform knot vectors

\[k = 3, \ n + 1 = 5 \]

\[
[X] = [0 0 0 1 2 3 3 3]
\]

\[
[X] = [0 0 0 0.4 2.6 3 3 3]
\]

Notice: \(N_{2,3} \) and \(N_{4,3} \) pulled left and right

More influence for \(B_{2,3} \) and \(B_{4,3} \) control vertices

Less for others
Basis functions – Comparisons

Uniform and nonuniform knot vectors

\[k = 3, \quad n + 1 = 5 \]

\[[X] = [0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3] \]

\[[X] = [0 \ 0 \ 0 \ 1.8 \ 2.2 \ 3 \ 3 \ 3] \]

Notice: \(N_{3,3} \) pulled right and magnitude increased
More influence for \(B_{3,3} \) control vertex
Less for others
Basis functions – Comparisons

Multiple duplicate knot values

\[k = 3, \quad n + 1 = 5 \]

\[
[X] = [0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3]
\]

\[
[X] = [0 \ 0 \ 0 \ 1 \ 1 \ 3 \ 3 \ 3]
\]

Notice: \(N_{3,3} = 1 \) at \(t = 1 \) while all others zero

Curve passes through \(B_{3,3} \)

Continuity reduced
Basis functions – Comparisons

Multiple duplicate knot values

\[k = 3, \quad n + 1 = 5 \]

\[[X] = [0 \ 0 \ 0 \ 1 \ 1 \ 3 \ 3 \ 3] \]

\[[X] = [0 \ 0 \ 0 \ 2 \ 2 \ 3 \ 3 \ 3] \]

Notice: Now \(N_{3,3} = 1 \) at \(t = 2 \) while all others zero

Curve passes through \(B_{3,3} \)

Continuity reduced
Basis functions – Buildup

Example: \(n + 1 = 4, \quad k = 3 \)

\[
[X] = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 2 & 2
\end{bmatrix}
\]

two spans

\(k = 3 \)

\(k = 2 \)

\(k = 1 \)
Basis functions — Calculation

Example: \(n + 1 = 4, \quad k = 3 \)

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 2 & 2
\end{bmatrix}
\]

\(\text{two spans} \)

\(0 \leq t < 1 \)

\(N_{3,1}(t) = 1; \quad N_{i,1}(t) = 0, \quad i \neq 3 \)

\(N_{2,2}(t) = 1 - t; \quad N_{3,2}(t) = t; \quad N_{i,2}(t) = 0, \quad i \neq 2, 3 \)

\(N_{1,3}(t) = (1 - t)^2; \quad N_{2,3}(t) = t(1 - t) + \frac{(2 - t)}{2} t \)

\(N_{3,3}(t) = \frac{t^2}{2}; \quad N_{i,3}(t) = 0, \quad i \neq 1, 2, 3 \)
Basis functions — Calculation

Example: \(n + 1 = 4, \quad k = 3 \)

\[
\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 2 & 2 \end{bmatrix}
\]

\(1 \leq t < 2 \)

\(N_4,1(t) = 1; \quad N_{i,1}(t) = 0, \quad i \neq 4 \)

\(N_{3,2}(t) = (2 - t); \quad N_{4,2}(t) = (t - 1); \quad N_{i,2}(t) = 0, \quad i \neq 3, 4 \)

\(N_{2,3}(t) = \frac{(2 - t)^2}{2} \)

\(N_{3,3}(t) = \frac{t(2 - t)}{2} + (2 - t)(t - 1); \)

\(N_{4,3}(t) = (t - 1)^2; \quad N_{i,3}(t) = 0, \quad i \neq 2, 3, 4 \)
B-spline & Bézier Curves

If \(k = n + 1 \)

and

an open knot vector is used

then

the B-spline curve is a Bézier curve

The knot vector is:

\(k \) zeros followed by \(k \) ones

\(k = 4, \ [X] = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1] \)
B-spline Curves – Controls

Change type of knot vector
 open uniform
 open nonuniform

Change order k

Change number/position of control vertices

Use multiple coincident control vertices

Use multiple equal internal knot values
B-spline Curves – Controls

Type of knot vector

\[n + 1 = 5, \quad k = 3 \]

\[
[X] = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 3 & 3 & 3
\end{bmatrix} \quad \text{Open uniform}
\]

\[
[X] = \begin{bmatrix}
0 & 0 & 0 & 0.4 & 2.6 & 3 & 3 & 3
\end{bmatrix} \quad \text{Open nonuniform}
\]
B-spline Curves – Control

Change order

\(n + 1 = 4, \quad k = 2, 3, 4 \)

\(k = 2 \quad [X] = [0 \ 0 \ 1 \ 2 \ 3 \ 3] \)

\(k = 3 \quad [X] = [0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 2] \)

\(k = 4 \quad [X] = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1] \)
B-spline Curves – Control

Multiple Coincident Vertices

\(k = 4, \quad n + 1 = 4, 5, 6 \)

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} \quad \text{Single vertex}
\]

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 2
\end{bmatrix} \quad \text{Double vertex}
\]

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 3 & 3 & 3 & 3
\end{bmatrix} \quad \text{Triple vertex}
\]
B-spline Curves – Control
Multiple Internal Knot Values

\[n + 1 = 5, \quad k = 3 \]

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 3 & 3 & 3 & 3
\end{bmatrix}
\]

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 1 & 3 & 3 & 3 & 3
\end{bmatrix} \quad \text{Duplicate knot value}
\]
B-spline Curves – Fitting

Given a data set find a B-spline curve that “fairs” the data

For each data point

\[D_j(t_j) = N_{1,k}(t_j)B_1 + N_{2,k}(t_j)B_2 + \cdots + N_{n+1,k}(t_j)B_{n+1} \]

where \(2 \leq k \leq n + 1 \leq j \)
B-spline Curves – Fitting

Writing the equation for each of \(j \) data points yields

\[
D_1(t_1) = N_{1,k}(t_1)B_1 + N_{2,k}(t_1)B_2 + \cdots + N_{n+1,k}(t_1)B_{n+1}
\]
\[
D_2(t_2) = N_{1,k}(t_2)B_1 + N_{2,k}(t_2)B_2 + \cdots + N_{n+1,k}(t_2)B_{n+1}
\]
\[
\vdots
\]
\[
D_j(t_j) = N_{1,k}(t_j)B_1 + N_{2,k}(t_j)B_2 + \cdots + N_{n+1,k}(t_j)B_{n+1}
\]

where \(2 \leq k \leq n + 1 \leq j \)

This system of equations is more compactly written in matrix form
B-spline Curves – Fitting

In matrix form

\[[D] = [N][B] \]

where

\[[D]^T = [D_1(t_1) \quad D_2(t_2) \quad \ldots \quad D_j(t_j)] \]

\[[B]^T = [B_1 \quad B_2 \quad \ldots \quad B_{n+1}] \]

\[[N] = \begin{bmatrix}
N_{1,k}(t_1) & \cdots & \cdots & N_{n+1,k}(t_1) \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
N_{1,k}(t_j) & \cdots & \cdots & N_{n+1,k}(t_j)
\end{bmatrix} \]

Three problems
B-spline Curves – Fitting

Parameter value for each \(D_j(t_j) \)

A useful approximation is the chord distance

\[
\begin{align*}
 t_1 &= 0 \\
 \frac{t_\ell}{t_{\text{max}}} &= \frac{\sum_{s=2}^{\ell} |D_s - D_{s-1}|}{\sum_{s=2}^{j} |D_s - D_{s-1}|} \quad \ell \geq 2
\end{align*}
\]

The maximum parameter value, \(t_{\text{max}} \), is usually the maximum value of the knot vector.
B-spline Curves – Fitting

Number control vertices equals number of data points, \(2 \leq k \leq n + 1 = j \)

\[
[D] = [N][B]
\]

\([N]\) is square

Control polygon is obtained directly by matrix inversion.

\[
[B] = [N]^{-1}[D] \quad 2 \leq k \leq n + 1 = j
\]

The resulting B-spline curve passes through each data point.

But, it may wiggle.
B-spline Curves – Fitting

Example

Number control vertices is equal to the number of data points, \(2 \leq k \leq n + 1 = j\)

\(k = 3, n + 1 = 5, j = 5\) \([N]\) is square

Curve passes through each data point
B-spline Curves - Fitting

Number control vertices is less than the number of data points, $2 \leq k \leq n + 1 < j$

$$[D] = [N][B]$$

$[N]$ is NOT square

Control polygon is obtained in a mean sense

$$[N]^T[D] = [N]^T[N][B]$$

The resulting B-spline curve does NOT pass through each data point

The curve is “faired” through the data points
B-spline Curves – Fitting

Example

Number control vertices is not equal to the number of data points, $2 \leq k \leq n + 1 < j$

$k = 3$, $n + 1 = 4$, $j = 5$ \([N] \) is not square

Curve does not pass through each data point
B-spline Curves - Conic sections

Nonrational B-spline curves cannot precisely represent the conic sections

Circles
Ellipses
Parabolas
Hyperbolas
B-spline Curves - Additional Topics

Degree elevation
Degree reduction
Knot insertion
Subdivision
Reparameterization

Additional reading:
Rogers, D. F.
An Introduction to NURBS, With Historical Perspective
Morgan Kaufmann Publishers, 2001

Piegl, L. & Tiller, W.
The NURBS Book, Springer-Verlag 1995
Rational B-spline Curves (NURBS)

Bézier and nonrational B-splines are a subset (special case) of rational B-splines (NURBS)

Rational B-splines provide a single precise mathematical form for:

- lines
- planes
- conic sections (circles, ellipses ...)
- free form curves
- quadric surfaces
- sculptured surfaces
Rational B-splines

Ken Versprille

First to discuss rational B-splines
PhD dissertation at Syracuse University
Rational B-spline curves – Definition

Defined in 4-D homogeneous coordinate space
Projected back into 3-D physical space

In 4-D

\[P(t) = \sum_{i=1}^{n+1} B^h_i N_{i,k}(t) \]

where

- \(B^h_i \)s are the 4-D homogeneous control vertices
- \(N_{i,k}(t) \)s are the nonrational B-spline basis functions
- \(k \) is the order of the basis functions
Rational B-spline curves – Definition

Projected back into 3-D physical space
Divide through by homogeneous coordinate

\[P(t) = \frac{\sum_{i=1}^{n+1} B_i h_i N_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}(t)} = \sum_{i=1}^{n+1} B_i R_{i,k}(t) \]

\(B_i \)'s are the 3-D control vertices

\[R_{i,k}(t) = \frac{h_i N_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}(t)} \quad h_i \geq 0 \]

\(R_{i,k}(t) \)'s are the rational B-spline basis functions
Rational B-spline curves – Properties

\[\sum_{i=1}^{n+1} R_{i,k}(t) \equiv 1 \text{ for all } t \]
\[R_{i,k}(t) \geq 0 \text{ for all } t \]
\[R_{i,k}(t), \quad k > 1 \text{ has precisely one maximum } \]
\[k_{\text{max}} = n + 1 \]

Maximum degree = \(n \)

Exhibits variation diminishing property

Follows shape of the control polygon

Transform curve – transform control polygon

Lies within union of convex hulls of \(k \) successive control vertices if \(h_i > 0 \)

Everywhere \(C^{k-2} \) continuous
Rational B-spline basis functions

Comparisons: \(n + 1 = 5, \quad k = 3 \)

\[
[X] = [0 \ 0 \ 0 \ 1 \ 2 \ 3 \ 3 \ 3], \quad [H] = [1 \ 1 \ h_3 \ 1 \ 1]
\]
Rational B-spline curves – Control

Same as nonrational B-splines
plus
Manipulation of the homogeneous weighting factor
Rational B-spline Curves – Control

Homogeneous weighting factor

\(n + 1 = 5, \quad k = 3 \)

\[
\begin{bmatrix}
X
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & 3 & 3 & 3
\end{bmatrix}
\]

\[
\begin{bmatrix}
H
\end{bmatrix} = \begin{bmatrix}
1 & 1 & h_3 & 1 & 1
\end{bmatrix}
\]
Rational B-spline Curves – Control

Move single vertex, $n + 1 = 5$, $k = 4$

$$[X] = [0 \ 0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 2 \ 2], \quad [H] = [1 \ 1 \ \frac{1}{4} \ 1 \ 1]$$
Rational B-spline Curves – Control

Multiple vertices

\[
\begin{bmatrix}
X \\
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 & 2 \\
\end{bmatrix}
\]
\(n + 1 = 5, \ k = 4\)

\[
H =
\begin{bmatrix}
1 & 1 & 1/4 & 1 & 1 \\
\end{bmatrix} \text{ single vertex}
\]

\[
\begin{bmatrix}
X \\
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 2 & 3 & 3 & 3 & 3 \\
\end{bmatrix}
\]
\(n + 1 = 6, \ k = 4\)

\[
H =
\begin{bmatrix}
1 & 1 & 1/4 & 1/4 & 1 & 1 \\
\end{bmatrix} \text{ double vertex}
\]

\[
\begin{bmatrix}
X \\
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 4 & 4 & 4 \\
\end{bmatrix}
\]
\(n + 1 = 7, \ k = 4\)

\[
H =
\begin{bmatrix}
1 & 1 & 1/4 & 1/4 & 1/4 & 1 & 1 \\
\end{bmatrix} \text{ triple vertex}
\]
Rational B-spline Curves – Conic Sections

Conic sections described by quadratic curves
Consider quadratic rational B-spline

\[[X] = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1]; \ n + 1 = 3, \ k = 3 \]

\[P(t) = \frac{h_1 N_{1,3}(t) B_1 + h_2 N_{2,3}(t) B_2 + h_3 N_{3,3}(t) B_3}{h_1 N_{1,3}(t) + h_2 N_{2,3}(t) + h_3 N_{3,3}(t)} \]

A third-order rational Bézier curve

Convenient to assume \(h_1 = h_3 = 1 \)

\[P(t) = \frac{N_{1,3}(t) B_1 + h_2 N_{2,3}(t) B_2 + N_{3,3}(t) B_3}{N_{1,3}(t) + h_2 N_{2,3}(t) + N_{3,3}(t)} \]
Rational B-spline Curves – Conic Sections

$h_2 = 0$ a straight line
$0 < h_2 < 1$ an elliptic curve segment
$0 < h_2 = 1$ a parabolic curve segment
$h_2 > 1$ a hyperbolic curve segment
Rational B-spline Curves

Conic Sections – Circles
Control vertices form isosceles triangle
Multiple internal knot values
Specific value of the homogeneous weight, $h_2 = 1/2$

$n + 1 = 3, \ k = 3, \ [X] = [0 \ 0 \ 0 \ 1 \ 1 \ 1], \ [H] = [1 \ \frac{1}{2} \ 1]$

Full circle uses three 120° arcs
Rational B-spline Curves

Conic Sections – Circles

Three 120° arcs

\[
[X] = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 3
\end{bmatrix}; \quad k = 3
\]

\[
[H] = \begin{bmatrix}
1 & 1/2 & 1 & 1/2 & 1 & 1/2 & 1
\end{bmatrix}
\]
Rational B-spline Curves

Conic Sections – Circles

Four 90° arcs

\[
\begin{bmatrix}
X
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4
\end{bmatrix};
\quad k = 3
\]

\[
\begin{bmatrix}
H
\end{bmatrix} =
\begin{bmatrix}
1 & \sqrt{2}/2 & 1 & \sqrt{2}/2 & 1 & \sqrt{2}/2 & 1 & \sqrt{2}/2 & 1
\end{bmatrix}
\]
Bézier Surfaces

Parametric surface

Two degrees of freedom: u, w
Bézier Surfaces – Definition

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} J_{n,i}(u) K_{m,j}(w); \quad 0! \equiv 1; \quad 0^0 \equiv 1 \]

where

\[J_{n,i}(u) = \binom{n-1}{i-1} u^{i-1} (1-u)^{n-i}; \quad K_{m,j}(w) = \binom{m-1}{j-1} w^{j-1} (1-w)^{m-j} \]

with

\[\binom{n-1}{i-1} = \frac{(n-1)!}{(i-1)!(n-i)!}; \quad \binom{m-1}{j-1} = \frac{(m-1)!}{(j-1)!(m-j)!} \]
Bézier Surfaces – Polygon Net

Not necessarily square
Each boundary is a Bézier curve
Bézier surfaces – Characteristics

Degree one less than number of control vertices in each parametric direction

Continuity two less than number of control vertices in each parametric direction

Surface follows shape of control net

Surface and control net coincident only at corner points

Surface lies within convex hull of control net

Does not exhibit variation diminishing property

Transform surface – transform control net
Bézier Surfaces – Controls

control tangent vectors at corners

influence "internal curvature" at corners
Bézier Surfaces – Controls

Effect of tangent vector magnitude
Bézier Surfaces – Controls

Effect of tangent vector direction
Bézier Surfaces – Controls

Effect of twist vector magnitude
Bézier Surfaces – Local Control

Note no change in slope at the corner

(b)
Nonrational B-spline Surfaces – Definition

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} N_{i,k}(u) M_{j,\ell}(w) \]

where

\[N_{i,1}(u) = \begin{cases}
1 & \text{if } x_i \leq u < x_{i+1} \\
0 & \text{otherwise}
\end{cases} \]

\[N_{i,k}(u) = \frac{(u - x_i) N_{i,k-1}(u)}{x_{i+k-1} - x_i} + \frac{(x_{i+k} - u) N_{i+1,k-1}(u)}{x_{i+k} - x_{i+1}} \]

and

\[M_{j,1}(w) = \begin{cases}
1 & \text{if } y_j \leq w < y_{j+1} \\
0 & \text{otherwise}
\end{cases} \]

\[M_{j,\ell}(w) = \frac{(w - y_j) M_{j,\ell-1}(w)}{y_{j+\ell-1} - y_j} + \frac{(y_{j+\ell} - w) M_{j+1,\ell-1}(w)}{y_{j+\ell} - y_{j+1}} \]
B-spline surfaces – Characteristics

Maximum order, \(k, \ell \) is the number of control vertices in each parametric direction

Continuity \(C^{k-2}, C^{\ell-2} \) in each parametric direction

Variation diminishing property is not known

Transform surface – transform control net

Influence of single control vertex is \(\pm \frac{k}{2}, \pm \frac{\ell}{2} \)

If \(n + 1 = k, m + 1 = \ell \) a Bézier surface results

Triangulated, the control net forms a planar approximation to the surface

Lies within the union of convex hulls of \(k, \ell \) neighboring control vertices
Nonrational B-spline Surfaces
Colinear net lines

\[k = 3, \ l = 3 \]
\[n+1 = 4, \ m+1 = 4 \]

Ruled in the \(w \) direction
Smoothly curved in the \(u \) direction
Nonrational B-spline Surfaces
Colinear net lines

\[k = 3, \quad l = 3 \]
\[n+1 = 4, \quad m+1 = 4 \]

Ruled in the \(w \) direction
Embedded flat area in the \(u \) direction
Nonrational B-spline Surfaces
Colinear net lines

\[k = 3, \ l = 3 \]
\[n+1 = 4, \ m+1 = 4 \]

Larger flat area in the \(u \) direction

\[k = 3, \ l = 3 \]
\[n+1 = 7, \ m+1 = 4 \]
Nonrational B-spline Surfaces
Colinear net lines

$k = 3, l = 3$
$n+1 = 7, m+1 = 7$

Embedded flat area in the center
Embedded flat area on each side
Curved corners
Nonrational B-spline Surfaces

Colinear net lines

\[k = 4, \; l = 4 \]
\[n+1 = 7, \; m+1 = 4 \]

Three coincident net lines in the \(w \) direction generate hard line in surface

Still \(C^{k-2}, \; C^{\ell-2} \) continuous in both parametric directions
Nonrational B-spline Surfaces
Coincident net lines

$k = 4, \ l = 4$
$n+1 = 7, \ m+1 = 7$

Three coincident net lines in u and w directions generate hard two hard lines and a point in the surface

Still $C^{k-2}, \ C^{\ell-2}$ continuous in both parametric directions
Nonrational B-spline Surfaces
Local control

Control net

Surface

$k = 4, l = 4$
$n + 1 = 9, m + 1 = 9$

Local influence is $\pm k/2, \pm l/2$
Nonrational B-spline Surfaces
Surface fitting

Topologically rectangular $r \times s$ data set
Control net is $2 \leq k \leq n + 1 \leq r$ and $2 \leq \ell \leq m + 1 \leq s$
Nonrational B-spline Surfaces
Surface fitting

\[D_{1,1}(u_1, w_1) = \]
\[N_{1,k}(u_1) [M_{1,\ell}(w_1)B_{1,1} + \cdots + M_{m+1,\ell}(w_1)B_{1,m+1}] + \]
\[\vdots \]
\[N_{n+1,k}(u_1) [M_{1,\ell}(w_1)B_{n+1,1} + \cdots + M_{m+1,\ell}(w_1)B_{n+1,m+1}] \]

\(u_1, w_1 \) are the parameter values for each data point
Nonrational B-spline Surfaces
Surface fitting

Rewrite in matrix form

\[[D] = [C][B] \]

where

\[[D] \text{ is an } r \times s \times 3 \text{ matrix of the data points} \]

\[[C] \text{ is an } r \times s \times n \times m \text{ matrix of the products of the B-spline basis functions, i.e.,} \]

\[C_{i,j} = N_{i,k}M_{j,\ell} \]

\[[B] \text{ is an } n \times m \times 3 \text{ matrix of the three-dimensional control net vertices} \]
B-spline surfaces – Fitting

Parameter value for each $C_{ij}(u_i, w_j)$

A useful approximation is the chord distance
For r data points in the u parametric direction

For s data points in the w direction

The maximum parameter value is usually
the maximum value of the knot vector
in each direction
B-spline Surfaces – Fitting

Number control vertices equals number of data points

\[D = C B \]

\(C \) is square

Control net is obtained by matrix inversion

\[B = C^{-1} D \]

The resulting B-spline surface passes through each data point

But, it may wiggle.
B-spline Surfaces – Fitting

Number control vertices does not equal the number of data points

\[
[D] = [C][B]
\]

\([C]\) is not square

Control net is obtained in a mean sense by

\[
[B] = \left([C]^T [C]\right)^{-1} [C]^T [D]
\]

The resulting B-spline surface does not pass through each data point
B-spline Surfaces
Fitting – Example
B-spline Surfaces - Additional Topics

Degree elevation and reduction
Derivatives
Knot insertion
Subdivision
Reparameterization

Additional reading:
Rogers, D. F.
An Introduction to NURBS, With Historical Perspective
Morgan Kaufmann Publishers, 2001

Piegl, L. & Tiller, W.
The NURBS Book, Springer-Verlag, 1995
NURBS Surfaces – Definition

In four-dimensional homogenous coordinate space

\[
Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j}^h N_{i,k}(u) M_{j,\ell}(w)
\]

And projecting back into three space

\[
Q(u, w) = \frac{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i,j} B_{i,j}^h N_{i,k}(u) M_{j,\ell}(w)}{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i,j} N_{i,k}(u) M_{j,\ell}(w)} = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} S_{i,j}(u, w)
\]

where

- \(B_{i,j}\)s are the 3-D control net vertices
- \(S_{i,j}\)s are the bivariate rational B-spline surface basis functions
NURBS Surfaces – Definition

Basis functions

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} S_{i,j}(u, w) \]

where

\[S_{i,j}(u, w) = \frac{h_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\sum_{i1=1}^{n+1} \sum_{j1=1}^{m+1} h_{i1,j1} N_{i1,k}(u) M_{j1,\ell}(w)} = \frac{h_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\text{Sum}(u, w)} \]

and

\[\text{Sum}(u, w) = \sum_{i1=1}^{n+1} \sum_{j1=1}^{m+1} h_{i1,j1} N_{i1,k}(u) M_{j1,\ell}(w) \]

Convenient, but not necessary, to assume \(h_{i,j} \geq 0 \) for all \(i, j \)
NURBS Surfaces – Definition

Basis functions

\[S_{i,j}(u, w) = \frac{h_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\text{Sum}(u, w)} \]

\[\text{Sum}(u, w) = \sum_{i1=1}^{n+1} \sum_{j1=1}^{m+1} h_{i1,j1} N_{i1,k}(u) M_{j1,\ell}(w) \]

\(S_{i,j}(u, w) \)s are not the product of \(R_{i,k}(u) \) and \(R_{j,\ell}(w) \)

Similar shapes and characteristics to \(N_{i,k}(u)M_{j,\ell}(w) \)
NURBS surfaces – Characteristics

\[\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} S_{i,j}(u, w) \equiv 1 \]

\[S_{i,j}(u, w) \geq 0 \]

Maximum order is the number of control vertices in each parametric direction

Continuity \(C^{k-2}, C^{\ell-2} \) in each parametric direction

Transform surface – transform control net

The variation-diminishing property not known
NURBS surfaces – Characteristics

Influence of single control vertex is $\pm k/2, \pm \ell/2$

If $n + 1 = k$, $m + 1 = \ell$, a rational Bézier surface results

If $n + 1 = k$, $m + 1 = \ell$ and $h_{ij} = 1$, a nonrational Bézier surface results

Triangulated, the control net forms a planar approximation to the surface

If $h_{i,j} \geq 0$, surface lies within union of convex hulls of k, ℓ neighboring control vertices
NURBS surfaces – Characteristics

\(h_{i,j} \geq 0 \), effect of zero weights

\[\begin{align*}
B_{1,1} & \quad B_{1,2} \\
B_{2,1} & \quad B_{2,2} \\
B_{3,1} & \quad B_{3,2} \\
B_{4,1} & \quad B_{4,2} \\
B_{5,1} & \quad B_{5,2} \\
B_{3,3} & \quad B_{4,3} \\
B_{4,4} & \\
B_{5,4} & \\
\end{align*} \]

\(n + 1 = 5, \ m + 1 = 4, \ k = l = 4, \ h_{1,3} = h_{2,3} = 0 \)

Notice the straight edge and flat surface indicated by the red arrow.
NURBS surfaces – Characteristics

\[h_{i,j} \geq 0 \] effect of homogeneous weights

\[n + 1 = 5, \ m + 1 = 4, \ k = l = 4, \ h_{1,3} = h_{2,3} = 1 \]

Notice the curved edge and surface indicated by the red arrow
NURBS surfaces – Characteristics

$h_{i,j} \geq 0$ effect of homogeneous weights

$n + 1 = 5, \ m + 1 = 4, \ k = l = 4, \ h_{1,3} = h_{2,3} = 5$

Notice the flat edge and surface indicated by the red arrow
NURBS surfaces – Characteristics

\[h_{i,j} \geq 0 \] effect of homogeneous weights

\[n + 1 = 5, \quad m + 1 = 4, \quad k = l = 4 \]

All interior \(h_{i,j} = 0 \)

Notice the edge and the surface interior indicated by the red arrow.
NURBS surfaces – Characteristics

\[h_{i,j} \geq 0 \text{ effect of homogeneous weights} \]

\[n + 1 = 5, \ m + 1 = 4, \ k = l = 4 \quad \text{All interior } h_{i,j} = 500 \]

Notice the surface interior indicated by the red arrow

This is a terrible parameterization
NURBS surfaces – Characteristics

\(h_{i,j} \geq 0 \), effect of homogeneous weights
NURBS surfaces – Characteristics

\[h_{i,j} \geq 0, \text{ effect of homogeneous weights} \]
NURBS surfaces – Characteristics

\[h_{i,j} \geq 0, \text{ effect of homogeneous weights} \]

Control net \(B_{4,3} \)
Surface \(h_{4,3} = 50 \)
NURBS surfaces – Characteristics

$h_{i,j} \geq 0$, effect of homogeneous weights - comparison

$h_{4,3} = 1$

$h_{4,3} = 5$

$h_{4,3} = 50$
NURBS Surfaces – Algorithm

Nonrational B-spline surface – \(h_{i,j} = 1 \) for all \(i, j \)

Hence

\[
\text{Sum}(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i_1,j_1} N_{i_1,k}(u) M_{j_1,\ell}(w) = 1 \quad \text{for all } u, w
\]

and \(S_{i,j}(u, w) \) reduces to

\[
S_{i,j}(u, w) = \frac{h_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\text{Sum}(u, w)} = N_{i,k}(u) M_{j,\ell}(w)
\]

which yields

\[
Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} S_{i,j}(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} N_{i,k}(u) M_{j,\ell}(w)
\]

which suggests that the core algorithm is two nested loops
NURBS Surfaces – Algorithm

Nonrational B-spline surface – Example

Writing out for \(n + 1 = 4, \ m + 1 = 4, \ k = \ell = 4 \) yields

\[
Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} N_{i,k}(u) M_{j,\ell}(w) = \sum_{i=1}^{4} \sum_{j=1}^{4} B_{i,j} N_{i,4}(u) M_{j,4}(w)
\]

or

\[
Q(u, w) = N_{1,4}(B_{1,1} M_{1,4} + B_{1,2} M_{2,4} + B_{1,3} M_{3,4} + B_{1,4} M_{4,4}) \\
+ N_{2,4}(B_{2,1} M_{1,4} + B_{2,2} M_{2,4} + B_{2,3} M_{3,4} + B_{2,4} M_{4,4}) \\
+ N_{3,4}(B_{3,1} M_{1,4} + B_{3,2} M_{2,4} + B_{3,3} M_{3,4} + B_{3,4} M_{4,4}) \\
+ N_{4,4}(B_{4,1} M_{1,4} + B_{4,2} M_{2,4} + B_{4,3} M_{3,4} + B_{4,4} M_{4,4})
\]

The inner loop is within the ()
The outer loop is the multiplier \(N_{i,j}() \)
The knot vectors and basis functions are also needed
NURBS Surfaces – Algorithm

Naive nonrational B-spline surface algorithm

Specify number of control vertices in the u, w directions
Specify order in each of the u, w directions
Specify number of isoparametric lines in each of the u, w directions
Specify the control net, store in an array
Calculate the knot vector in the u direction, store in an array
Calculate the knot vector in the w direction, store in an array
For each parametric value, u
 Calculate the basis functions, $N_{i,k}(u)$, store in an array
 For each parametric value, w
 Calculate the basis functions, $M_{j,\ell}(w)$, store in an array
 For each control vertex in the u direction
 For each control vertex in the w direction
 Calculate the surface point, $Q(u,w)$, store in an array
 end loop
 end loop
 end loop
 end loop
end loop
NURBS Surfaces – Algorithm

Rational B-spline (NURBS) surface

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} \frac{h_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\text{Sum}(u, w)} \]

and

\[\text{Sum}(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i,j} N_{i,k}(u) M_{j,\ell}(w) \]

Two differences from the nonrational B-spline surface:
- Calculate and divide by the \(\text{Sum}(u, w) \) function
- Multiply by \(h_{i,j} \)

Let’s look at calculating the \(\text{Sum}(u, w) \) function
NURBS Surfaces – Algorithm

Calculating the Sum\((u, w)\) function

\[
\text{Sum}(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i,j} N_{i,k}(u) M_{j,\ell}(w)
\]

Writing this out for \(n + 1 = m + 1 = 4\), \(k = \ell = 4\) yields

\[
\text{Sum}(u, w) = \sum_{i=1}^{4} \sum_{j=1}^{4} h_{i,j} N_{i,4}(u) M_{j,4}(w)
\]

\[
= N_{1,4}(h_{1,1}M_{1,4} + h_{1,2}M_{2,4} + h_{1,3}M_{3,4} + h_{1,4}M_{4,4})
+ N_{2,4}(h_{2,1}M_{1,4} + h_{2,2}M_{2,4} + h_{2,3}M_{3,4} + h_{2,4}M_{4,4})
+ N_{3,4}(h_{3,1}M_{1,4} + h_{3,2}M_{2,4} + h_{3,3}M_{3,4} + h_{3,4}M_{4,4})
+ N_{4,4}(h_{4,1}M_{1,4} + h_{4,2}M_{2,4} + h_{4,3}M_{3,4} + h_{4,4}M_{4,4})
\]

Same form as the nonrational B-spline surface
except \(h_{i,j}\) instead of \(B_{i,j}\) – use the same algorithm
NURBS Surfaces – Algorithm

Algorithm for the Sum(u,w) function

Assume the $N_{i,k}$ and $M_{j,\ell}$ basis functions are available
Assume the homogeneous weights, $h_{i,j}$, are available
For each control vertex in the u direction
 For each control vertex in the w direction
 Calculate and store the Sum(u,w) function
 end loop
end loop
end loop
NURBS Surfaces – Algorithm

Naive rational B-spline (NURBS) surface algorithm

The inner loop now becomes

For each parametric value, \(u \)
\[\text{Calculate the basis functions, } N_{i,k}(u), \text{ store in an array} \]
For each parametric value, \(w \)
\[\text{Calculate the basis functions, } M_{j,\ell}(w), \text{ store in an array} \]
\[\Rightarrow \text{Calculate the Sum}(u, w) \text{ function} \]
\[\text{For each control vertex in the } u \text{ direction} \]
\[\text{For each control vertex in the } w \text{ direction} \]
\[\text{Calculate and store the surface point, } Q(u, w) \]
end loop
end loop
end loop
end loop
NURBS Surfaces – Algorithm

Nonrational B-spline surface

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} B_{i,j} N_{i,k}(u) M_{j,\ell}(w) \]

Rational B-spline (NURBS) surface

\[Q(u, w) = \sum_{i=1}^{n+1} \sum_{j=1}^{m+1} h_{i,j} \frac{B_{i,j} N_{i,k}(u) M_{j,\ell}(w)}{\text{Sum}(u, w)} \]

Comparing shows the rational (NURBS) algorithm requires
an additional multiply
a division
calculation of the \(\text{Sum}(u, w) \) function

Results in approximately 1/3 more computational effort
NURBS Surfaces – Algorithm

These naive algorithms are very memory efficient

However, they are computationally inefficient

Computational efficiency improved by
 avoiding the division by the $\text{Sum}(u, w)$ function
 by converting it to a multiply using the reciprocal
 avoiding entire computations
NURBS Surfaces – Algorithm

More efficient NURBS algorithm

Recall for \(n + 1 = m + 1 = 3 \), \(k = \ell = 3 \) the NURBS surface is

\[
Q(u, w) = \frac{N_{1,3}}{\text{Sum}}(h_{1,1}B_{1,1}M_{1,3} + h_{1,2}B_{1,2}M_{2,3} + h_{1,3}B_{1,3}M_{3,3}) \\
+ \frac{N_{2,3}}{\text{Sum}}(h_{2,1}B_{2,1}M_{1,3} + h_{2,2}B_{2,2}M_{2,3} + h_{2,3}B_{2,3}M_{3,3}) \\
+ \frac{N_{3,3}}{\text{Sum}}(h_{3,1}B_{3,1}M_{1,3} + h_{3,2}B_{3,2}M_{2,3} + h_{3,3}B_{3,3}M_{3,3})
\]

Recall that in many cases the basis functions are zero

If \(N_{i,j}(u, w) = 0 \), then we can avoid the entire calculation in () and the division (multiply) by \(\text{Sum}(u, w) \) (the reciprocal)

If \(M_{i,j}(u, w) = 0 \), then we can avoid two multiplies in ()

Storing the reciprocal of \(\text{Sum}(u, w) \) saves a divide at the expense of a multiply
NURBS Surfaces – Algorithm

More efficient rational B-spline (NURBS) surface algorithm

The inner loop now becomes

For each parametric value, \(u \)
 Calculate the basis functions, \(N_{i,k}(u) \), store in an array
 For each parametric value, \(w \)
 Calculate the basis functions, \(M_{j,\ell}(w) \), store in an array
⇒ Calculate and save the reciprocal of \(\text{Sum}(u, w) \)
 For \(i = 1 \) to \(n + 1 \) For each control vertex in the \(u \) direction
⇒ If \(N_{i,k}(u) \neq 0 \) then
 For \(j = 1 \) to \(m + 1 \) For each control vertex in the \(w \) direction
⇒ If \(M_{j,\ell}(w) \neq 0 \) then
 Calculate \(Q(u, w) = Q(u, w) + h_{i,j} N_{i,k}(u) M_{j,\ell}(w) \text{Sum}(u, w) \)
 end if
 end loop
⇒ end if
end loop
 Store \(Q(u, w) \); Reinitialize \(Q(u, w) = 0 \)
end loop
NURBS Surfaces – Algorithm

The improved naive algorithms are still very memory efficient

The simple changes, based on the underlying mathematics, increase the computational efficiency by 25% or more

In the late 1970s this algorithm provided the basis for a real time interactive nonrational B-spline surface design system based on directly manipulating the control net – SIGGRAPH ’80 paper

The machine was a 16 bit minicomputer with 64 Kbytes of memory driving an Evans & Sutherland Picture System I

Can we do better – Yes!
NURBS Surfaces – Algorithm

When modifying a B-spline surface, a designer typically works with a control net:

- of constant control net size, \(n+1, m+1 \), in each direction
- of constant order, \(k, \ell \), in each parametric direction
- with a constant number, \(p_1, p_2 \), of isoparametric lines in each parametric direction

Hence, \(n+1, m+1, k, \ell, p_1 \) and \(p_2 \) do not change

If these values do not change, neither do the basis functions, \(N_{i,k}(u) \) and \(M_{j,\ell}(w) \), nor the Sum\((u,w)\) function

Thus, precalculating and storing the product \(N_{i,k}(u)M_{j,\ell}(w)/\text{Sum}(u,w) \) further increases the efficiency

However, we leave this specific efficiency increase as an exercise.
NURBS Surfaces – Algorithm

When modifying a NURBS surface control net, a designer typically manipulates:
- a single control net vertex, B_{ij}
- or
- the value of a single homogeneous weight, h_{ij}

Also, assume $n + 1$, $m + 1$, k, ℓ, p_1 and p_2 do not change

Writing the NURBS surface equation for both the new and old surfaces and subtracting yields

$$
\text{Sum}_{\text{new}}(u, w)Q_{\text{new}}(u, w) = \text{Sum}_{\text{old}}(u, w)Q_{\text{old}}(u, w)
$$

$$
+ (h_{i,j_{\text{new}}}B_{i,j_{\text{new}}} - h_{i,j_{\text{old}}}B_{i,j_{\text{old}}})N_{i,k}(u)M_{j,\ell}(w)
$$

which represents an incremental calculation for the new surface.
NURBS Surfaces – Algorithm

Only a single control vertex changes

If \(h_{i,j} \) does not change, then \(\text{Sum}(u,w) \) does not change and

\[
\text{Sum}_{\text{new}}(u,w) Q_{\text{new}}(u,w) = \text{Sum}_{\text{old}}(u,w) Q_{\text{old}}(u,w)
\]

\[
+ (h_{i,j_{\text{new}}} B_{i,j_{\text{new}}} - h_{i,j_{\text{old}}} B_{i,j_{\text{old}}}) N_{i,k} M_{j,\ell}(w)
\]

becomes

\[
Q_{\text{new}}(u,w) = Q_{\text{old}}(u,w) + (B_{i,j_{\text{new}}} - B_{i,j_{\text{old}}}) \frac{h_{i,j}(u) N_{i,k} M_{j,\ell}(w)}{\text{Sum}(u,w)}
\]

Thus, incremental calculation of the new surface requires

four multiplies, one subtract, one add

for each \(u, w \)
NURBS Surfaces – Algorithm

Only a single homogeneous weight changes

If $h_{i,j}$ changes, then $\text{Sum}(u, w)$ also changes and

$$\text{Sum}_{\text{new}}(u, w)Q_{\text{new}}(u, w) = \text{Sum}_{\text{old}}(u, w)Q_{\text{old}}(u, w)$$

$$+ (h_{i,j_{\text{new}}}B_{i,j_{\text{new}}} - h_{i,j_{\text{old}}}B_{i,j_{\text{old}}})N_{i,k}(u)M_{j,\ell}(w)$$

becomes

$$Q_{\text{new}}(u, w) = \frac{\text{Sum}_{\text{old}}(u, w)}{\text{Sum}_{\text{new}}(u, w)} Q_{\text{old}}(u, w)$$

$$+ \left(h_{i,j_{\text{new}}} - h_{i,j_{\text{old}}} \right) \frac{B_{i,j}N_{i,k}(u)M_{j,\ell}(w)}{\text{Sum}_{\text{new}}(u, w)}$$

Thus, incremental calculation of the new surface requires

- six multiplies, one subtract, one add
- calculation of the new $\text{Sum}(u, w)$ function

for each u, w
NURBS Surfaces – Algorithm

Incremental Sum\((u, w)\) calculation

Writing the Sum\((u, w)\) expression for both the new and old surfaces and subtracting yields

\[
\text{Sum}_{\text{new}}(u, w) = \text{Sum}_{\text{old}}(u, w) + (h_{i,j_{\text{new}}} - h_{i,j_{\text{old}}})N_{i,k}(u)M_{j,\ell}(w)
\]

which represents an incremental calculation for the new Sum\((u, w)\) function

Thus, calculating the new Sum\((u, w)\) requires two multiplies, a subtract and an add

If either \(N_{i,k}(u)\) or \(M_{j,\ell}(w)\) are zero, the Sum\((u, w)\) function does not change
NURBS Surfaces – Algorithm

Nonrational B-spline surface incremental calculation

Recall

\[\text{Sum}_{\text{new}}(u, w)Q_{\text{new}}(u, w) = \text{Sum}_{\text{old}}(u, w)Q_{\text{old}}(u, w) \]

\[+ \left(h_{i,j_{\text{new}}}B_{i,j_{\text{new}}} - h_{i,j_{\text{old}}}B_{i,j_{\text{old}}} \right)N_{i,k}(u)M_{j,\ell}(w) \]

If \(\text{Sum}(u, w) = 1 \) and all \(h_{i,j} = 1 \), a nonrational B-spline surface is generated. The result is

\[Q_{\text{new}}(u, w) = Q_{\text{old}}(u, w) + \left(B_{i,j_{\text{new}}} - B_{i,j_{\text{old}}} \right)N_{i,k}(u)M_{j,\ell}(w) \]

Thus, calculating the new surface requires two multiplies, a subtract and an add for each \(u, w \)

If either \(N_{i,k}(u) \) or \(M_{j,\ell}(w) \) are zero, the surface point at \(u, w \) does not change.
NURBS Surfaces – Algorithm

Implemented in 1981 and published in 1982

The algorithms provide
dynamic real time interactive manipulation of
spatial position control net vertex
homogeneous weight
on modest computer systems
Fast NURBS Surface Algorithm

Use $itest = (n + 1) + (m + 1)k + \ell + p_1 + p_2$ to determine if a complete new surface is required

if $itest \neq (n + 1) + (m + 1)k + \ell + p_1 + p_2$ then
 calculate complete new surface (see previous)
else
 calculate incremental change to the surface
end if
Fast NURBS Surface Algorithm

if $(itest \neq (n + 1) + (m + 1)k + \ell + p_1 + p_2)$ then
 calculate incremental change, if any,
 in the spatial coordinate or homogeneous
 weight of the vertex being manipulated
 if (any coordinate or weight changed) then
 if (homogeneous weight changed) then
 save the old $\text{Sum}(u, w)$ function
 calculate the new $\text{Sum}(u, w)$ function
 if (no change in homogeneous weight) then
 control net vertex changed
 calculate change in surface for each u, w
 else
 homogeneous weight changed
 calculate change in surface for each u, w
 end if
 end if
 end if
save current vertex coordinates as old
save current homogeneous weight as old
end if
Fast NURBS Surface Algorithm

Efficiency improvement

- only spatial coordinate changes – factor of 38
- only homogeneous weight changes – factor of 15

over the naive algorithms
NURBS Surfaces

Additional topics

Effect of multiple coincident knot values
Effect of internal nonuniform knot values
Effect of negative weights
Reparameterization
Derivatives – Curvature
Bilinear surfaces
Ruled/Developable surfaces
Sweep surfaces
Surfaces of revolution
Conic volumes
Subdivision
Trim surfaces
Surface fitting
Constrained surface fitting
NURBS Surfaces

References

NURBS Surfaces

Recommended Books

Rogers, D.F., An Introduction to NURBS With Historical Perspective
Morgan Kaufmann Publishers, 2001

Piegl, L. and Tiller, W.,
The NURBS Book
Springer-Verlag, 1995

More advanced

Cohen, E, Riesenfeld, R, and Elber, G.
Geometric Modeling with Splines
A.K. Peters, 2001