utreexo
full nodes in kilobytes

Tadge Dryja

2019-09-09
drive / dev++ / scaling
Tel Aviv University
Current blockchain size: big.

history: 253GB (only goes up)

current state: 3.5+GB (mostly goes up)

```bash
~/.bitcoin$ du -h
253G ./blocks
3.5G ./chainstate
```
utxos
they're pretty small, less than 64 bytes for everything (script, amount, outpoint...)
small, but lots of em! ~60M now
moar utxos

source: statoshi.info
wouldn't it be cool if we didn't store the utxo set at all, but people could prove their coins exist?

accumulators!
wallets
wallets track their own utxos
if you need to update proofs after
every add / remove, do so to your utxos.
only 10s of utxos per wallet, so no problem, right...?
bootstrapping problem: transition

I'm the first accumulator node. I've got proofs for all my utxos. But nobody gives me proofs for anything! I can't validate
bridge node

The network needs, at least temporarily, a "Bridge Node"

Bridge Nodes maintain proofs for EVERY utxo

problematic for RSA accumulators

where proof updates can't be aggregated
a Merkle tree is like an accumulator. ...but you can't add to it if you only know the root

keep only the top (root)

prove inclusion of a leaf by giving a branch
utxo accumulator

let's make a hash-based accumulator for UTXOs!

A bridge node would just store the whole tree, and updates to the tree are inherently aggregated.

Need to use a bunch of trees - $O(\log(n))$ instead of $O(1)$.
perfect forest
first, how to add leaves
Then how to delete leaves. More complex & novel.
tree

It's got 4 leaves
tree

only keep the root (top)
Add a leaf -> 5
Now there are 2 trees.
Add another leaf -> 6. those 2 form their own tree.
forest

Add another leaf -> 6. those 2 form their own tree.
forest

Add again -> 7
3 trees
Add another. Now there are 8 leaves, and we know 4 of them.
tree
combine...
tree

combine..
tree

forget all but
the top
It's got 8 leaves
perfect forest adding
adding new leaves is pretty cool
we can add on the bottom right, and always have enough data to create a forest of perfect trees (all trees have 2^n leaves)
deleting
delete maintaining perfect trees, with no empty leaves
Here's how!
First, prove. Then, row by row: twin / swap / root then up to the next row
deleting

basic idea (visuals to follow)

twin: skip over two deleted siblings

swap: move nodes around to get twin pairs of deletions

root: move to or from the root on that level

(note twin & swap are optimizations, you could do it with just root, 1 at a time)
delete example 1

```
12
  / \  \
 8   9
 /   /   \
0   1   2 3

4  5  6
```
delte 2
delete example 1

delete 2

proof is 3, 8
delete example 1

6: root on row 1
move to 2
delete example 1

compute new 9

compute new 12
delete example 1

discard 6, 3, 8, 9
done
delete example 2

delete 2
(4 leaves)
delete example 2

proof is 3, 8
delete example 2

3 becomes root
delete example 2

8 becomes root
delete example 2

12 deleted
done
delete example 3

delete 2, 3, 4
delete example 3

proof is 5, 8
row 0: twin

2, 3 are twins, OK
row 0: swap

nothing to swap
row 0: root

4 last deletion, 6 is root. 6 moves to 4
row 0: root

4 last deletion, 6 is root. 6 moves to 4
row 0 -> row 1

delete 9
row 0 -> row 1

delete 9
row 1: no twin / swap
only 1 deletion,
go to root phase
row 1: root

there is a root,
10
move 10 to 9
there is a root, 10
move 10 to 9

row 1: root
row 1: done

no more deletions; we're done!
compute new root at 12
row 1: done

no more deletions; we're done!
compute new root at 12
full node
Can run a node that validates every transaction and signature, while storing very little.

Every transaction now needs to prove that the coins it spends exist, because we don't save them to disk.
bridge network

- mini node
- bridge node
- full node

Transactions: transactions
Transaction & proofs: transaction & proofs
proof sizes

biggest downside: now there are all these proofs! How big are they?

1 proof is around 20 hashes, with 5000 inputs in a block, that's 3.2MB!

4X retroactive block size increase!

Need ways to cut that down:
proof sizes: utxo lifespan
proof size
Naively, proofs are several times the transactions. IBD would be ~600GB of proofs (+250GB of tx data!)
But proofs aggregate in a block, as we saw. That brings IBD down to 7.5G hashes (~250GB)
IBD hints
The IBD server "knows the future"; the client is downloading block 50, but the server has up to block 9000. The server can give hints about what happens next. Which leaves get deleted soon, and thus which to remember.
Results: IBD to block 546000
no consensus? no problem
Not a fork. Permission not required!
Need to start with a bridge node, and
archive nodes which send block proofs
on github! many things to optimize!
github.com / mit-dci / utreexo
issues! PRs! IRC #utreexo