Schnorr Signatures are Non-Malleable in the Random Oracle Model

Andrew Poelstra

12 Feb 2014

Schnorr signatures. The Schnorr signature cryptosystem over a group G, $|G| = q$, is defined as follows. Let $g \in G$ be some generator. Let H be a hash function, modelled as a random oracle, whose image is $\{0, \ldots, x - 1\}$. All of G,q,g,H are parameters of the cryptosystem and considered public knowledge.

- **Key generation.** Choose $x \in \{1, \ldots, q - 1\}$ randomly. Then g^x is the public key, x is the secret key.

- **Signing.** Let m be the message to sign. Choose $k \in \{1, \ldots, q - 1\}$ randomly. Let $e = H(m||g^k)$, $s = k - xe$. Then (e, s) is the signature.

- **Verification.** Given (e, s), compute $g^k = (g^x)^e g^s$. (Note that k is unknown to the verifier, we are just calling this g^k for consistency with the previous step.) Then $H(m||g^k)$ can be calculated and confirmed to be e.

Malleability. We consider the advantage of a *malleating adversary* \mathcal{A} to be the probability that $g^{s'} g^{xe'} = r'$ and $e' = H(m||r')$, where (s', e') is produced by \mathcal{A} given a message m and valid signatures (s_i, e_i), $i = 1, \ldots, n$, for m. We require $(s', e') \neq (s_i, e_i)$ and allow \mathcal{A} to choose n.

Theorem 1. A malleating adversary \mathcal{A} with non-negligible advantage ε can be used to construct an ordinary forging adversary \mathcal{B} with advantage ε.

Proof. We first demonstrate that if $(s', e') \neq (s_i, e_i)$, then we must have $e' \neq e_i$. To this end, suppose that $H^A(m||r') = e' = e_i = H^A(m||r_i)$. Then since H^A is a random oracle we must have $r' = r_i$ except with negligible probability. But since $g^{s'} = (g^x)^e r = (g^x)^e r' = g^{s'}$ we must have $s_i = s'$. This contradicts $(s', e') \neq (s_i, e_i)$. (The point of this comment is that \mathcal{A} is forced to consult the oracle H to compute e'; he cannot simply modify s_i.)

Then \mathcal{B} operates by running \mathcal{A}. The hash function that \mathcal{A} sees is a random oracle H^A controlled by \mathcal{B}. Suppose we are given a public key g^e and message m, and that \mathcal{B}'s goal is to output a valid signature (S,E) such that $g^{s'} (g^e)^{s'} = R$ where $H(m||R) = E$. \mathcal{B} operates as follows.

1. First, \mathcal{A} chooses n requests n valid signatures (s_i, e_i) from \mathcal{B}. To respond to each query, \mathcal{B} chooses a pair (s_i, e_i) at random from $\{0, \ldots, q - 1\}^2$. Also, \mathcal{B} sets $H^A(m||g^e (g^e)^{s'}) = e$ so
that \(A \) will view this as a valid signature under the public key \(g^e \). Notice that since \(e_i \) is chosen uniformly at random, this is consistent with \(A \)'s view that \(H^A \) is a random oracle.

2. Next, \(A \) generates a malleated signature \((s', e') \). Write \(r = g^e \cdot (g^{e'})^e \). If \((s', e') \) does not satisfy \(H^A(m||r) \), then \(B \) quits; the attack fails. This occurs with probability \(1 - \varepsilon \).

Otherwise, since \(e' \neq e \) and \(e' = H^A(m||r) \), to produce \(e' \) with non-negligible probability \(A \) must call \(H^A \) with input \(m||r \). \(B \) responds to this query with \(H(m||r) \), that is, \(B \) gives \(A \) the "real" hash of \(m||r \).

3. At this point, we claim that the pair \((s', e') \) is a valid forged signature of \(m \). To see that this is so, notice that

\[
H(m||g^{s'}(g^{e'})^e) = H(m||r) = H^A(m||r) = e'.
\]

This completes the proof. \(\square \)