“Unfairly Linear Signatures”

Adam Gibson
June 6, 2018
Commitments Key properties (Hash, Pedersen)
Commitments Key properties (Hash, Pedersen)
ZKPOK ZKPs, Sigma protocol, Schnorr protocol
Commitments Key properties (Hash, Pedersen)
ZKPOK ZKPs, Sigma protocol, Schnorr protocol
Schnorr sigs Multisig, Adaptor sig
Commitments Key properties (Hash, Pedersen)
ZKPOK ZKPs, Sigma protocol, Schnorr protocol
Schnorr sigs Multisig, Adaptor sig
Security cf with ECDSA
Commitments Key properties (Hash, Pedersen)
ZKPOK ZKPs, Sigma protocol, Schnorr protocol
Schnorr sigs Multisig, Adaptor sig
Security cf with ECDSA
CoinSwaps
Outline

Commitments Key properties (Hash, Pedersen)

ZKPOK ZKPs, Sigma protocol, Schnorr protocol

Schnorr sigs Multisig, Adaptor sig

Security cf with ECDSA

CoinSwaps

ECDSA multisig With Paillier; adaptor
The telephone game: Alice chooses heads or tails, Bob tosses a coin. Alice wins if she guesses right.
The telephone game: Alice chooses heads or tails, Bob tosses a coin. Alice wins if she guesses right.

Alice hashes her choice: $H(\text{“tails” } + \text{ long random})$ before giving to Bob.
The telephone game: Alice chooses heads or tails, Bob tosses a coin. Alice wins if she guesses right.

Alice hashes her choice: $\mathbb{H}(\text{“tails” } + \text{ long random})$ before giving to Bob.

She can’t lie - she can’t make up any random string that gives the same hash with “heads”.
The telephone game: Alice chooses heads or tails, Bob tosses a coin. Alice wins if she guesses right.

Alice hashes her choice: $\mathcal{H}(\text{“tails” + long random})$ before giving to Bob.

She can’t lie - she can’t make up any random string that gives the same hash with “heads”.

Bob calls “heads” (he can’t know what Alice chose, so can’t get an advantage).
Commitments - 1

The telephone game: Alice chooses heads or tails, Bob tosses a coin. Alice wins if she guesses right.

Alice hashes her choice: $H(\text{“tails”} + \text{long random})$ before giving to Bob.
She can’t lie - she can’t make up any random string that gives the same hash with “heads”.
Bob calls “heads” (he can’t know what Alice chose, so can’t get an advantage).
This way Alice lost in a fair game.
Our toy example illustrated the two key properties of a commitment scheme:

- **Binding** - Alice can’t go back on her word (hash function properties)
Commitments - 2

Our toy example illustrated the two key properties of a commitment scheme:

- **Binding** - Alice can’t go back on her word (hash function properties)
- **Hiding** - Bob can’t know Alice’s choice from the commitment (randomized)
Our toy example illustrated the two key properties of a commitment scheme:

- **Binding** - Alice can’t go back on her word (hash function properties)
- **Hiding** - Bob can’t know Alice’s choice from the commitment (randomized)

Can get the same effect using Elliptic Curve points, or numbers $\in \mathbb{Z}_N$, instead of hash functions. Add randomness and use hardness of (elliptic curve) discrete log.
Pedersen commitment

\[C_x = rH + xG \]

\(x \) is the message we commit to, \(r \) is the randomness, \(C \) is the commitment, \(G \) is the elliptic curve “generator” point.
Pedersen commitment

\[C_x = rH + xG \]

\(x \) is the message we commit to, \(r \) is the randomness, \(C \) is the commitment, \(G \) is the elliptic curve “generator” point.

But what the heck is \(H \)?
$$C_x = rH + xG$$

x is the message we commit to, r is the randomness, C is the commitment, G is the elliptic curve “generator” point.

But what the heck is H?

“Nothing Up My Sleeve” numbers.
Pedersen commitment

\[C_x = rH + xG \]

\(x \) is the message we commit to, \(r \) is the randomness, \(C \) is the commitment, \(G \) is the elliptic curve “generator” point.

But what the heck is \(H \)?

“Nothing Up My Sleeve” numbers.

But what happens to hiding and binding if something is up my sleeve?
Suppose Alice knows h s.t. $H = hG$, and she committed $C_x = rH + xG$
NUMS and Binding

Suppose Alice knows h s.t. $H = hG$, and she committed $C_x = rH + xG$.
Now she wants to cheat and pretend she committed to y not $x.$
Suppose Alice knows h s.t. $H = hG$, and she committed $C_x = rH + xG$

Now she wants to cheat and pretend she committed to y not x

Sets

$C_x = yG + rH + (x - y)G = yG + \left(r + (x - y)h^{-1}\right) H$
Suppose Alice knows \(h \) s.t. \(H = hG \), and she committed \(C_x = rH + xG \).

Now she wants to cheat and pretend she committed to \(y \) not \(x \).

Sets
\[
C_x = yG + rH + (x - y)G = yG + (r + (x - y)h^{-1})H
\]

Pedersen commitments suffer from non-perfect binding as shown; but are **perfectly** hiding for the same reason.
• **Perfect** hiding and **Perfect** binding are incompatible
Imperfection

- **Perfect** hiding and **Perfect** binding are incompatible
- Best we can do? One perfect, one computational
- **Perfect** hiding and **Perfect** binding are incompatible
- Best we can do? One perfect, one computational
- Pedersen are perfect hiding (see previous slide)
Perfect hiding and Perfect binding are incompatible

Best we can do? One perfect, one computational

Pedersen are perfect hiding (see previous slide)

If you want perfect binding, cannot use compression (function not injective)
Pedersen commitments are homomorphic - I can give you a commitment to 2 and to 3 and the sum of the commitments is a commitment to 5. Very useful! But not here.
Pedersen commitments are homomorphic - I can give you a commitment to 2 and to 3 and the sum of the commitments is a commitment to 5. Very useful! But not here.

$$C_{x_A + x_B} = (r_A + r_B)H + (x_A + x_B)G$$
Pedersen commitments are homomorphic - I can give you a commitment to 2 and to 3 and the sum of the commitments is a commitment to 5. Very useful! But not here.

\[C_{x_A+x_B} = (r_A + r_B)H + (x_A + x_B)G \]

Keeping perfect hiding, you can extend to commitment to a tuple with multiple NUMS basepoints:
Pedersen commitments are homomorphic - I can give you a commitment to 2 and to 3 and the sum of the commitments is a commitment to 5. Very useful! But not here.

\[C_{x_A + x_B} = (r_A + r_B)H + (x_A + x_B)G \]

Keeping perfect hiding, you can extend to commitment to a tuple with multiple NUMS basepoints:

\[C_x = rH + x_1 G_1 + x_2 G_2 + \ldots x_n G_n \]
Zero Knowledge Proof of Knowledge

We can use a commitment scheme as a way to prove knowledge of a secret, **without revealing it**. (Notice in the telephone game, we revealed it at the end).
We can use a commitment scheme as a way to prove knowledge of a secret, **without revealing it**. (Notice in the telephone game, we revealed it at the end).

How?
We can use a commitment scheme as a way to prove knowledge of a secret, **without revealing it**. (Notice in the telephone game, we revealed it at the end).

How?
Commit to a random, then take a challenge, and respond to the challenge in a way that only knower of secret can do. This basic “game” is called a **Sigma Protocol**.
We can use a commitment scheme as a way to prove knowledge of a secret, **without revealing it**. (Notice in the telephone game, we revealed it at the end).

How?
Commit to a random, then take a challenge, and respond to the challenge in a way that only knower of secret can do. This basic “game” is called a **Sigma Protocol** Σ.
Game setup: Alice has x s.t. $P = xG$, Bob has only P.
Sigma protocol

Game setup: Alice has x s.t. $P = xG$, Bob has only P

Choose $k \leftarrow \$, send $R = kG$ \implies \
Game setup: Alice has x s.t. $P = xG$, Bob has only P

Choose $k \leftarrow \$, send $R = kG$ \quad \implies \quad \iff \quad$ Choose $e \leftarrow \$
Sigma protocol

Game setup: Alice has x s.t. $P = xG$, Bob has only P

Choose $k \leftarrow \$\$, send $R = kG$ \implies \leftarrow \quad$ Choose $e \leftarrow \$

Calculate $s = k + e \times x$ \implies
Game setup: Alice has x s.t. $P = xG$, Bob has only P.

Choose $k \leftarrow \$, send $R = kG$ \implies

\leftarrow \quad \text{Choose } e \leftarrow \$

Calculate $s = k + e \times x$ \implies

Game ends with Bob verifying $sG? = R + eP$.
Sigma protocol - reasoning

Would it work without the first step?
Would it work without the first step? No, because $e \times x$ doesn’t blind x to knower of e. k needed for blinding.
Would it work without the first step? No, because $e \times x$ doesn’t blind x to knower of e. k needed for blinding.

Would it work without the second step? (e)
Would it work without the first step? No, because $e \times x$ doesn’t blind x to knower of e. k needed for blinding.

Would it work without the second step? (e) No; “key subtraction attack”:

\[sG? = R + P = (R' - P) + P = k'G \]
Would it work without the first step? No, because \(e \times x \) doesn’t blind \(x \) to knower of \(e \). \(k \) needed for blinding.

Would it work without the second step? (\(e \)) No; “key subtraction attack”:

\[
sG? = R + P = (R' - P) + P = k'G
\]

So: \(k \) protects Alice, \(e \) protects Bob; but extra interaction step \(\rightarrow \) Alice “wins” the game without even opening the commitment!
Schnorr protocol and signature

The generic form is:
The generic form is:

(Prover P): Commitment \implies

\iff Challenge (Verifier V)

(Prover P): Response \implies
The generic form is:

\[(\text{Prover } P) : \text{Commitment} \rightarrow \leftarrow \text{Challenge (Verifier } V) \]

\[(\text{Prover } P) : \text{Response} \rightarrow \]

The description of a “Sigma protocol” in the previous was exactly the “Schnorr’s Identity Protocol” - a method of proving knowledge of a private key corresponding to a public key P in the discrete log setting. This is all very nice but . . . is it really secure?
A Zero Knowledge Proof of Knowledge must have 3 characteristics:

Completeness
If I know the secret, I can provide a valid proof

Soundness
If I don’t know the secret, I can’t.

Zero-Knowledgeness
My proof reveals nothing other than the single bit of information that I know the secret.
If the Verifier V cheats, can he extract the secret? Here “cheats” can only mean: cheats with a Prover P that executes as normal; we create different Provers in different universes to find out.
If the Verifier V cheats, can he extract the secret? Here “cheats” can only mean: cheats with a Prover P that executes as normal; we create different Provers in different universes to find out.

Yes, you read that right 😊
If the Verifier V cheats, can he extract the secret? Here “cheats” can only mean: cheats with a Prover P that executes as normal; we create different Provers in different universes to find out.

Yes, you read that right 😊 P commits; V branches the Universe and challenges in both; P responds in both.
\[x = \frac{s_1 - s_2}{e_1 - e_2} \]
\[x = \frac{s_1 - s_2}{e_1 - e_2} \]

Works due to k-reuse. The cheating verifier is called an Extractor.
Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the Verifier V? “Simulator”: he provides a transcript of the sigma protocol (R, e, s) that verifies correctly, without knowing x.
Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the Verifier V? “Simulator”: he provides a transcript of the sigma protocol (R, e, s) that verifies correctly, without knowing x. This requires getting e from V and then *rewinding*, and cheating by making a new R (see below) that will verify with the given e and a random s.
This requires assuming “Honest Verifier” — the Verifier does not make his challenge choice in any way dependent on the commitment R.
The opposite task: if the Prover P cheats, can he convince the Verifier V? “Simulator”: he provides a transcript of the sigma protocol (R, e, s) that verifies correctly, without knowing x. This requires getting e from V and then *rewinding*, and cheating by making a new R (see below) that will verify with the given e and a random s.

This requires assuming “Honest Verifier” — the Verifier does not make his challenge choice in any way dependent on the commitment R.

$$e, s \leftarrow \$, \quad R = sG - eP$$
The opposite task: if the Prover P cheats, can he convince the Verifier V? “Simulator”: he provides a transcript of the sigma protocol (R, e, s) that verifies correctly, without knowing x. This requires getting e from V and then *rewinding*, and cheating by making a new R (see below) that will verify with the given e and a random s. This requires assuming “Honest Verifier” — the Verifier does not make his challenge choice in any way dependent on the commitment R.

$$e, s \leftarrow \$, \quad R = sG - eP$$

This “proves” that zero information is conveyed, if the distribution of fake transcripts is indistinguishable from the distribution of genuine ones.
Fiat-Shamir transform

• To make the protocol non-interactive, make use of a “random oracle” (the ideal to which a cryptographic hash function aspires)
Fiat-Shamir transform

- To make the protocol non-interactive, make use of a “random oracle” (the ideal to which a cryptographic hash function aspires)
- Hash the transcript up to that point (means R, but ...)
Fiat-Shamir transform

- To make the protocol non-interactive, make use of a “random oracle” (the ideal to which a cryptographic hash function aspires)
- Hash the transcript up to that point (means R, but ...)
- Schnorr signature on message m therefore becomes: $s = r + H(m|P|R)x$ (we include m to go from Ident. Prot. \rightarrow signature scheme).
Fiat-Shamir transform

- To make the protocol non-interactive, make use of a “random oracle” (the ideal to which a cryptographic hash function aspires)
- Hash the transcript up to that point (means R, but ...)
- Schnorr signature on message m therefore becomes: $s = r + H(m|P|R)x$ (we include m to go from Ident. Prot. \rightarrow signature scheme).
- Hash one-wayness enforces ordering of steps in absence of Verifier enforcement
Fiat-Shamir transform

- To make the protocol non-interactive, make use of a “random oracle” (the ideal to which a cryptographic hash function aspires).
- Hash the transcript up to that point (means R, but ...)
- Schnorr signature on message m therefore becomes: $s = r + H(m|P|R)x$ (we include m to go from Ident. Prot. → signature scheme).
- Hash one-wayness enforces ordering of steps in absence of Verifier enforcement.
- But - random oracle and zero knowledgeness?
Remember the “Simulator” effectively controls the Verifier’s environment.
Remember the “Simulator” effectively controls the Verifier’s environment.
So the Simulator gets to cheat and “program” the random oracle (outside Verifier’s env).
Remember the “Simulator” effectively controls the Verifier’s environment.
So the Simulator gets to cheat and “program” the random oracle (outside Verifier’s env).
Choose $s, e \leftarrow \$;$ program RO to output e when input is $sG = eP;$ give (R, s) to $V.$
So far we just assumed that finding x given only $P = xG$ is impossible, but it’s “hard”.

"Elliptic Curve Discrete Logarithm Problem"
So far we just assumed that finding x given only $P = xG$ is impossible, but it’s “hard”.

“Elliptic Curve Discrete Logarithm Problem”
Reduction to ECDLP

- So far we just assumed that finding x given only $P = xG$ is impossible, but it’s “hard”.
- “Elliptic Curve Discrete Logarithm Problem”
- It can be shown that: if an attacker can extract the private key from a Schnorr signature, they can also solve the ECDLP
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:

Adversary

Challenger
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:

Adversary

$k \leftarrow \$,$ \text{ send } R = kG \quad \Longrightarrow$

Challenger
Assume we have an adversary “program” that is able to impersonate the holder of \(x \) with success probability \(\epsilon \):

Adversary

\[k \leftarrow \$, \text{ send } R = kG \implies \]

Challenger

\[\Longleftarrow e_1 \leftarrow \$ \]
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:

Adversary

$k \leftarrow \$, send $R = kG$ \implies

Rewind one step \implies

Challenger

$\leftarrow e_1 \leftarrow \$
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:

Adversary

$k \leftarrow $, send $R = kG$ \implies

REWIND one step \implies

Challenger

$\iff e_1 \leftarrow$

$\iff e_2 \leftarrow$
Assume we have an adversary “program” that is able to impersonate the holder of x with success probability ϵ:

Adversary

$k \leftarrow \$, send $R = kG$ \implies

Challenger

$\iff e_1 \leftarrow \$

REWIND one step \implies

$\iff e_2 \leftarrow \$

$P(\text{success}) \approx \epsilon^2$; success \implies extract discrete log x.
Digital signature security

- Previous slide(s) only discuss security of scheme against a "total break" - that is to say, the exposure of the private key from the signature.
Digital signature security

- Previous slide(s) only discuss security of scheme against a “total break” - that is to say, the exposure of the private key from the signature.
- But there is also security against forgery; in particular we’d like security against existential forgery under chosen message attack
Digital signature security

- Previous slide(s) only discuss security of scheme against a "total break" - that is to say, the exposure of the private key from the signature.
- But there is also security against forgery; in particular we’d like security against existential forgery under chosen message attack
- In English - no matter how many signatures you get me to output for a bunch of messages you maliciously choose, you can’t create your own new signature on a new message without my key.
ECDSA’s weaknesses

No strong security:
ECDSA’s weaknesses

No strong security:

\[V : s^{-1} (H(m)G + rP) \big|_{x} \ ? = r \]
No strong security:
\[V : \quad s^{-1} \left(H(m)G + rP \right) |_x r = r \]

\(r \) is x-coord; there are two points \((Q, -Q)\) with same x-coordinate. So \((r, -s)\) verifies if \((r, s)\) does. This is “intrinsic malleability” (see BIP66).
ECDSA’s weaknesses

No strong security:
\[V : s^{-1} (H(m)G + rP) \mid_{x} \equiv r \]

\(r \) is x-coord; there are two points \((Q, -Q)\) with same x-coordinate. So \((r, -s)\) verifies if \((r, s)\) does. This is “intrinsic malleability” (see BIP66).

Security reduction (see previous) to ECDLP.
ECDSA’s weaknesses

No strong security:

\[V : s^{-1} (H(m)G + rP) |_x ? = r \]

\(r \) is x-coord; there are two points \((Q, -Q)\) with same x-coordinate. So \((r, -s)\) verifies if \((r, s)\) does. This is “intrinsic malleability” (see BIP66).

Security reduction (see previous) to ECDLP.

Dodgy at best? See e.g. Vaudenay “The Security of DSA and ECDSA”.
ECDSA’s weaknesses

No strong security:

\[V : \quad s^{-1} \left(H(m)G + rP \right) \bigg|_x = r \]

\(r \) is x-coord; there are two points \((Q, -Q)\) with same x-coordinate. So \((r, -s)\) verifies if \((r, s)\) does. This is “intrinsic malleability” (see BIP66).

Security reduction (see previous) to ECDLP.

Dodgy at best? See e.g. Vaudenay “The Security of DSA and ECDSA”.

No linearity (especially over nonces due to funky use of x-coordinate).
Leveraging linearity

- The Schnorr signature $s = k + ex$ is linear in both the nonce (k) and the key (x).
Leveraging linearity

- The Schnorr signature $s = k + ex$ is linear in both the nonce (k) and the key (x)
- Let’s add signatures on a message m to make a joint signature (I AND you sign):
• The Schnorr signature $s = k + ex$ is linear in both the nonce (k) and the key (x)

• Let's add signatures on a message m to make a joint signature (I AND you sign):

$$s_{AB} = s_A + s_B = k_A + k_B + e(x_A + x_B)$$
Leveraging linearity

- The Schnorr signature $s = k + ex$ is linear in both the nonce (k) and the key (x).
- Let’s add signatures on a message m to make a joint signature (I AND you sign):
 - $s_{AB} = s_A + s_B = k_A + k_B + e(x_A + x_B)$
 - e is shared; must commit to both nonces like $e = H(R_A + R_B|P_A + P_B|m)$
Leveraging linearity

- The Schnorr signature $s = k + ex$ is linear in both the nonce (k) and the key (x).

- Let’s add signatures on a message m to make a joint signature (I AND you sign):

 $s_{AB} = s_A + s_B = k_A + k_B + e(x_A + x_B)$

- e is shared; must commit to both nonces like $e = H(R_A + R_B|P_A + P_B|m)$

- Insecure! But manner of insecurity requires thinking about *interaction*
If keys P produced ephemerally, open to direct key subtraction attack; last player can delete everyone else’s key; disaster for multisig:
Aggregation schemes

If keys P produced ephemerally, open to direct key subtraction attack; last player can delete everyone else’s key; disaster for multisig:

$$P_{\text{attack}} = P^* - \sum P_i$$

where attacker knows privkey of P^*.
If keys P produced ephemerally, open to direct key subtraction attack; last player can delete everyone else’s key; disaster for multisig:

$P_{\text{attack}} = P^* - \sum P_i$ where attacker knows privkey of P^*.

“Derandomisation”: Constructions like

$sG = R + \mathbb{H}(P_{\text{agg}} | R | m) P_{\text{agg}}$
If keys P produced ephemerally, open to direct key subtraction attack; last player can delete everyone else’s key; disaster for multisig:

$$P_{\text{attack}} = P^* - \Sigma P_i$$ where attacker knows privkey of P^*.

“Derandomisation”: Constructions like

$$sG = R + \mathbb{H}(P_{\text{agg}}|R|m)P_{\text{agg}}$$

Maintain ability to validate using only the aggregate key while being safe from key subtraction.
Aggregation schemes

If keys P produced ephemerally, open to direct key subtraction attack; last player can delete everyone else’s key; disaster for multisig:

$$P_{\text{attack}} = P^* - \sum P_i$$

where attacker knows privkey of P^*.

“Derandomisation”: Constructions like

$$sG = R + \mathbb{H}(P_{\text{agg}}|R|m)P_{\text{agg}}$$

Maintain ability to validate using only the aggregate key while being safe from key subtraction.

• Bellare-Neven (cleaner security proof but requires all keys for verification)
Aggregation schemes - 2

- Bellare-Neven (cleaner security proof but requires all keys for verification)
- Musig requires only one aggregated key for verification

Aggregation schemes - 2

- Bellare-Neven (cleaner security proof but requires all keys for verification)
- Musig requires only one aggregated key for verification
- Per-input aggregation, per-transaction aggregation, per-block aggregation(?)

Bellare-Neven (cleaner security proof but requires all keys for verification)
Musig requires only one aggregated key for verification
Per-input aggregation, per-transaction aggregation, per-block aggregation (?)

Good summary of key facts at https://blockstream.com/2018/01/23/musig-key-aggregation-schnorr-signatures.html
- Break history of coins using atomicity of: spend a coin \leftrightarrow reveal a secret
• Break history of coins using atomicity of: spend a coin \leftrightarrow reveal a secret
• “Atomic Cross Chain Swap” (see HTLC) not useful for privacy
CoinSwap

- Break history of coins using atomicity of: spend a coin \leftrightarrow reveal a secret
- “Atomic Cross Chain Swap” (see HTLC) not useful for privacy
- Maxwell 2013 CoinSwap (updated) but slow and interactive
CoinSwap

- Break history of coins using atomicity of: spend a coin \leftrightarrow reveal a secret
- "Atomic Cross Chain Swap" (see HTLC) not useful for privacy
- Maxwell 2013 CoinSwap (updated) but slow and interactive
- Schnorr + scriptless scripts (Poelstra); better overall features
CoinSwap in 2017

- With segwit; without Schnorr; without taproot
CoinSwap in 2017

- With segwit; without Schnorr; without taproot
- “CoinSwapCS” (proof of concept):
CoinSwap in 2017

- With segwit; without Schnorr; without taproot
- “CoinSwapCS” (proof of concept):

```
TX-0
  Alice₀
  Alice₁ Carol₀ (2-of-2)

TX-2
  Alice₁ Carol₀ (2-of-2)
  Carol₂
  Alice₂ (L0)

TX-4 (Cooperative case)
  Alice₁ Carol₀ (2-of-2)
  Carol₁

TX-1
  Carol₃
  Alice₃ Carol₄ (2-of-2)

TX-5
  Alice₃ Carol₄ (2-of-2)
  Alice₄

TX-3
  Alice₅
  Carol₅ (L1)
```
• Embed a secret in the nonce; from

\[s = k + H(m|R|P)x \] to

\[s = k + t + H(m|R + T|P)x \]
Adaptor signatures - 1

- Embed a secret in the nonce; from
 \[s = k + H(m|R|P)x \] to
 \[s = k + t + H(m|R + T|P)x \]

- Share \(T \) as “hash” of secret
Adaptor signatures - 1

- Embed a secret in the nonce; from
 \[s = k + H(m|R|P)x \] to
 \[s = k + t + H(m|R + T|P)x \]
- Share \(T \) as “hash” of secret
- Give \(s' = k + H(m|R + T|P)x \) as incomplete adaptor signature
Adaptor signatures - 1

- Embed a secret in the nonce; from
 \[s = k + H(m|R|P)x \] to
 \[s = k + t + H(m|R + T|P)x \]
- Share \(T \) as “hash” of secret
- Give \(s' = k + H(m|R + T|P)x \) as incomplete adaptor signature
- Verifiable; you know it’ll be a valid sig if you get preimage of \(T \)
A new way to swap a coin for a secret:

Protocol 22AS – Alice swaps a coin for a secret t

- Alice passes transaction, paying 1 coin to Bob, to be signed as message m
- Bob creates adaptor signature for T, m
- Alice reads signature from blockchain; subtracts $s_A + s' \cdot T$ to find secret t
- Bob broadcasts $s_B - \text{tx}$ with $s_A + s_B$ to claim 1 coin.
1. Prepare: swap keys (Musig etc.), swap txids, swap backouts
1. Prepare: swap keys (Musig etc.), swap txids, swap backouts

2. Pay in (locktime asymmetry as per earlier CoinSwap), confirm
1. Prepare: swap keys (Musig etc.), swap txids, swap backouts
2. Pay in (locktime asymmetry as per earlier CoinSwap), confirm
3. Do 22AS as above; swap Rs, Alice has T
1. Prepare: swap keys (Musig etc.), swap txids, swap backouts
2. Pay in (locktime asymmetry as per earlier CoinSwap), confirm
3. Do 22AS as above; swap Rs, Alice has T
4. There are 2 adaptor sigs with same T
5. When Alice claims her coins, the sig reveals t and Bob completes
5. When Alice claims her coins, the sig reveals t and Bob completes.

6. More details at https://joinmarket.me/blog/blog/flipping-the-scriptless-script-on-schnorr/
5. When Alice claims her coins, the sig reveals \(t \) and Bob completes.

6. More details at https://joinmarket.me/blog/blog/flipping-the-scriptless-script-on-schnorr/

7. Huge advantage in deniability: any sig could be adaptor; Schnorr musig is 1 key.
Recent work Malavolta et al
Recent work Malavolta et al
Aggregated signature in ECDSA
Adaptor sig in ECDSA

Recent work Malavolta et al
Aggregated signature in ECDSA
Use Paillier’s additive homomorphism
\((E(A) + E(B) = E(A + B))\)
Adaptor sig in ECDSA

Recent work Malavolta et al
Aggregated signature in ECDSA
Use Paillier’s additive homomorphism
\((E(A) + E(B) = E(A + B))\)
2-party computation \(\rightarrow\) single ECDSA signature 2 of 2
Adaptor sig in ECDSA

Recent work Malavolta et al
Aggregated signature in ECDSA
Use Paillier’s additive homomorphism
\((E(A) + E(B) = E(A + B))\)
2-party computation → single ECDSA signature 2 of 2
We can recreate adaptor signatures in the above model
Adaptor sig in ECDSA - 2

Original note at
Original note at

1. Share keys, nonce points P, R, Alice sends encrypted privkey $E(x_A)$
Original note at

1. Share keys, nonce points P, R, Alice sends
 encrypted privkey $E(x_A)$
2. ECDH shared nonce $R = k_A k_B G$; x-coord r
1. Share keys, nonce points P, R, Alice sends encrypted privkey $E(x_A)$
2. ECDH shared nonce $R = k_A k_B G$; x-coord r
3. Bob: $E(k_B^{-1} H)$, $x_B r k_B^{-1} E(x_A)$, add under enc
1. Share keys, nonce points P, R, A_{lice} sends encrypted privkey $E(x_A)$

2. ECDH shared nonce $R = k_A k_B G; x$-coord r

3. Bob: $E(k_B^{-1} H), x_B r k_B^{-1} E(x_A)$, add under enc

4. Alice: $k_A^{-1} (k_B^{-1} (H + x_A x_B r)) = s$
Previous slide - interactive 2 of 2 multisig for ECDSA with 1 published key – cool!
Previous slide - interactive 2 of 2 multisig for ECDSA with 1 published key – cool!
Although it did miss tech. details - don’t do that!
Previous slide - interactive 2 of 2 multisig for ECDSA with 1 published key – cool!
Although it did miss tech. details - don’t do that!
How to add in adaptor (T?)
Previous slide - interactive 2 of 2 multisig for ECDSA with 1 published key – cool!

Although it did miss tech. details - don’t do that!

How to add in adaptor (T?)

Bob tweaks his $R_B = k_B G$ to $R^*_B = k_B tG$
Previous slide - interactive 2 of 2 multisig for ECDSA with 1 published key – cool!
Although it did miss tech. details - don’t do that!
How to add in adaptor (T?)
Bob tweaks his $R_B = k_B G$ to $R_B^* = k_B tG$
Needs to send PoDLE
Next, sends encryption as before with k_B, so

$E(\text{adaptor}) = E(s')$
Next, sends encryption as before with k_B, so

$$E(\text{adaptor}) = E(s')$$

Alice decrypts and verifies s'
Next, sends encryption as before with \(k_B \), so
\[
E(\text{adaptor}) = E(s')
\]
Alice decrypts and verifies \(s' \)
Alice returns \(s'' = s' \times k_A^{-1} \)
Next, sends encryption as before with k_B, so

$$E(\text{adaptor}) = E(s')$$

Alice decrypts and verifies s'

Alice returns $s'' = s' \times k_A^{-1}$

Bob publishes (r, s) where $s = s'' \times t^{-1}$
Next, sends encryption as before with k_B, so

$$E(\text{adaptor}) = E(s')$$

Alice decrypts and verifies s'

Alice returns $s'' = s' \times k_A^{-1}$

Bob publishes (r, s) where $s = s'' \times t^{-1}$

Alice gets $t = s'' \times s^{-1}$ from on-chain sig
Other interesting things

- Ring signatures - \(s_i = k_i + \mathbb{H}(R_{i-1} | \ldots) x_i \)
- AND and ORs of Sigma Protocols
- General ZKP systems - zkSNARKs, Bulletproofs, others
- Blinded Schnorr signatures
Contact info:

waxwing (freenode IRC, reddit)

@waxwing_ (twitter)

https://github.com/AdamISZ

A blog: https://joinmarket.me/blog/blog (email in /about-me)

gpg: 4668 9728 A9F6 4B39 1FA8 71B7 B3AE 09F1 E9A3 197A