A new Protein Design Era with Protein Diffusion

I believe we stand at the precipice of a new era of protein design using machine learning. RF\textit{Diffusion} leading the way.

The past month has been an amazing time for AI news. I post this amid a flurry of ChatGPT screenshots and at the leading edge of a ton of blog posts on CASP15 results in the coming weeks. But we should be careful not to miss out on a pre-publication I believe could be one of the most disruptive technologies in the structural biology in the coming decade.

Baker Lab, the originator of the Rosetta algorithm for ab initio protein structure prediction and a slew of other protein structure related tools like Rosetta@Home and FoldIt released a prepublication at the start of this month. There, they introduce RF\textit{Diffusion}, a novel application of Diffusion algorithms to the protein design problem. Using RF\textit{Diffusion}, the authors (Joseph Watson, David Juergens, Nate Bennett, Brian Trippe, and Jason Yim et al.) achieve multiple orders of magnitude advances in de novo protein design. With these advances, I believe we are on the cusp of a new era of protein design where applying proteins, to complex pharmaceutical and industrial problems becomes the go-to solution.
Protein structure prediction

Protein structure prediction was, for a long time, a holy grail of structural biology. Solving how a specific sequence of amino acids would fold into a 3D structure is immensely difficult due to the number of degrees of freedom involved. Physically based folding solutions using molecular dynamics were able to approximate this process to some extent, but at the cost of enormous amounts of compute. Running full physical simulation of every atom requires vast amounts of processing time, necessitating solutions like the massively distributed Folding@Home project. This distributed supercomputer achieved a total compute of over 2 exaflops in 2020.

Since 2016, however, significant steps were being made in this space with the application of machine learning to the problem. The CASP competition, which had been running biannually for 13 iterations, finally saw improvement after a decade of relative stagnation. In 2018, Google's DeepMind competed with their initial submission of AlphaFold. This deep learning based system achieved a ~20% improvement over the next competitor. In 2020, AlphaFold2 swept the board with a 265% score improvement over Baker Labs' submission. Following this, Science's Robert F. Service called protein structure prediction “Solved by AI”.

Nevertheless, the frontiers are always shifting. With one problem solved, a multitude of new challenges rear their head, previously not even considered possible to tackle. Baker Lab is back with a vengeance, applying their own in-house tech to revolutionize protein design in several novel ways.
Diffusion

Diffusion models are a relatively new type of model that allow for the generation of complex outputs. Proposed in 2015 as a technique for generating images, these models took a back seat to the emerging GAN architecture. The latter employs two models that are alternately trained in an adversarial manner to generate images and discriminate images generated by the network from those in the training set. This approach was able to create quite realistic looking imagery (consider StyleGAN and thispersondoesnotexist.com), but training the GANs is challenging. Having tried to these myself back in 2016, balancing the power of the generator and discriminator important and the long training runs can be unstable. Nevertheless, GANs were able produce convincing results and were even able to be conditioned into generating different classes and properties when specified.

Diffusion models operate quite differently. Instead of attempting to generate an image on the first try, Diffusion models iteratively improve on a noisy image, denoising the input to some extent with each step. The denoising process can be guided by another neural network, like CLIP🤖💬, in order to produce results in line with a textual description. The training process is more stable and conditioning is far more fine grained, allowing for a wider range of images that can be generated.

Diffusion models reached public consciousness in April of 2022, with the release of DALL-E 2 by OpenAI. While the initial release of DALL-E used a VQGAN architecture, second iteration was equipped with a diffusion based generator. Beta access was granted to select individuals in July, but alternative implementations of the technology began sprouting up even before that. Midjourney became accessible on July 12th and Stable Diffusion, a fully open source implementation was released in August. The
release of these models resulted in an outpouring of creativity, with over 5 million images recorded by Stable Diffusion search engine Lexica.art as of September.

The general principle of iteratively updating some input to get better results wasn't exactly new in the machine learning structural biology space. AlphaFold implements this method as well in order to make fine grained updates to the output structure a first finding a good approximation using the multiple sequence alignment. It is ever hypothesized that this recycling function is a good approximation of the energy function actually used for folding. This process was cited as an inspiration by the authors for the the RF Diffusion paper. Work on integrating diffusion with protein structure models for scaffolding has been going on at Baker Lab at least since the start of this year, and improving on it would lead to the amazing innovation that is the topic of this blog post.

RF Diffusion

On December 1st 2022, Joseph Watson from Baker Lab used DALL-E as a hook to introduce their newest (pre-)pre-publication: “Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative model. Using diffusion models with protein generation models allowed them to design proteins quickly and accurately. They named their technology RosettaFoldDiffusion (RFDiffusion).

Joseph Watson
@_JosephWatson · Follow

DALL-E’s amazing images are popping up all over the web. That software uses something called a diffusion model, which is trained to remove noise from static until a clear picture is formed.
Using the RosettaFold protein folding model with a Diffusion approach allows them to specify some constraints, like a target protein to bind to, or a symmetry type, and generate a protein structure that satisfies those constraints.

On December 10th 2022, David Juergens posted an update on Twitter. Reportedly, experimental results had come in, with 384 different designs straight out of the algorithm being tested for binding affinity. Conservatively, 18% of these 384 proteins showed binding responses of <10μM, a two order of magnitude increase compared to previous Rosetta-based processes. All working proteins were shown to compete with the positive control, meaning that the designs likely targeted the intended region for binding.

David Juergens
@DaveJuergens · Follow

We're very happy to announce that our RFdiffusion manuscript is now on bioRxiv! A lot can change in a week - we've now tested over a thousand designs and there's so much exciting new data! 🎉

https://stephanheijl.com/rfdiffusion.html
Implementation

In the RFDiffusion paper, the authors make use of an SE(3) equivariant diffusion model referred to as DDPMs, to generate the backbone. Recent work has adapted these DDPMs for protein monomer design, with limited success. To address this, RosettaFold was used as a good candidate to improve on this, as it had already shown that it could design parts of protein backbones by doing inpainting of protein structures, which was then adapted to RFjoint Inpainting to design protein scaffolds in a single step.

RosettaFold was finetuned as a denoiser. To train the model, a training set is generated by simulating the noising process for up to 200 steps on structures from the Protein...
Data Bank, with both the backbone and the residue orientation being perturbed. The Ca positions are translated randomly and residues are randomly rotated in a stepwise manner, and the model is trained to minimize mean squared error loss between predictions and the true structure.

During inference, a random set of residues are generated and fed in RFDiffusion to denoise. The input for the next step is calculated by moving into the direction of the denoised step and adding some noise, to make sure that the denoising process mimics the initial noising process used for training. This is done iteratively until a protein-like structure is formed. When the backbone is designed, ProteinMPNN is used to predict the sequence that will translate into that backbone. The generated structure is then checked against the output of AlphaFold2 for the designed sequence. If the generated structure is close to the AF2 result, it is deemed a successful design in silico.

Capabilities

RFDiffusion has turned out to be a powerful tool capable of designing protein structures with a variety of applications. It has the ability to generate monomers unconditionally, with little similarity to existing known protein structures. Generating a 100 residue structure takes approximately 2.5 minutes on an A4000 GPU (with time requirements likely scaling quadratically with sequence length). In vitro characterization of 11 TIM barrel designs indicated that nine designs aligned with expected protein parameters.
It can also design higher order oligomers, which can serve as vaccine platforms, delivery vehicles and catalytic agents. The expected oligomerization pattern was found in \(\sim 16\% \) of generated structures \textit{in vitro}. Additionally, it can design scaffolds for pro structural motifs used for binding and catalytic functions, with the constraint that the motif must retain its exact geometry for optimal performance. Out of 25 benchmark problems, RFDiffusion solves 23, 11 more than competitor “Hallucination”. No tuning was required. It can also design scaffolds for enzyme active sites, while it cannot model small molecules, this can be done implicitly.

Lastly, it can be used to design de novo protein-binding proteins. Characterized as a grand challenge in protein design, \textit{RFDiffusion} achieved an 18\% success rate in designing protein binders. Experimental success rate compared to Rosetta-based methods ranges from 5\times to 214\times improvement depending on the target protein. \textit{RFDiffusion} was finetuned on protein complexes in order to achieve this.

Implications

What is possible with this kind of model combined with its reported effectiveness is nearly endless. If these results hold up in practice, this could easily be the best application of diffusion models for mankind. It could share the crown for biggest advance in structural biology of this decade together with AlphaFold.

Currently \textit{RFDiffusion} is a potent method for the creation of protein-binders. Applications for this specifically are amazing in themselves, as it will allow for the rapid design and iteration of a myriad of drugs that target proteins specifically. Rapidly designing antibodies comes to mind immediately, provided that the technique proved robust for this notoriously hard to model protein type. Even without antibodies in particular, developing inhibitors or activators for any number of proteins would be exponentially sped up by this innovation.

Next steps are already being taken to incorporate nucleic acids into the model, allowing for DNA or RNA binding proteins to be designed rapidly. These types of drugs are used as anti-cancer agents and could yield amazing results in that field.

This is where my interpretation of future events starts. To me an obvious follow up would incorporate small molecules as opposed to just other proteins. Getting prote
that bind well to specific ligands is still an open problem. Generally, this process starts in nature, by trying to find a naturally occurring protein with a desired functionality that might bind to a desired substrate. While tools like Bio-Product’s 3DM were huge steps in making this process less arduous, it still requires human expertise. Next, the protein needs to be optimized. Nature’s best attempt for binding and/or converting a ligand interest is likely not the best for industrial applications. Activity, specificity and stability are generally tuned for several rounds of guided evolution or (machine learning guided) rational design with the aim of getting several orders of magnitude increase in fit. These processes can take months and may not even yield a suitable design. If the high success rates reported for RFDiffusion hold up in this case, it would skip several steps in this process, lowering costs for designing custom proteins significantly.

I project that RFDiffusion will first be enhanced by replacing the Rosetta protein fold module with a more capable model. This could be AlphaFold2 or one of the high performers in CASP15 (Baker unfortunately did not rank in the top 10 this year). The paper notes explicitly that this is possible for an array of different models. Sergey Ovchinikov already accomplished a hacked version of this on Twitter, less than a week after the initial pre-publication. Using AlphaFold2 as a design network may allow us to skip the AF2 validation step used by the authors for sequence verification. This is of course assuming that other models are not limited by lacking some of the design features RosettaFold exhibits.

Sergey Ovchinnikov
@sokrypton • Follow

inspired by some of our work on AF2Rank (showing AF can be used to denoise template inputs) and RFdiffusion, I tried hacking AlphaFold to be a diffusion model for generating backbones. 😎
Additional constraints outside a target protein could also be included. Guiding the diffusion process to produce structures more like a specific family of proteins would be a boon for enzyme design. Imagine specifying a target family of enzymes, a target ligand and letting the model rapidly design a protein that satisfies those constraints with high accuracy. Any number of pharmaceutical companies would be chomping the bit to get access to this technology. RF *Diffusion* already is able to scaffold enzymatic active sites without modeling small molecules explicitly. The authors demonstrate this capability in an experiment where they scaffold a retroaldolase active site.

Finally and most futuristically, this process could be used to design complex biological machinery. Incorporating the functionality of the protein and modeling that in some manner would allow for the design of an entire pipeline of proteins that construct specific complex molecules. Adding search based optimization for known conversions with different protein families would usher in an era of rapid biological process design. Just enter a resource and target molecule, let the servers run for a bit and test the resulting pathway to find your required complex molecule being made in the lab!

Conclusion

Baker Labs has made significant strides in the space of protein design, with a great application of modern ML techniques combined with convincing experimental lab results.
work. I trust that the very capable team is already working on further developing the technique further, improving accuracy and speed of this solution. In line with their previous projects, I expect that the source code for **RFDiffusion** will soon be published on GitHub under the BSD license. This will allow even more experimentation and innovative work to take place here. Given the pace at which advances take place in Machine Learning/Protein space, I have no doubt that we are on the cusp of a decade of rapid innovation. This will lead to giant leaps in pharmaceutical and industrial applications of proteins, resulting in improved health care and vastly more green and efficient manufacturing processes.