Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds
The Bovine HapMap Consortium, et al.
Science 324, 528 (2009);
DOI: 10.1126/science.1167936

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 25, 2009):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/324/5926/528

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/324/5926/528/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/324/5926/528#related-content

This article cites 21 articles, 11 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/324/5926/528#otherarticles

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/324/5926/528#otherarticles

This article appears in the following subject collections:
Evolution
http://www.sciencemag.org/cgi/collection/evolution

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds

The Bovine HapMap Consortium*

The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.

The emergence of modern civilization was accompanied by adaptation, assimilation, and interbreeding of captive animals. In cattle (Bos taurus), this resulted in the development of individual breeds differing in, for example, milk yield, meat quality, draft ability, and tolerance or resistance to disease and pests. However, despite mapping and diversity studies (1–5) and the identification of mutations affecting some quantitative phenotypes (6–8), the detailed genetic structure and history of cattle are not known.

Cattle occur as two major geographic types, the taurine (humpless—European, African, and Asian) and indicine (humped—South Asian, and East African), which diverged >250 thousand years ago (KyA) (3). We sampled individuals representing 14 taurine (n = 376), three indicine (n = 73) (table S1), and two hybrid breeds (n = 48), as well as two individuals each of Bubalus quarlesi and Bubalus bubalis, which diverged from Bos taurus ~1.25 to 2.0 Mya (9, 10). All breeds except Red Angus (n = 12) were represented by at least 24 individuals. We preferred individuals that were unrelated for quartet progeny removed, SNPs discovered within discovery breeds (table S5). Thus, as expected, with trio progeny removed, SNPs discovered within the taurine breeds had higher average MAFs

*TThe full list of authors with their contributions and affiliations is included at the end of the manuscript.

Fig. 1. (A) Population structure assessed by InStruct. Bar plot, generated by DISTRUCT, depicts classifications with the highest probability under the model that assumes independent allele frequencies and inbreeding coefficients among assumed clusters. Each individual is represented by a vertical bar, often partitioned into colored segments with the length of each segment representing the proportion of the individual’s genome from K = 2, 3, or 9 ancestral populations. Breeds are separated by black lines. NDA, N’Dama; SHK, Sheko; NEL, Nelore; BRM, Brahman; GIR, Gir; SGT, Santa Gertrudis; BMA, Beefeater; ANG, Angus; RGU, Red Angus; HFD, Hereford; NRC, Norwegian Red; HOL, Holstein; EMS, Limousin; CHL, Charolais; BSW, Brown Swiss; JER, Jersey; GNS, Guernsey; PMT, Piedmontese; RMG, Romagnola. (B) Principal components PC1 and PC2 from all SNPs. Taurine breeds remain separated from indicine breeds, and admixed breeds are intermediate.
within the taurine than the indicine breeds, and vice versa (table S5); about 30% of SNPs had MAFs >0.3 within the taurine breeds, whereas only about 19% had MAFs >0.3 within the indicine breeds (table S4). The proportions of SNPs in intergenic, intronic, and exonic regions were 63.74, 34.9, and 1.35%, respectively, similar to their representation within the genome. We found that as few as 50 SNPs were necessary for parentage assignment and proof of identity (table S9). Additionally, when we compared ancestries based on pedigree and allele-sharing between individuals, we were able to predict accurately the extent of ancestry when the pedigree was not known (fig. S24), which could be a useful tool for the management of endangered bovine populations.

To examine relatedness among breeds, we analyzed SNP genotype frequencies with InSTRUCT (11) and performed principal component analysis (PCA) using Eigenstrat (12) (Fig. 1 and fig. S27). Varying the number of presumed ancestral populations (K) within InSTRUCT revealed clusters consistent with the known history of cattle breeds (Fig. 1A). The first level of clustering (K = 2) reflects the primary, predomestication division of taurine from indicine cattle. Consequently, breeds derived from indicine and taurine crosses (Beefmaster, Santa Gertrudis, and Sheko) show signatures of admixture with both approaches. At K = 3, the African breeds N’Dama and Sheko separate from the European breeds—a division that reflects an early, possibly predomestication, divergence. PCA recapitulated these findings (Fig. 1B). At higher levels of K, we observed clusters that identify single breeds as closed endogamous breeding units. For example, at K = 9, Jersey, Hereford, Romagnola, and Guernsey each form unique clusters.

If modern breeds arose from bottlenecks from a large ancestral population, we should detect bottleneck signatures within patterns of linkage disequilibrium (LD) and effective population size. We found that the decline of r^2 with genetic distance varied among breeds, although the decline was generally rapid (fig. S10). The extent of LD in cattle is greater than human (13) but less than dog (14). The Jersey and Hereford breeds had higher r^2 than other breeds across the range of distances separating loci. N’Dama had the highest r^2 values at short distances and the lowest r^2 at long distances, which suggested that they were derived from a relatively small ancestral population not subjected to very narrow bottlenecks. The indicine breeds had lower r^2 values at short distances and intermediate r^2 values at longer distances, which indicated that their ancestral popula-

![Fig. 2.](image-url) Effective population size in the past estimated from linkage disequilibrium data. Inset graph shows effective population size for the European humans over the same period; from (13). Breeds as in Fig. 1.

![Fig. 3.](image-url) Nucleotide diversity across five ENCODE regions resequenced in 47 animals from ANG, Angus; BRM, Brahman; and HOL, Holstein. (A) Watterson’s estimate (θ) of the population mutation rate per base pair (pooled across regions). (B) Average pairwise nucleotide distance (\(\pi\)) within breeds. (C and E) Nonparametric bootstrap estimates of diversity ratios among the three populations on the basis of θ. (D and F) Nonparametric bootstrap estimates of diversity ratios among the three populations on the basis of π.

www.sciencemag.org SCIENCE VOL 324 24 APRIL 2009
tion was much larger than that from which taurine cattle were domesticated (Fig. 2). As the MAFs for utilized SNPs were generally high and the estimates of LD did not require phased chromosomes, these results should be robust.

When breeds were combined, the decline in LD was more rapid, which reflected a lack of conserved phase relations across breeds. We characterized the extent of haplotype-sharing among breeds between pairs of adjacent SNPs using the r statistic. A high correlation between r values between two breeds indicates that the same haplotypes tend to persist within both breeds. Correlations between r values for SNPs separated by 10 kb were high among the taurine and indicine breeds but were low between these groups (fig. S11). Once SNPs are separated by 10 to 250 kb, we found little haplotype sharing between breeds. Clearly, phase relations dissipated as population sizes (46.3%) common to both breeds. This suggests that breeds represent partly overlapping subsamples within the taurine diversity. However, seven times as many taurine animals had to be sequenced to uncover 75.3% as many SNPs as were discovered in indicine animals. Estimates of the unascertained genomic distributions of SNPs by MAFs within taurine and indicine breeds are in fig. S19.

Diversities as measured by the population mutation rate (θ) and pairwise nucleotide heterozygosity (π) were also estimated for the 119 fragments and compared between the three breeds (Fig. 3). Angus and Holstein have similar levels of nucleotide diversity measured by both statistics (~1.4 × 10−8) and have ~40% more nucleotide variation than is found in human populations (~1.0 × 10−8). Brahman variation was even higher, with average estimates of θ and π of 3.35 × 10−8 and 2.74 × 10−8, respectively. These correspond to densities of 1 SNP every 714 bp for pairs of Angus or Holstein chromosomes and 1 SNP every 285 bp for pairs of Brahman chromosomes. These results demonstrate that genetic diversity in cattle is not low despite the decline in Ne.

The lower genetic diversity within modern taurine cattle could reflect a lower diversity within the predominately ancestral population, and/or postdomestication effects of stronger bottlenecks at breed formation and stronger selection for docility and productivity. Selection is unlikely to be the primary cause, because the diversity distributions for θ and π were similar for all five sequenced regions, and only one region revealed a signature of selection. On the other hand, Fig. 2 suggests that the predomination Ne of indicine cattle, which originated in southern Asia, a center of species diversity, was much larger than that of taurine cattle. Finally, the process of breed formation in European taurine cattle involved sequential limited migrations from the center of domestication in west Asia (5). Diversity declines with distance from primary sites of domestication (4) and ancient DNA from domesticated cattle and aurochs in Europe show that there was essentially no gene flow from the aurochs into domesticated cattle (5). Therefore, the evidence suggests that the current difference in diversity is mainly due to progenitor population diversity and bottleneck effects at, and before, breed formation rather than differences in the intensity of natural or artificial selection postdomestication.

Cattle have been marked by selection during domestication, breed formation, and ongoing selection to enhance performance and productivity. We utilized three methods to detect genomic selection in cattle: (i) the iHS statistic, which identifies regions of increased local LD (16) suggestive of directional selection; (ii) the FST statistic, a measure of the degree of differentiation between subpopulations (17), and (iii) the composite likelihood ratio test (CLR) (18), which assumes a selective sweep model (10). The iHS method was limited by low SNP density and our inability to completely specify ancestral SNP allele states (10). However, despite these limitations, we found evidence for selective sweeps on chromosomes 2, 6, and 14 (table S8 and fig. S20). We identified selection near MSTN, in which mutations can cause double muscling (6). Similarly, high iHS values were found in the region near ABCG2 in which mutations cause differences in milk yield and composition (8). A peak in iHS values was also identified within a gene poor region of chromo-

Table 1. Genomic regions associated with extreme FST values with gene content consistent with domestication. FST values averaged over eight adjacent SNPs. Gene functions from OMIM and NCBI Gene database, except for R3HDM1 described in (2).

<table>
<thead>
<tr>
<th>Genes</th>
<th>Index SNP</th>
<th>FST</th>
<th>BTA</th>
<th>Location</th>
<th>Effect or important phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>High values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZRANB3, R3HDM1</td>
<td>rs29021800</td>
<td>0.31</td>
<td>2</td>
<td>64740286...64931017</td>
<td>Feed efficiency</td>
</tr>
<tr>
<td>WIFI1</td>
<td>BTA-27454</td>
<td>0.29</td>
<td>5</td>
<td>52696749...53098507</td>
<td>Mammalian mesoderm segmentation</td>
</tr>
<tr>
<td>SPOCK1</td>
<td>BTA-142690</td>
<td>0.30</td>
<td>7</td>
<td>47501122...47899778</td>
<td>Proteoglycan—synaptic fields of the developing CNS</td>
</tr>
<tr>
<td>NBEA</td>
<td>BTA-153392</td>
<td>0.34</td>
<td>12</td>
<td>25884192...26189285</td>
<td>Human idio-pathic autism</td>
</tr>
<tr>
<td>NMT1, DCAKD, C1QL1</td>
<td>BTA-45533</td>
<td>0.31</td>
<td>19</td>
<td>46088946...46157261</td>
<td>Activator of serum complement system</td>
</tr>
<tr>
<td>DACH2, CHM, POUSF3, BRWD3</td>
<td>BTA-161991</td>
<td>0.39</td>
<td>X</td>
<td>41471338...4447864</td>
<td>Human mental retardation</td>
</tr>
<tr>
<td>NLGN3 to DGA126</td>
<td>BTA-164256</td>
<td>0.36</td>
<td>X</td>
<td>49279035...50192452</td>
<td>Severe combined immunodeficiency</td>
</tr>
<tr>
<td>Low values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPARC1A, DXH15, SOD3</td>
<td>BTA-039516</td>
<td>0.04</td>
<td>6</td>
<td>45354707...45415844</td>
<td>Antioxidative extracellular protection</td>
</tr>
<tr>
<td>No known gene</td>
<td>BTA-049723</td>
<td>0.05</td>
<td>14</td>
<td>4569804...520447</td>
<td></td>
</tr>
<tr>
<td>DNAH9</td>
<td>rs29018632</td>
<td>0.05</td>
<td>19</td>
<td>30943404...31220868</td>
<td>Multisubunit molecular motor</td>
</tr>
<tr>
<td>POUSF1, MHC</td>
<td>BTA-55856</td>
<td>0.05</td>
<td>23</td>
<td>27895392...28145846</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>ZNF187</td>
<td>rs29024230</td>
<td>0.04</td>
<td>23</td>
<td>30241236...30502690</td>
<td>Expressed in olfactory tissues</td>
</tr>
<tr>
<td>AUTS2</td>
<td>BTA-074065</td>
<td>0.04</td>
<td>25</td>
<td>31773107...32498861</td>
<td>Human autism susceptibility candidate</td>
</tr>
<tr>
<td>RYR2</td>
<td>rs29011563</td>
<td>0.05</td>
<td>28</td>
<td>8736599...8772178</td>
<td>Stress- and exercise-induced sudden cardiac death</td>
</tr>
</tbody>
</table>
some 14 adjacent to a region containing genes from KHDRBS3 to TG, associated with intramuscular fat content in beef (19).

Calculation of FST across all populations for each SNP revealed both balancing and divergent selection (fig. S20). Some of the highest and lowest average FST values were found in genes associated with behavior, the immune system, and feed efficiency (Table 1). Domestication most likely required the selection of smaller and more docile animals that could resist pathogens and adapt to a human-controlled environment (20). One region under selection contains RSHDMI and is associated with efficient food conversion and intramuscular fat content in some breeds (2). In addition to the RSHDMI gene (21), this region is also under selection in Europeans, most likely because it contains LCT mutations of which allow the digestion of lactose in adults (22). These results suggest that mutations in this region may affect energy homeostasis. Furthermore, we detected selection between beef and dairy breeds with both CLR and iHS, represented by a broad, high FST peak across the region, centered on SPOCK1 (Table 1). As several QTL have been mapped to this region, multiple loci could be under divergent selection (J), although this peak does not encompass CAST, which affects meat quality (23).

Our high resolution examination of cattle shows that unlike the dog—which has restricted diversity and high levels of inbreeding—domesticated cattle had a large ancestral population size and that more aurochs must have been domesticated than wolves; reducing the severity of the domestication bottleneck. SNP diversity within taurine cattle was similar to that of wolves, but significantly less than diversity within indicine breeds, which suggested that the Indian subcontinent was a major site of domestication and predominated diversification. Selection first for domestication and then for agricultural specialization has apparently reduced breed effective population sizes to relatively small numbers. The recent decline in diversity is sufficiently rapid that loss of diversity should be of concern to animal breeders. Despite this, population levels of LD are unexpectedly low considering the relatively small Ne which indicates that effective population sizes were much larger in the very recent past.

References and Notes

7. B. Grisart et al., Genome Res. 12, 222 (2002).
10. Materials and methods are available as supporting materials on Science Online.
Biomedical Sciences, Texas A&M University, College Station, TX 77843–4261, USA. 2The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK. 3Direction Nationale de l'Elevage, Post Office Box 539, Conakry, Guinea. 4Ethiopian Institute of Agricultural Research, Post Office Box 2003, Addis Ababa, Ethiopia. 5Embrapa Dairy Cattle Center, Rua Eugênio do Nascimento, 610, Juiz de Fora, MG 36038-330, Brazil. 6Animal Genetics, AgResearch, Ruakura, Post Box 3123, Hamilton 3240, New Zealand. 7Embrapa Beef Cattle Center, Rod. BR 262, km 4, Campo Grande, MS 79002-970, Brazil. 8Research and Development, UC, Post Box 3016, Hamilton 3240, New Zealand. 9Animal Genetics Resources Characterization, International Livestock Research Institute, Post Office Box 5689, Addis Ababa, Ethiopia. 10Department of Biological and Computational Biology, Cornell University, 101 Biotechnology Building, Ithaca, NY 14853, USA. 11Veterinary Biomedical Sciences, Royal (Dick) School of Veterinary Studies, The University of Edinburgh Summerhall, Edinburgh, EH9 1QH Scotland. 12World Guernsey Cattle Federation, The Hollyhocks, 10 Clos des Goddards, Rue des Goddards, Castel, Guernsey, GY5 7JD, Channel Islands, UK. 13Agricultural Food and Nutritional Science, University of Alberta, 410 AgFor Centre, Edmonton, AB, T6G 2P5, Canada. 14Molecular Genetics Research Unit, USDA–ARS, U.S. Meat Animal Research Center, Post Office Box 166, Clay Center, NE 68933, USA. 15Deparimento di Produzioni Animali, Universita della Tuscia, via de Lellis, Viterbo 01100, Italy. 16Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843–4461, USA. 17Genome Dynamics and Evolution, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK. 18Animal Genetics and Genomics, Department of Primary Industries, 475 Mickelham Road Atwood, VIC 3031, Australia. 19Faculty of Land and Food Resources, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia. 20Snurff Institute of Genetics, Trinity College, Dublin 2, Ireland. 21Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. 22To whom correspondence and requests for materials should be addressed. E-mail: curt.vantassell@ars.usda.gov (C.P.V.T.), taylorjerr@missouri.edu (J.F.T.), and agibbs@bcm.tmc.edu (R.A.G.)

Supporting Online Material
www.sciencemag.org/cgi/content/full/324/5926/528/DC1
Materials and Methods
Figs. 1 to 52
Tables S1 to S9
References
31 October 2008; accepted 16 March 2009
10.1126/science.1167936

 Revealing the History of Sheep Domestication Using Retrovirus Integrations

Bernardo Chessa,1,2 Filipe Pereira,3 Frederick Arnaud,3 Antonio Amorim,2 Félix Goyache,4 Ingrid Mainland,5 Rowland R. Kao,7 Josephine M. Pemberton,6 Dario Beraldi,6 Michael J. Stear,3 Alberto Alberti,2 Marco Pittau,3 Leopoldo Iannuzzi,7 Mohammad H. Banabazi,8 Rudovick R. Kazwala,9 Ya-ping Zhang,10 Juan J. Arranz,11 Bahy A. Ali,12 Zhiliang Wang,13 Metehan Olsaker,16 Lars-Erik Holm,17 Urrnas Saarma,18 Sohail Ahmad,19 Nurbiy Marzanov,20 Emma Eythorsdottir,21 Martin J. Holland,22,23 Paolo Ajmone-Marsan,24 Michael W. Bruford,25 Juha Kantanan,26 Thomas E. Spencer,27 Massimo Palmarini28

The domestication of livestock represented a crucial step in human history. By using endogenous retroviruses as genetic markers, we found that sheep differentiated on the basis of their “reptotype” and morphological traits dispersed across Eurasia and Africa via separate migratory episodes. Relicts of the first migrations include the Mouflon, as well as breeds previously recognized as “primitive” on the basis of their morphology, such as the Orkney, Soay, and the Nordic short-tailed sheep now confined to the periphery of northwest Europe. A later migratory episode, involving sheep with improved production traits, shaped the great majority of present-day breeds. The ability to differentiate genetically primitive sheep from more modern breeds provides valuable insights into the history of sheep domestication.

The first agricultural systems, based on the cultivation of cereals, legumes, and the rearing of domesticated livestock, developed within Southwest Asia ~11,000 years before present (yr B.P.) (1, 2). By 6000 yr B.P., agro-pastoralism introduced by the Neolithic agricultural revolution became the main system of food production throughout prehistoric Europe, from the Mediterranean north to Britain, Ireland, and Scandinavia (3); south into North Africa (4); and east into West and Central Asia (5).

Sheep and goats were the first livestock species to be domesticated (6). Multiple domestication events, as inferred by multiple mitochondrial lineages, gave rise to domestic sheep and similarly other domestic species (7–10). Initially, sheep were reared mainly for meat but, during the fifth millennium B.P. in Southwest Asia and the fourth millennium B.P. in Europe, specialization for “secondary” products such as wool became apparent. Sheep selected for secondary products appear to have replaced more primitive domestic populations. Whether specialization for secondary products occurred first in Southwest Asia or occurred throughout Europe is not known with certainty, owing to the lack of definitive archaeological evidence for the beginning of wool production (6, 11, 12).

For this study, we used a family of endogenous retroviruses (ERVs) as genetic markers to examine the history of the domestic sheep. ERVs result from the stable integration of the retrovirus genome (“provirus”) into the germline of the host (13) and are transmitted vertically from generation to generation in a Mendelian fashion. The sheep genome contains at least 27 copies of ERVs related to the exogenous and pathogenic ERVs (13, 14). ERV loci can be used as high-quality genetic markers because the presence of each endogenous retrovirus in the host

1Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK. 2Dipartimento di Patologia e Clinica Veterinaria, Universita degli Studi di Sassari, 07100 Sassari, Italy. 3Istituto di Patologia e Immunologia Molecular della Universidade do Porto (IPATIMUP), Faculdade de Ciências da Universidade do Porto, 4200-465 Porto, Portugal. 4Área de Genética e Reprodução Animal, SERDA-Somíi, E-33203 Gijón, Spain. 5Division of Archaeological, Geographical and Environmental Sciences, University of Bradford, Bradford BD7 1DP, UK. 6Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK. 7National Research Council (CNR), ISPAAM, 80147 Naples, Italy. 8Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), 3146618361 Karaj, Iran. 9Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogor, Tanzania. 10State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, CL Huang, Research Center of Sciences, Kunming 650223, China. 11Departamento de Produção Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain. 12Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, New Borg El-Arab City, 21394, Alexandria, Egypt. 13National Diagnostic Center for Exotic Animal Diseases, China Animal Health and Epidemiology Centers, Qingdao 266032, China. 14School of Health Science, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey. 15International Trypanotolerance Centre, Banjul, Gambia. 16Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, 0033 Oslo, Norway. 17Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, 8830 Tiele, Denmark. 18Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia. 19WWF Agricultural University, Peshawar, Pakistan. 20All-Russian Research Institute of Animal Husbandry, Russian Academy of Agricultural Sciences, Dubrovitsy 142132, Russia. 21Agricultural University of Iceland, Hvanneyri, IS-311 Borgarars, Iceland. 22Medical Research Council Laboratories, Fajara, Banjul, Gambia. 23London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. 24All-Russian Research Institute of Zootechnics, Universita’ Cattolica del Sacro Cuore, 29100 Piacenza, Italy. 25School of Biosciences, Cardiff University, Cardiff CF24 3XK, UK. 26Biotechnology and Food Research, MIT Agrifood Research Finland, 31800 Joensuun, Finland. 27Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, USA. 28To whom correspondence should be addressed. E-mail: m.palmarini@vet.gla.ac.uk

www.sciencemag.org/cgi/content/full/324/5926/528/DC1
Materials and Methods
Figs. 1 to 52
Tables S1 to S9
References
31 October 2008; accepted 16 March 2009
10.1126/science.1167936