Index

Page numbers followed by f or t indicate entries in figures or tables, respectively.

α/β neurons, of mushroom body, 115–116, 115f
AC. See Adenylate cyclase
Acetylcholine (ACh), 29
 in Alzheimer’s disease, 520–521, 525
 in context processing, 164
 estrogen and, 254–255, 549–550
 in fear-potentiated startle, 394–396
 in mushroom body, 116
 in reversal learning, 371–372
 in state-dependent retrieval, 560–561
 in striatum, 357, 358, 364–365, 371–372
Acetylcholine inhibitors, 29
Acetylcholine receptor agonists
 for attention/encoding enhancement, 547–548
 for storage/consolidation enhancement, 557
Acetylcholinesterase (AChE), 14, 16
 for Alzheimer’s disease, 521, 527, 532
 for storage/consolidation enhancement, 557
ACh. See Acetylcholine
AChE. See Acetylcholinesterase
Acoustic startle reflex, fear-potentiated, 385, 388f. See also Fear-potentiated startle
ACTH. See Adrenocorticotropic hormone
Action potential, genomic, 553–554
Activator protein-1 (AP-1), aging and, 506
Activity, and storage/consolidation enhancement, 557–558
Addiction. See Drug abuse/addiction
Adenosine receptor antagonists, for attention/encoding enhancement, 546–547
Adenosine triphosphate (ATP)
 conversion to cAMP, 112
 in myelination, 69
Adenylate cyclase (AC)
 estrogen and, 256
 genetics of pathway, 112–114, 113f
 Adenylate cyclase inhibitors, 29
Adf1 transcription factor, 115, 118, 119
Adrenal hormones, 243–250, 551–552. See also specific hormones
Adrenergic receptor agonists, for storage/consolidation enhancement, 555
Adrenocorticotropic hormone (ACTH), 249, 560
Adult brain
 estrogen effects on, 251
 neurogenesis in, 77–80, 495
 plasticity in, 76–80
 Affect attribute, 273–274
After-hyperpolarizing potential (AHP), aging and, 498–599
Age/aging, 41–42, 483–508
 and CREB expression, 500–503
 definitions of, 484–485
demographic shift in United States, 483–484
 and executive functioning, 486, 506–508
 and hippocampus, 493–506
 methods for studying effects of, 484–487
 and neurodegenerative diseases, 519. See also Alzheimer’s disease
 and neurogenesis, 77–80
 and plasticity, 17–18
 and prefrontal cortex, 506–508
 and progesterone effects, 259
 and short-term memory, 486, 506–508
 and spatial learning/memory, 487–506
 human models of, 491–493
 rodent models of, 487–491, 489f

575
Age-associated memory impairment, 484
AIN. See Anterior interpositus nucleus
ala gene, 119
Alcohol abuse/addiction, 466
Alcohol exposure, and neurogenesis in adult
brain, 78
Alkon, Daniel, 37
Allocentric processing, 290-291
Allopregnanolone (3α5α-THP), 259-260
Alzheimer's disease, 31, 42, 145, 483-484,
519-534
β-amyloid in, 528-530
cholinergic system in, 520-521, 525
glucose in, 248-249
glutamate in, 521-523, 526-528
head trauma and, 525
hippocampus in, 494-495, 498
incidence of, 519
mitochondrial failure in, 527-528
neurofibrillary tangles in, 520
neuroinflammation in, 523-526
NMDA receptors in, 522-531, 533
oxidative stress in, 522-523, 526-528
senile plaques in, 520
study methodology for, 498
tau protein in, 528, 530-531
treatment of
acetylcholinesterase inhibitors for, 521, 527,
532
amyloid deposits as target of, 529-530
anti-inflammatory therapy for, 526,
533-534
combination therapy for, 527, 533
ginkgo biloba for, 531-532
glutamate receptor antagonists for, 526-527,
529-530, 533
neuroprotection in, 533-534
secretase inhibitors for, 530, 533
Amblyopia, 86
Amnesia
anterograde
hippocampus in, 192-193, 317
medial temporal lobe in, 308-309
double dissociation in, 25
retrograde
epinephrine and, 245-246
medial temporal lobe in, 312-315
amnesiac (amn) gene, 106, 112, 116-117, 120-121
Ampakines, 546
AMPA receptor(s), 29
in amygdala, 406-407
in avoidance learning, 363
in drug abuse/addiction, 470
early sensory deprivation and, 67
environmental complexity and, 73-74
in extinction, 445
in fear-potentiated startle, 394-397, 406-407,
413
in striatum, 363
AMPA receptor modulators, for attention/
encoding enhancement, 546
Amphetamine(s), for attention/encoding
enhancement, 545
Amphetamine abuse, 139, 471
Amygdala
accessory basal nucleus of, 399-400
anatomy of, 398-400
basal nucleus of, 399-400
basolateral nucleus of
AMPA receptors in, 406-407
and corticosterone, 250
outputs and connections of, 411, 411f
in reward/motivation/addiction, 460-461,
461f, 464-466
in behavior acquisition, 26
central nucleus of, 400, 411
AMPA receptors in, 406-407
in fear-potentiated startle, 393-396,
406-407
projections to nucleus reticularis pontis
caudalis, 393-396, 395f, 398f
in conditioning, 134-135
in consolidation, 289
and corticosterone effects, 250
CREB expression in, 134, 135
estrogen and, 255
in event-based memory, 273f, 276
in fear, 397-417
in fear conditioning, inputs relevant for, 400-404
in fear-potentiated startle, 393-417, 398f
gene changes in, 407-410, 408f
plasticity and, 404-405
hearing input to, 401-403
intrinsinc connections of, 398-400
lateral nucleus of, 398-399
long-term potentiation in, 405
magnocellular division of, 399-400
medial nucleus of
in fear-potentiated startle, 396-397
projections to nucleus reticularis pontis
caudalis, 396-397, 398f
in psychological stress, 396-397
in mood states, 233, 233f
NMDA receptors in, 405-406, 409-410
pain input to, 400-401
parvicellular division of, 399-400
in pattern separation, 280
progesterone and, 258
smell input to, 404
in stimulus-reward association, 230-231,
230f
stress and, 551
vision input to, 403-404
β-amyloid, in Alzheimer's disease, 528-530
Amyloid precursor protein (APP), 530
Anatomical screening, for gene mutations, 107
Ancient cultures, metaphors of memory in, 4
Anesthesia-resistant memory (ARM)
genetics of, 119–120, 120f
relationship with long-term memory, 119–120
α’ neurons, of mushroom body, 115–116, 115f
Angiogenesis, environmental complexity and, 76
Anx-3 gene, 137–138
Animal research. See also specific studies
aging, 485–486, 486–491
cross-effects studies in, 19–20, 87
drug addiction, 462–463
fear and anxiety, 383–385, 384t
history of, 9–11
selective breeding in, 21–22
Anisomycin (ANI), 27–28
Antennal lobe, 115/ 116
Anterior cingulate, in rule-based memory, 275/ 276–277
Anterior interpositus nucleus (AIN)
in eyelid conditioning, 431–435, 438–443
mossy fiber synapses to mf-nuc, 432, 438–440, 441–443
plasticity in, 432–435, 438–440, 441–443
Anterograde amnesia
hippocampus in, 192–193, 317
medial temporal lobe in, 308–309
Anti-inflammatory therapy, for Alzheimer’s disease, 526, 533–534
Antisense oligonucleotides, in CREB studies, 135
Anxiety, 381–417
animal models of, 383–385, 384t
bed nucleus of stria terminalis in, 411–415, 415t
fear vs., 382–383
Anxiety disorders, 416–417
AP5 (NMDA antagonist), 405–406, 415
Aplysia, 19, 132
cAMP and CREB in, 132
genetic studies in, 104
gill-withdrawal response in, 35–37, 132
habituation in, 132
long-term memory in, 27, 30
sensitization in, 132
short-term memory in, 30
synaptic plasticity in, 35–37
Appetitive tasks, hormones in, 243–244
APV (NMDA antagonist), 405–406, 415
Aristotle, 4
ARM. See Anesthesia-resistant memory
Association. See also specific types
CA3 hippocampal system in, 316
in drug abuse/addiction, 461–462
dynamic temporal framework for, 284
frontal cortex–basal ganglia system in, 350
James on, 6–7
object–object association, 289
spatial arbitrary, 280–282
stimulus–reward, 228–231
striatum in, 356
Astrocyte(s)
early sensory deprivation and, 69
environmental complexity and, 74–75, 75f
in learning and memory, 75
neurotransmitter modulation of, 74
neurotransmitter release from, 74
proliferation in adult brain, 78
skill learning and, 85
ATP. See Adenosine triphosphate
Attention
adenosine receptor antagonists and, 546–547
dopamine receptor modulators and, 544–546
enhancement of, 542, 544–552
everyday psychological/physiological, 550–552
mental and neurobiological correlates of, 545f
neuropharmacological, 544–550
estrogen and, 549–550
GABA receptor antagonists and, 548–549
glutamate receptor modulators and, 546, 548–549
neurosteroids and, 548–549
nicotinic receptor agonists and, 547–548
prefrontal cortex in, 222–226, 224f, 225f
stress–cognition axis and, 550–552
Attractor networks
architecture of, 199, 200f
continuous, 206–216. See also Continuous attractor network
discrete, 207–208
Hopfield, 209
long-term memory, 206–216
mixed (continuous and discrete), 208f, 209, 216–217
prefrontal cortex, 218–221, 219f
recurrent, 209
short-term memory, 218–227
speed of operation, 217–218
Attributes of memory, 273–277, 296–298
in event-based memory, 275–276
in knowledge-based memory, 275–276
language, 273–275
neurobiology of, 273f, 274f, 275f, 276, 296–298, 297f
processing of, 275–276, 296
response, 273–274
reward value (affect), 273–274
in rule-based memory, 275–277
sensory–perceptual, 273–274
spatial, 272–298
temporal, 273–274
Auditory conditioning, CREB in, 134
Auditry deprivation, 65
Autosassociation network
frontal cortex–basal ganglia, 348–349
prefrontal cortex, 218–221, 219f
single, CA3 system as, 199–201
Autoassociation network (continued)
\begin{itemize}
\item speed of operation, 217–218
\item vs. continuous attractor neural network, 207
\end{itemize}
Autobiographic memory, medial temporal lobe in, 313–315
Aviary metaphor, 4
Avoidance learning
\begin{itemize}
\item aging and, 486
\item AMPA receptors in, 363
\item hormones in, 243–244, 244–245, 251–252
\item protein synthesis in, 363
\item striatum in, 362–363, 370
\end{itemize}
Awareness, medial temporal lobe in, 309–312
Axon(s)
\begin{itemize}
\item aging and, 496–497
\item early sensory deprivation and, 68–69, 68f
\item environmental complexity and, 76
\item of mushroom body, 115f, 116
\end{itemize}
Back-projection system, hippocampal–
neocortical, 204–206
Backward expansion, of place fields, 173
Bain, Alexander, 7–8
Bait-shyness, 10
Barnes maze, aging and navigation of, 488–489, 489f
Barrel development, sensory deprivation and, 65, 69
Basal ganglia, 342–345
\begin{itemize}
\item anatomical loops with frontal cortex, 348–350
\item anatomical loops with frontal cortex and thalamus, 358
\item anatomy of, 342–344
\item in associative learning, 350
\item connections of, 342–344, 343f
\item damage or dysfunction of, 344–345
\item dopamine in, 340, 343f, 344, 345, 349
\item in goal-directed learning, 340, 349–350
\item interactions with frontal cortex, 339–350
\item plasticity in, vs. cortical plasticity, 340, 346–348
\item spiny cells of, 344
\item topographical separation in, 343
\end{itemize}
Basal nucleus of amygdala, 399–400
Basolateral amygdala (BLA)
\begin{itemize}
\item AMPA receptors in, 406–407
\item and corticosterone, 250
\item outputs and connections of, 411, 411f
\item in reward/motivation/addiction, 460–461, 461f, 464–466, 472–473, 475
\end{itemize}
BDNF. See Brain-derived neurotrophic factor
Beckman UV spectrophotometer, 16
Bed nucleus of stria terminalis (BNST)
\begin{itemize}
\item in fear-potentiated startle, 411–415, 415f
\item outputs and connections of, 411, 412f
\end{itemize}
Behavior acquisition, amygdala in, 26
Behavior measures, of learning and memory, 104–105
Bennett, Edward, 32
Benzer, Seymour, 23, 104–106
Bernard, Claude, 10–11
Biochemical pathways, genetic dissection of, 112–115, 114f
BLA. See Basolateral amygdala
\begin{itemize}
\item β neurons, of mushroom body, 115–116, 115f
\item BNST. See Bed nucleus of stria terminalis
\end{itemize}
Book metaphor, 5
Bootstrapping, 348–349
Boring, Edwin G., 12
Bottom-up processing, 339
Boutons
\begin{itemize}
\item environmental complexity and, 74
\item skill learning and, 82–85
\end{itemize}
Bradykinin, 29
Braille readers, plasticity in, 87
Brain-derived neurotrophic factor (BDNF), 138, 143–144, 503
\begin{itemize}
\item exercise/activity and, 558
\item in fear conditioning, 409–410
\item for storage/consolidation enhancement, 556–557
\end{itemize}
Brain-weight differences, 14–15, 19
Broca’s area, in knowledge-based memory, 274f, 276
c. elegans genome, 130
\begin{itemize}
\item cabbage (cab) gene, 106
\end{itemize}
Caffeine, for attention/encoding enhancement, 546–547
CA1 hippocampal system
\begin{itemize}
\item aging and, 496–498, 505–506
\item computational hypothesis for, 205
\item in information recall, 204–206
\item projections and connections of, 308
\item vs. CA3, 170–172
\end{itemize}
CA3 hippocampal system, 199–201, 326–329
\begin{itemize}
\item aging and, 496, 498, 505
\item computational hypothesis for, 205
\item conjunctive mechanism of, 316, 326–329
\item functional MRI studies of, 328–329
\item knockout studies of, 328
\item memory storage and retrieval in, 199–201
\item mossy fiber inputs from dentate granule cells, 203–204, 204f
\item in paired–associate learning, 280–281
\item pattern–completion process in, 201, 282–284, 316, 326–328
\item projections and connections of, 308
\item as single autoassociation network, 199–201
\end{itemize}
\begin{itemize}
\item vs. CA1, 170–172
\end{itemize}
Calcium, in long-term potentiation, 140
Calcium–calmodulin (CAM) protein kinases, 29–31
CAMKII, 114, 133, 141
CAMKIV, 141
Calcium channel inhibitors, 29
cAMP signal transduction, 132–133
aging and, 508
in drug abuse/addiction, 466
in fear-potentiated startle, 390
Candidate genes, manipulation of, 109–111
CANN, 207. See also Continuous attractor
network
CART gene mutations, in drug abuse, 139
Cassin, Rene, 44
Caudate nucleus, 355, 357
in consolidation, 289
in event-based memory, 273, 276
in habit (nondeclarative memory), 26
in learning and memory, 359–360, 366–372
in pattern separation, 280
Cdk5 protein, in drug abuse/addiction, 468
Cell adhesion molecules, 114
Cell assemblies, 57–58
Cellular consolidation, 552–553
central body complex
gene, 107
central body defect
gene, 107
central body deranged
gene, 107
mutations affecting, 107, 117
Central nucleus of amygdala, 400, 411
AMPA receptors in, 406–407
in fear-potentiated startle, 393–396, 406–407
projections to nucleus reticularis pontis
caudalis, 393–396, 395f, 398f
Cerebellar cortex
experience-induced changes in, 15
in eyelid conditioning, 432–434, 440–441
plasticity of, 432–434, 433f
Cerebellar learning, 427–448. See also
Cerebellum
Cerebellum, 427–448
climbing fiber input to, 428–429, 428f
control of, 443–445, 444f
in conditioning, 38–40
eyelid, 427–448, 428f
in eye movement adaptation, 429–431
feed-forward system in, 447–448
granule cells of, 428–429, 428f
granule cell-to-Purkinje cell (gr-Pkj) synapses
in, 430, 439–440
coupled with nucleo-olivary feedback,
443–445
in extinction, 438
long-term depression at, 432, 436–437, 440–441
long-term potentiation at, 437–438
information processing in, 445–448, 446f
in knowledge-based memory, 274f, 276
learning in and by, 427–448
mossy fiber input to, 428–429, 428f
mossy fiber-to-AIN (mf-nuc) synapses of, 432,
438–440, 441–443
in movement control, 446–448
plasticity in, 432–440
bidirectional, 443–445
downstream of cerebellar cortex, 438–440
rules of, 436–440
sites of, 432–435
in saccade adaptation, 430
short-latency responses in, 433–435, 439,
441–443
skill learning and, 82–83
in smooth pursuit adaptation, 429
synaptic organization of, 428–429
in vestibulo-ocular reflex adaptation,
430–431
Cerebral cortex
AChE activity in, 14, 16
experience-induced changes in, 14–17, 19
Pavlov on, 11
Cerebrovascular
in adult brain, 77
early sensory deprivation and, 68–70
environmental complexity and, 74–76
skill learning and, 85
c-fos gene, 137, 142–143, 144, 503
aging and, 504–506
in fear conditioning, 396, 407
Chemical mutagenesis, 105–106
Chick system, in neurochemical studies, 27–29
Cholinergic hypothesis, 557
Cholinergic system. See Acetylcholine
Cicero, 42
c-jun gene, 142, 256, 506
Climbing fiber input, to cerebellum, 428–429,
428f
control of, 443–445, 444f
Clonidine, memory effects of, 555
CNQX (6-cyano-7-nitroquinoxaline-2,3-dione),
389–390
Cocaine abuse/addiction, 139, 466–473
Cochlear implant, 86
Cochlear root neurons, in fear-potentiated
startle, 388–389, 388f
Cognitive control, 340–342
Cognitive map, 290
Cohort differences, 485
Commisural–CA3 pathway, 140
Competitive learning, dentate granule in,
201–202
Computational approaches, 191–235
to hippocampus, 192–218
to invariant visual–object recognition,
227–228
to long-term memory, 192–218
to mood effects, 231–234
to short-term memory, 218–227
of stimulus–reward association, 228–231
Computer-generated arena (C–G arena),
492–493
Computer metaphor, 5
Concentric rings, for measuring dendritic
branches, 60–61, 60f
Index 579
Conditional reflex, 9
Conditioned place preference (CPP), 462–463, 475
Conditioned stimulus (CS), 24, 131–132, 381–382
Conditioned taste aversion (CTA)
amygdala in, 135
CREB expression in, 135
Conditioning
aging and, 486
amygdala in, 134–135
in Aplysia, 35–37
cerebellum in, 38–40, 427–429, 428f, 431–432
corticosterone in, 249
CREB expression in, 134–135
EEG correlates of, 34–35
electrophysiology of, 38–40
estrogen and, 254
eyeblink (eyelid). See Eyeblink (eyelid) conditioning
fear. See Fear conditioning; Fear-potentiated startle
in Hermissenda, 37
hippocampus in, 38, 39–40, 131–132
in mammals, 38–40
medial temporal lobe in, 310–311
neuronal growth-associated proteins in,
135–136
Pavlov’s work on, 9–10, 11
PET scans of, 39–40
stress and, 550–552
trace, 24
Conjunctive memory, medial temporal lobe in,
316–317, 321–326, 322f–323f
Consolidation. See Memory consolidation
Context, definitions of, 165, 176–177
Context discrimination hypothesis, 156–158,
163–169
relevance for learning, 168–169
Context processing
future issues in, 176–180
hippocampal, 153–158, 163–181
CA3 vs. CA1, 170–172
cellular properties of, 170
interneurons in, 170, 180
lesion studies of, 163–164, 169
physiological mechanisms of, 170–173
temporal encoding in, 172–173
larger neural system in, 173–175
neocortical function and, 173–175
place fields in, 156–158, 163–176
striatum in, 175–176
Contextual cueing effect, 311–312
Contextual cueing tasks, medial temporal lobe in,
311–312
Contextual fear conditioning, 79, 131–132
CREB in, 134
neuronal growth-associated proteins in,
135–136
Continuous attractor network, 206–216
architecture of, 200f, 207
combined with discrete network, 208f, 209,
216–217
definition of, 207
generic model of, 209–210
idiologic update of, 206, 209, 211–216, 213f,
215f
maintenance of neuron bubble or packet by,
207
neuron firing patterns in, 207, 208f
NMRe receptors in, 211, 212f
path integration in, 209, 211–214
speed of operation, 217–218
stability in, 209
synaptic strengths in, 210–211, 212f
synaptic weight in, 209–211, 212f
in two or more directions, 215–216
Continuous attractor neural network (CANN),
207–216. See also Continuous attractor network
Corpus callosum, environmental complexity and, 76
Corticosteroid(s), 33
Corticosterone, 243–245, 249–250
amygdala and, 250
in appetitive tasks, 243
in avoidance learning, 243, 249
dose-response curve of, 249–250, 250f
memory effects of, 249–250
in object recognition, 249–250, 250f
in strategy selection, 244–245
time dependence of, 249
Corticotropin-releasing hormone (CRH), 411–
413, 414, 551f, 552, 553f
CPP. See Conditioned place preference
Cragg, B. G., 16
crammer (cer) gene, 107
CREB. See Cyclic AMP responsive element binding protein
CRH. See Corticotropin-releasing hormone
Crick, Francis, 20
Critical period, 58–59, 63, 86
Cross-modal switching, 295
Cross-sectional studies, of aging, 485–486
Cross-sequential studies, of aging, 485–486
CS. See Conditioned stimulus
CTA (conditioned taste aversion), 135
6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), 389–390
Cyclic adenosine monophosphate. See cAMP
signal transduction; Cyclic AMP responsive element binding protein
Cyclic AMP responsive element binding protein (CREB), 132–135
aging and, 500–503
in amygdala, 134–135
antisense oligonucleotide studies of, 135
in conditioning, 134
in drug abuse/addiction, 139, 467–468
estrogen and, 256, 257
in fear conditioning, 410
gene expression mediated by, 133, 133f
in hippocampus, 134–135, 141–142, 500–503
in long-term depression, 141–142
in long-term memory, 119, 134, 501
in long-term potentiation, 141–142, 502
mutations in, 134–135
overexpression of, 118
region-specific expression of, 134
regulation of, 501–502, 502f
viability as enhancement target, 562

D-cycloserine, in fear conditioning extinction, 416–417
Cystine-glutamate (xc-) exchanger, 469–470

Darwin, Erasmus, 10–11
Dashiell checkerboard maze, 22
Davis, J. W., 35
DC0 gene, 107, 108, 112–113, 120
dCREB2 gene, 108, 112

Decision making
in drug abuse/addiction, 473–474
prefrontal cortex in, 223–226, 225f

Declarative memory, 24, 131
hippocampus in, 25–26, 131, 155–156, 193–194, 272
medial temporal lobe in, 272, 305–306
in anterograde amnesia, 308–309
in awareness, 309–312
in retrograde amnesia, 312–315
neural system for, 25–26
striatum in, 370
vs. procedural, 193

Deep cerebellar nucleus
in eyelid conditioning, 434–435, 441–443
feedback to inferior olive, 443–445, 444f
plasticity in, 434–435, 435f

Deep mesencephalic reticular formation,
projections to nucleus reticularis pontis caudalis via, 394–396, 398f

Dehydroepiandrosterone (DHEAS), 548–549
Delay conditioning, medial temporal lobe in, 311

Delayed-alternation test, striatum in, 356, 366–367

Delayed-choice tasks, prefrontal cortex in, 294
Delayed-nonmatching-to-sample (DNMS) task, aging and, 506–507

Delay eyeblink conditioning, 24

Dendrite(s)
in adult brain, plasticity of, 77
aging and, 496–497
in drug abuse/addiction, 471–472
early sensory (visual) deprivation and, 64–68
environmental complexity and, 72–74
estrogen and, 255
quantification of, 59–62

skill learning and, 81–85
staining of, 59–60, 59f, 61

Dendritic branches
aging and, 496–497
concentric ring measurement of, 60–61, 60f
environmental complexity and, 72
first-order segment, 60
order of bifurcation, 60, 60f
second-order segment, 60

Dendritic spines, 61, 61f
in drug abuse/addiction, 471–472
early sensory (visual) deprivation and, 64–68
environmental complexity and, 72–74
estrogen and, 255, 256
motility of, 66–67
pruning of, 66–68
turnover of, 66–67
two-photon imaging of, 62

Dentate gyrus, 201–203
aging and, 495–498, 496f
as competitive learning network, 201–202
connections of, 308
experience-induced changes in, 15, 72–73
functional MR1 studies of, 328–329
granular cells of, 203, 308
mossy fiber inputs to CA3 cells, 203–204, 204f
place fields of, 203
neurogenesis in adult, 77–80
in spatial pattern separation, 202–203, 279
spatial representation in, 202
Depression, and memory recall, 231–232
Deprivation, 16–17
early sensory, 63–70
cerebrovascular effects of, 68–70
glial effects of, 68–70, 68f
human effects and studies of, 86
implications for neurobiological study of memory, 87–89
selective types, effects of, 64–65
synaptic effects of, 63–68
Developmental approaches, 57–89
Developmental neurobiology, quantitative methods in, 59–62
Dextroamphetamine, for attention/encoding enhancement, 545
DG. See Dentate gyrus
DHEAS (dehydroepiandrosterone), 548–549
Diacylglycerol, 29
Diazepam (Valium), and fear-potentiated startle, 392–393
2,3-Dihydroxy-6-nitro-7-sulphamoylbenzo(F)quinoxaline (NBQX), 394–397, 413, 445
Directional memory, striatum in, 368
Direct processes, in memory formation, 26
Discrete attractor network, 207–208
combined with continuous, 208f, 209, 216–217
Discrimination learning. See also specific discrimination tasks
striatum in, 355–356, 360–361, 367–368, 369
The Diseases of Memory (Ribot), 5
DNA, 20, 130
DNA microarray screening, 107
Dominant-negative transgene, 111
Donepezil, 521, 557
Dopamine
 in adenylate cyclase pathway, 113, 114f
 in basal ganglia, 340, 343f, 344, 345, 349
 in context processing, 164
 in drug abuse/addiction, 139, 460, 464–473, 469f, 471–473, 476
 estrogen and, 255, 256
 in memory consolidation, 363
 in mushroom body, 116
 in reward and motivation, 460, 464–466
 in stimulus–response learning, 360–361
 in striatum, 345, 357, 358–359, 360–361, 363
Dopamine receptor(s), 359, 466
Dopamine receptor modulators, for attention/encoding enhancement, 544–546
Dopaminergic teaching signals, 345
Dorsal lateral thalamus, in event-based memory, 297, 297f
Dorsal paired medial (DPM) neurons, 117
Dorsal prefrontal cortex
 in knowledge-based memory, 274f, 276
 in rule-based memory, 275f, 276–277
Dorsal striatum
 in habit (nondeclarative memory), 26
 in learning and memory, 359–360
 terminology for, 359–360
Dorsolateral prefrontal cortex
 in knowledge-based memory, 274f, 276
 in rule-based memory, 275f, 276–277
 in short-term memory, 218
 spatial representation in, 207
Dorsolateral striatum, 357, 359–360
Dorsomedial striatum, 357, 359–360
 in learning and memory, 366–372
Double dissociation, 25, 45
Dovecote metaphor, 4
Down’s syndrome, 108
Drosophila, 19, 23–24, 36
embryogenesis in, 103
 genetic studies in, 103–104
 of biochemical pathways, 113
 manipulation of candidate genes, 110–111
 of neuroanatomical pathways, 115–117, 115f
 olfactory learning assay for, 105, 105f
 reverse, 108–109
 transposon mutagenesis in, 106
Drug(s), memory- and learning-enhancing, 43–46, 541–566
 for attention/encoding, 544–550
Drug abuse/addiction, 459–477
 animal models of, 462–463
 connectivity in, 473–474
CREB in, 139, 467–468
 dopamine in, 139, 460, 464–473, 469f, 471–473, 476
 drugs in, 466–467
 as form of learning, 139, 459
 as form of memory, 459, 475–476
 Fos protein in, 468–470
 genes involved in, 138–139, 139, 467–468
 glutamate in, 465–466, 469–471, 469f
 long-term changes in, 469–471
 memory acquisition in, 463–467, 469f
 memory consolidation in, 463–464, 467–472, 469f
 difficulty in examining, 467
 memory retrieval in, 463–464, 469f, 472–475
 different kinds of, 472
 neuronal growth-associated proteins in, 135–136
 plasticity in, 468, 469f
 protein expression in, 467–468
 reconsolidation in, 474–475
 reinforcement in, 460–467
 reinstatement in, 472–473
 relapse in, 461, 470, 472–475
 relationship with memory, 461–462
 reward in, 459–477
 learning system for, 460–461
 neurobiology of, 464–466
 structures and connections in, 460–461, 461f
 self-administration as gold standard of, 462–463
 structural changes in, 471–472
 structures and connections in, 460–461, 461f
 superconsolidation in, 469f, 476–477
Drug-induced locomotor sensitization, 462–463
Drug-seeking behavior, 472–474
DSCR1 gene, 108–109
Dual memory system models, 271–272
Dual-trace hypothesis, 13
Dumas, C.-L., 10–11
dunce (dnc) gene, 106, 107, 108, 112, 118, 121
Durup, Gustav, 34
dynamin transgene, 116
eag gene, 118
Early growth response gene 1 (EGR1), 144
Early sensory deprivation, 63–70
 cerebrovascular effects of, 68–70
 gial effects of, 68–70, 68f
 human effects and studies of, 86
 implications for neurobiological study of memory, 87–89
 selective types, effects of, 64–65
 synaptic effects of, 63–68
Ebbinghaus, Hermann, 5–7, 43, 44
Eccles, John C., 16
Effect, law of, 9
Egocentric processing, 290–291
Egocentric response memory
NMDA receptors in, 361
striatum in, 356, 361–366, 367, 372
eIF-5C gene, 107
Electroencephalogram (EEG)
conditioning and, 34–35
hippocampal place fields and, 172, 173
Electromyography, in fear-potentiated startle measurement, 387–388, 390, 391, 392/
Electron microscopy, 12, 61–62, 61/
in deprivation studies, 64
in environmental complexity studies, 72, 72/
76
of plasticity in adult brain, 76–77, 77/
Electrophysiological studies, 34–41
Ellipsoid body, 115/
ellipsoid body open gene, 107
Embryogenesis, 103
Emotion, stimulus—reward association and, 230–231
Encoding
adenosine receptor antagonists and, 546–547
dopamine receptor modulators and, 544–546
enhancement of, 542, 544–552
everyday psychological/physiological, 550–552
mental and neurobiological correlates of, 545/
neuropharmacological, 544–550
estrogen and, 549–550
GABA receptor antagonists and, 548–549
glutamate receptor modulators and, 546, 548–549
in long-term memory, 292–293
medial temporal lobe in, 309, 310/
312, 321, 322–323, 329/
neocortex in, 312
neurosteroids and, 548–549
nicotinic receptor agonists and, 547–548
parietal cortex in, 292–293
stress–cognition axis and, 550–552
temporal, in hippocampus, 172–173
Enhancement, 43–46, 541–566
adaptive/evolutionary view of, 563
of attention/encoding, 542, 544–552
everyday psychological/physiological, 550–552
mental and neurobiological correlates of, 545/
neuropharmacological, 544–550
credibility of mechanisms, 543
direct mediators for, 561
ethics of, 43–46, 543
future directions in, 561–564
modulators for, 561
problem of specificity in, 561
replacement strategies in, 562
of retrieval/recall, 542, 558–561
everyday physiological, 560–561
mental and neurobiological correlates of, 559/
neuropharmacological, 559–560
of storage/consolidation, 542, 552–558
everyday physiological, 557–558
mental and neurobiological correlates of, 554/
neuropharmacological, 554–557
synaptic plasticity effects of, 562–563
target selection for, 562, 562/
Enhancement neurology, 564
Enhancer-trap technique, 106–107, 117
Enhancing Human Performance (National Research Council), 43
Enkephalins, 143
Enriched condition (EC), 15, 18–19, 70–81
Entorhinal cortex
aging and, 496
anatomy of, 306–307, 307/
connections of from cortices, 306–308, 307/
to hippocampus, 192, 193/
307–308, 307/
in knowledge-based memory, 289, 297, 297/
in memory retrieval, 314, 314/
place cells of, 175
in short-term memory, 218
in spatial memory, 202, 289, 293
Environmental complexity, 70–81
adult brain effects of, 76–80
neurogenesis, 77–80
plasticity, 76–77, 77/
cerebrovascular effects of, 74–76
glial effects of, 74–76, 75/
human effects and studies of, 86–87
implications for neurobiological study of memory, 87–89
maze design and types in, 70–71, 71/
sex differences in, 72–73
synaptic effects of, 71–74, 72/
76–77, 77/
Environmental enrichment, 15, 18–19, 70–81.
See also Environmental complexity
Epidermal growth factor receptor (EGFR), 113
Epinephrine, 243–249
in appetitive tasks, 243
in avoidance learning, 243, 244–245
dose-response curve of, 245–246, 246/
memory effects of, 244–249, 246/
555, 560
glucose and, 247–249, 247/
peripheral mechanisms of, 246–249
vagus nerve and, 246–249, 247/
release of, 244
and state-dependent retrieval, 560
for storage/consolidation enhancement, 555
time dependence of, 246, 246/
Episodic memory, 193–194, 272
hippocampus in, 155–156
lesion studies of, 192–195
medial temporal lobe in, 305–306
neurobiology of, 173
Episodic processing, 179-180

An Essay on the Vital and Other Involuntary Motions of Animals (Whyytt), 10

Essential controls, in genetic studies, 109

Estradiol, 251-258, 549. See also Estrogen

Estradiol-hydroxypropyl β-cyclodextrin, 251

Estrogen, 244-245, 251-258

for attention/encoding enhancement, 549-550

dose-response curve of, 254

for genomic actions of, 252-255, 255-256, 549-550

and learning strategy, 252-254, 253f

memory effects of, 251-258, 549-550

direct tests of, 251-252, 252f

modulation of distinct neural systems, 254-255

nongenomic actions of, 255

and plasticity, 255-256

requirements for cognition, 255-256

short-term vs. durable changes with, 255-256

specificity in learning and memory, 257-258

in strategy selection, 244-245

striatal effects of, 252-253, 254-255, 256

structural and functional effects on adult brain, 251

Estrogen receptor(s), 255-258

distribution in brain, 256-258

ERα, 251, 256-258

ERβ, 251, 256-258

knockout studies of, 257-258

Ethics, of memory enhancement, 43-46, 543

Experience

cross-species effects of, 19-20, 87

enriched, 18-19

necessity of, 20

neuroanatomical effects of, 13-17

neurochemical effects of, 13-17, 29-30

Experience-dependent plasticity, 58-59, 129-130

in human brain, 85-87

implications for neurobiological study of memory, 87-89

neural basis for, 89

Experience-expectant plasticity, 58-59

early sensory deprivation and, 65, 70

in human brain, 85-87

implications for neurobiological study of memory, 87-89

neural basis for, 87-88

Explicit memory, 272

Exposure therapy, 416-417

Extinction, 415

of fear-potentiated startle, 415-416

clinical applications of, 416-417

long-term potentiation in, 438

nucleo-olivary feedback and, 443-445

Extinction training, 415

Extrastriate visual cortex, in event-based memory, 276

Eyeblink (eyelid) conditioning, 132

adaptive timing in, 446

aging and, 486

anterior interpositus nucleus in, 431-435, 438-443

cerebellar cortex in, 432-434, 440-441

cerebellum in, 38-40, 427-448, 428f

plasticity and, 432-440

deep cerebellar nucleus in, 434-435, 441-443

estrogen and, 254

feed-forward system in, 447-448

interstimulus intervals in, 445-446, 446f

long-term depression in, 436-437

long-term potentiation in, 437-438

temporal properties of, 445-446, 446f

Eye movement adaptation, cerebellum in, 429-431

Facial motor neurons, in fear-potentiated startle, 390

Familiarity, in recognition memory, 317-320, 319f

Fan-shaped body, 115f, 117

Fasciclin II, 114-115, 118

fascin II (fasII) gene, 106-107, 121-122

Fast vs. slow plasticity, 340, 346-348

Fear, 381-417

amygdala in, 397-407

animal models of, 383-385, 384f

conditioned, 381-382, 382f

freezing response to, 383

unconditioned, 381-382, 382f

vs. anxiety, 382-383

Page 584
Fear conditioning, 79, 131–132, 381–382, 382f
aging and, 486
amygdala inputs relevant to, 400–404
corticosterone in, 249
CREB in, 134
genetics of, 407–410, 408f
hearing and, 401–403
neuronal growth-associated proteins in, 135–136
pain and, 400–401
smell and, 404
stress and, 550–552
tests of, 383–385, 384f. See also Fear-potentiated startle
vision and, 403–404
Fear-potentiated startle, 383–417
acetylcholine in, 394–396
AMPA receptors in, 394–397, 406–407, 413
amygdala in, 397–417
central nucleus, 393–396, 395f, 398f
medial nucleus, 396–397, 398f
plasticity and, 404–405
bed nucleus of stria terminalis in, 411–415, 415f
brain-derived neurotrophic factor in, 409–410
cochlear root neurons in, 388–389, 388f
corticotropic-releasing hormone and, 411–413, 414
CREB in, 410
extinction of, 415–416
clinical applications of, 416–417
facial and spinal motor neurons in, 408f
gephyrin in, 409
glutamate receptors in, 405–407
habitation in, 391–393
in humans, 386–387
intracellular events in, 407–413
light-enhanced, 412–413, 414
in long-term memory, 386
long-term sensitization of, 413
measurement of, 385f, 386
electromyographic, 387–388, 390, 391, 392f
neural pathways in, 387–390, 388f
NMDA receptors in, 389, 390, 404, 405–406, 415–416
nucleus reticularis pontis caudalis in, 389–390, 391–397
operational definition of, 385f, 386
sensitization in, 391–393
short-latency pathway of, 391
substance P in, 396–397
training in, 385, 385f
transmission modulation in, determining point of, 391–393, 393f
Feature integration theory, 290
Feed-forward system, cerebellar, 447–448
Fessard, Alfred, 34
Fluorochrome, 62
Foot shock, in fear conditioning, 381–382, 413–414
Fornix lesions, and context discrimination, 164–165
Forskolin, 29, 113
Fos protein, 118
ΔFosB, in drug abuse/addiction, 468–470
Franklin, Rosalind, 20
Franz, Shepard I., 9
Freezing response, 383
Frontal cortex. See also Prefrontal cortex
anatomical loops with basal ganglia, 348–350
in associative learning, 350
in goal-directed learning, 340, 349–350
interactions with basal ganglia, 339–350
plasticity in, vs. basal ganglia plasticity, 340, 346–348
Frontal cortical–basal ganglia–thalamic loops, 358
Functional MRI
of hippocampus, 328–329, 329f
of item and conjunctive memory, 321–326, 322f–323f
GABA. See γ-Aminobutyric acid
Ga gene, 108, 113, 114f, 116
Galantamine, 521
Galton, Francis, 21
GAL4-UAS system, 110–111, 110f
γ-Aminobutyric acid (GABA)
in drug abuse/addiction, 472
estrogen and, 255
in extinction, 445
in myelination, 69
progesterone and, 259
in striatum, 358
γ-Aminobutyric acid receptor antagonists, for attention/encoding enhancement, 548–549
GAP-43, 135–136
Gene expression, 129–145
CREB-dependent, 133, 133f
in long-term potentiation, 139–145
time-dependent cascade in, 130–131
Gene knock-in experiments, 130
Gene knockout experiments, 23, 130
Gene-modification techniques, 23–24
General vs. idiosyncratic information, 17, 58–59
Genetic(s), 20–24, 103–122. See also specific genes and studies
essential controls in studies, 109
reverse, 108–109
Genetic code, 130
Genetic dissection, 112–122
of biochemical pathways, 112–115, 114f
of memory formation, 119–122
of neuroanatomical pathways, 115–117
of synaptic plasticity, 117–119
Genetic manipulation, 109–111, 130
Genetic screening, of learning and memory mutants, 104–109
Genome, 130
Genomic action potential, 553–554
Gephyrin, in fear conditioning, 409
Gill-withdrawal response, 35–37, 132
Ginkgo biloba, for Alzheimer’s disease, 531–533
Glial cells
early sensory deprivation and, 68–70, 68f
environmental complexity and, 74–76, 75f
skill learning and, 85
staining of, 59–60, 59f
Globus pallidus, 342–344, 343f, 355
Globus pallidus external (GPe), 344
Globus pallidus internal (GPi), 344
Glucocorticoid(s), 31, 33
memory effects of, 551–552
and neurogenesis in adult brain, 78
Glucose, 561
and memory effects of epinephrine, 247–249, 247f
Glutamate, 29
in Alzheimer’s disease, 521–523, 526–528
in drug abuse/addiction, 465–466, 469–471, 469f
early sensory deprivation and, 69
estrogen and, 255
in fear-potentiated startle, 390
in myelination, 69
in reward/motivation/addiction, 465–466
Glutamate receptor(s), 29. See also AMPA receptor(s); NMDA receptor(s)
environmental complexity and, 73–74
in fear-potentiated startle, 405–407
Glutamate receptor modulators, 29
for Alzheimer’s disease, 526–527, 529–530, 533
for attention/encoding enhancement, 546, 548–549
Glycine, in fear-potentiated startle, 390
Glycoprotein synthesis, 30–31
γ neurons, of mushroom body, 115–116, 115f
Goal-directed behavior/learning, 339–340
cognitive control and, 340–342
dopaminergic teaching signals and, 345
frontal cortex–basal ganglia loops and, 349–350
plasticity in, basal ganglia versus frontal cortex, 340, 346–348
Goal-oriented control, 295
Golgi, Camillo, 60
Golgi method, 59f, 60, 61
in environmental complexity studies, 72, 72f
Gonadal steroids, 243–245, 251–260
Go/no go discrimination task, 231, 280–281
G protein beta 1 subunit, in drug abuse, 139
Granule cells, 308
aging and, 495, 496f
cerebellar, 428–429, 428f
dentate gyrus
mossy fiber inputs to CA3 cells, 203–204, 204f
place fields of, 203
Granule cell-to-Purkinje cell (gr-Pkj) synapses, 430, 436–440
coupled with nucleo-olivary feedback, 443–445
in extinction, 438
long-term depression at, 432, 436–437, 439–441
long-term potentiation at, 437–438
Green fluorescent protein (GFP), 62
Grid cells, 293
Growth factors
in long-term potentiation, 143–144
for storage/consolidation enhancement, 555–557
Gut hormones, 243
Guthrie, W., 24
Habit
formation of, striatum in, 360
James on, 6–7
neural system for, 26
vs. goal-directed behavior, 339
Habituation
in Aplysia, 132
in fear-potentiated startle, 391–393
Head direction cells, 197, 290–291
in continuous attractor network, 206, 209–214, 213f, 215f
Head trauma, and neurodegenerative disease, 519, 525
Hearing, and fear conditioning, 401–403
heat-shock protein 70 (hsp70) gene, 110
Hebb, Donald O., 12–13, 18–19, 28, 57–58, 70–71
Hebbian coincidence detector, NMDA receptors as, 118–119
Hebb synapse, 58
Hebb–Williams mazes, 19, 22, 70–71, 81, 290
Hermesiana, 19
conditioning in, 37
Heroin, 466–467
Hippocampus, 131–132
aging and, 493–506
electrophysiological findings in, 498–500
molecular findings in, 500–506
neuroanatomical findings in, 495–498, 496f
allocentric processing in, 290–291
in Alzheimer’s disease, 494–495, 498
anatomy of, 306, 307f
in anterograde amnesia, 192–193, 317
back-projections to neocortex, 204–206
behavioral correlates of neuronal output in, 156
CA1 system of, 170–172
aging and, 496–499, 505–506
computational hypothesis for, 205
in information recall, 204–206
projections and connections of, 308
CA3 system of, 170–172, 199–201, 326–329
aging and, 496, 498, 505
in association, 280–281
associative learning mechanism of, 316
computational hypothesis for, 205
conjunctive mechanism of, 316, 326–329
functional MRI studies of, 328–329, 329f
knockout studies of, 328
memory storage and retrieval in, 199–201
mossy fiber inputs from dentate granule cells, 203–204, 204f
NMDA-dependent plasticity in, 201
pattern completion process in, 201, 282–284, 326–328
projections and connections of, 308
as single autoassociation network, 199–201
circuit-level approach to, 156
circuitry (connections of), 192, 193f, 204–206, 306–308, 307f
computational approach to, 192–218
in conditioning, 38, 39–40, 131–132
in conjunctive memory, 316–317, 321–326, 322f–323f
in consolidation, 288–289, 350, 552–553
context discrimination hypothesis of, 156–158, 163–169
in context processing, 155–181, 163–176
continuous attractor network of, 216–217
CREB expression in, 134–135, 141–142, 500–503
in declarative memory, 25–26, 131, 155–156, 193–194, 272
in dual memory system models, 271–272
environmental complexity and, 72–73
in episodic memory, 155–156, 192–195
estrogen and, 252–255, 255–256, 549–580
estrogen receptors in, 257
in event-based memory, 273f, 276, 277–289, 297, 297f
exercise/activity and, 557–558
experience-induced changes in, 15, 20. See also specific types of experience
functional segregation within medial temporal lobe, 315–317
gene expression in, 139–145
idiiothetic inputs to, 158–159, 206–209, 290–291
interaction with parietal cortex, 289–292, 293
interaction with prefrontal cortex, 294–296
in intermediate-term memory, 284–288, 294
lesion studies of, 192–195, 317–320, 493
location–reward convergence in, 197
in long-term memory, 192–218, 291
long-term potentiation in, 33–34, 139–145, 503–504, 543f
in memory retrieval, 199–201, 314–315, 314f, 323–326, 324f
in memory storage, 34
mixed attractor network of, 216–217
models of, 199–206
neocortical function and, 173–175
as neural substrate of cognitive map, 156
neurogenesis in adult, 77–80
neuronal growth-associated proteins in, 136
neurophysiology of, 195–199
NMDA pathways in, 139–141, 140f, 201, 328
in paired associate learning, 194–195, 280–282, 318f
place cells of, 40–41, 195, 493–494
CA1 vs. CA3, 170–172
memetic contributions of, 155–181, 157f
in rats, 198–199
in prospective/reverspective coding, 295–296
protein synthesis in, 143–144
in recognition memory, 317–320, 319f, 321–326, 324f
in relational learning, 155–156
in reward/motivation/addiction, 464–465
right–left (spatial–word) dissociation in, 195
sensory activation of, 277–278
in sequence memory, 205
in short-term memory, 155–156, 226–227, 272, 277, 284–288, 294
skill learning and, 83–85
sleep and, 40–41
in spatial arbitrary association, 280–282
effects of aging on, 493–506
spatial–object convergence in, 197, 216–217
in spatial pattern separation, 275, 277–280
spatial representation in continuous, 206–216
rat vs. primate, 198–199
in two or more directions, 215–216
stress and, 550–552
subfield function of, 326–329, 329f
subregion analysis of, 205
temporal encoding in, 172–173
in temporal pattern separation, 280
tissue plasminogen activator in, 142–143
in trace conditioning, 24
in transitive inference tasks, 323–324, 325f
unique contributions of, 155–156
Hippocampus (journal), 205
Histamine, in adenylate cyclase pathway, 113, 114f
Hologram metaphor, 5
Homeri gene, 137–138, 138f, 142
Homer proteins, in drug abuse/addiction, 470
Hopfield attractor network, 209
Hormones, 129–130, 131, 243–260. See also specific hormones
activational effects of, 244
adrenal (stress), 243–250, 551–552
organizational effects of, 244
ovarian, 243–245, 251–260, 549–550
physiological effects of, 243–250
in strategy selection, 244–245
Hull, Clark, 24
Huntington's disease, 344, 355
Hyden, Holger, 32
Hypermnesia, 563
Hypothalamo-pituitary-adrenocortical axis, 550–552
Hypothalamus, ventromedial, projections to nucleus reticularis pontis caudalis via, 396–397, 398f

Idiosyncratic vs. general information, 17, 58–59
Idiothetic inputs
to hippocampus, 206–209, 290–291
to parietal cortex, 290–291
place field sensitivity to, 158–159
updating of continuous attractor network with, 206, 209, 211–216, 213f, 215f
Immediate early genes (IEGs), 137–139, 503–506
aging and, 504–506
in long-term potentiation, 137–138, 138f, 141–143, 503–504
Implicit memory, 272
Impoverished condition (IC), 15
Impulse control, in drug abuse/addiction, 473–474
Inferior convexity prefrontal cortex, in short-term memory, 218
Inferior olive, deep cerebellar nucleus feedback to, 443–445, 444f
Inferior temporal cortex
connections to hippocampus, 192, 193f
interaction in short-term memory, 218–221
in knowledge-based memory, 274f, 276
in visual stimulus–reward association, 228–231, 229f, 230f
Inflammation, in Alzheimer's disease, 523–526
Information, general vs. idiosyncratic, 17, 58–59
Infralimbic cortex
in cross-modal switching, 295
interaction with hippocampus, 294
in intermediate-term memory, 294
in rule-based memory, 275f, 276, 293–296, 297–298, 297f
in short-term memory, 294
Inhibition, Pavlov on, 11
Inner antennal–cerebral tract (iACT), 116
Instrumental learning, 460
Insular cortex, in rule-based memory, 275f, 276–277
Insulin, 561
Integrate-and-fire approach, 217–218, 221
Integrin, 114–115
Intermediate-term memory, 284–288
hippocampus in, 284–288
hippocampus–prefrontal cortex interaction in, 294
neurochemistry of, 28, 29, 30–31
protein kinases in, 29
stages of, 30–31
International Declaration of Human Rights, 44
Interna, hippocampal, in context processing, 170, 180
Interstimulus intervals (ISIs), in eyelid conditioning, 445–446, 446f
Invertebrate model systems, 132
Irradiation, and neurogenesis, 79–80
Irwin, Louis, 32
Isolated condition (IC), 15, 70–71
Item-based memory, medial temporal lobe in, 315–317, 321–326, 322f–323f
Jacobson, Allan, 32–33
James, William, 5, 6–7, 9, 24, 28
jun-B gene, 142
jun-D gene, 142
jun-d gene, 137–138, 138f
Jun protein, 118
in drug abuse/addiction, 468
Kandel, Eric, 35–36
k-cadherin gene, 139
Kenyon cells, of mushroom body, 115–116, 115f
Kesner’s tripartite attribute-based model, 272, 296, 298
Knock-in experiments, 130
Knockout experiments, 23, 130
of CA3 hippocampal system, 328
of estrogen, 257–258
Knowledge-based memory, 272–277, 274f, 296–298
attribute organization in, 275
attribute (information) processing in, 275–276, 296
long-term, 292–293
neurobiology of, 274f, 276, 296–298
perceptual, 291–292
spatial attribute in, 289–293
Korsakoff’s disease, 31
krox24 gene, 137–138, 138f, 503
Labile stage, 30
lacZ gene, 106
Language attribute, 273–275
Language learning, 86
Lanthanum chloride, 29
Lashley, Karl S., 9, 12–13, 24–25, 28
Lashley III maze, 22, 70
Lateral horn (LH) of protocerebrum, 116
Lateral nucleus of amygdala, 398–399
Lateral perforant pathway, of hippocampus, 140
Lateral prefrontal cortex, in rule-based memory, 297–298, 297/
Lateral striatum, in learning and memory, 360–366
latheo (lat) gene, 106, 115, 118, 121
Lavie, Peretz, 40
Law of effect, 9
Leaky-integrator equations, 209–210
Learning. See also specific entries
behavior measures of, 104–105
changing concepts of, 24–34
electrophysiological studies of, 34–41
genetics of, 20–24, 103–122, 120/
genetic studies of, 20–24
historical perspective on, 4–46
neural junctions as sites of, 7–9
neurobiological correlates of, 62–87
sleep and, 40
time course of, 543/
types of, 131–132
variety of forms, 24–26
Learning enhancement. See Enhancement
Learning strategy, estrogen and, 252–254, 253/
Lectures on the Work of the Principal Digestive Glands (Pavlov), 9
LeDoux, Joseph, 401
Leg flexion conditioning, cerebellum in, 39
leonardo (leo) gene, 106-107
Library metaphor, 5
Lifestyle interventions, 541, 543
Light-enhanced startle, 412–413, 414
Light microscopy, 60
linotte (lio) gene, 106, 121
Location-specific firing, 156, 175–176. See also Place fields
Loci, method of, 42
Locomotor sensitization, drug-induced, 462–463
Longitudinal studies, of aging, 485–486
Long-term depression (LTD), 139
in cerebellum, 432, 436–437, 439, 440–441
CREB expression in, 141–142
at granule cell-to-Purkinje cell (gr-Pkj) synapses, 432, 436–437, 439–441
as memory mechanism, 33–34
NMDA receptors in, 118–119, 139-145, 522
place fields in, 160
protein kinases in, 140
protein synthesis in, 143–144, 499
and short-term memory, 226–227
stress and, 550
synaptic changes in, 73–74
synaptic tagging in, 144–145
temporal phases of, 141
time course of, 543/
tissue plasminogen activator in, 142–143
transcription factors in, 141–143
Long-term sensitization of acoustic startle response, 413
in Aplysia, 19
LTD. See Long-term depression
LTM. See Long-term memory
LTP. See Long-term potentiation

Magnetic resonance imaging functional
of hippocampus, 328–329, 329/
of item and conjunctive memory, 321–326, 322f–323f
structural, of age-related neuroanatomy, 498
Index

Magnocellular division of amygdala, 399–400
Malin, David, 33
Mammals, conditioning in, 38–40
Marr’s theory of cerebellar learning, 427
“Master map of locations,” 290
Match–mismatch comparisons, 164–165
Matrix, of striatum, 343–344
Mazes
 aging and navigation of, 487–491, 489f, 492
 in environmental complexity studies, 70–71, 71f
MB. See Mushroom body
McConnell, James, 32
McDougall, William, 6
McNaughton, Bruce, 40–41
Medial antennal-cerebral tract (mACT), 116
Medial dorsal thalamus, in reward/motivation/addiction, 460–461
Medial nucleus of amygdala
 in fear-potentiated startle, 396–397
 projections to nucleus reticularis pontis caudalis, 396–397, 398f
 in psychological stress, 396–397
Medial perforant pathway, of hippocampus, 140
Medial prefrontal cortex, in drug abuse/addiction, 470–474
Medial striatum, in learning and memory, 366–372
Medial temporal lobe, 305–329. See also specific structures of
 anatomy of, 306–308, 307f, 315
 in anterograde amnesia, 308–309
 in autobiographic memory, 313–315
 in awareness-related memory, 309–312
 in conditioning, 310–311
 in conjunctive memory, 316–317, 321–326, 322f–323f
 in consolidation, 312–315
 in contextual cueing tasks, 311–312
 cortical projections to and within, 306–308, 307f, 315
 in declarative memory, 272, 305–306, 308–309, 309–312
 in dual memory system models, 271–272
 in encoding, 309, 310f, 312, 321, 322f–323f, 329f
 in episodic memory, 305–306
 functional segregation within, 315–317
 in item memory, 321–326, 322f–323f
 lesion studies of, 308–315
 in long-term memory, 305–306
 in memory retrieval, 312–315, 314f, 323–326, 329f, 558
 perceived memory strength and, 326, 327f
 in procedural learning, 311–312
 in recognition memory, 317–320
 in relational memory, 310–312
 repetition suppression in, 324–326, 327f
 response to novel stimuli, 309, 310f
 in retrograde amnesia, 312–315
 in transitive inference tasks, 323–324, 325f
Memantine, 526–527, 529–530
Memoir, 4
La memoire (French), 4
Le memoire (French), 4
Memoria (Latin), 4
Memory. See also specific entries
 aging and, 41–42, 483–508
 behavior measures of, 104–105
 developmental approaches to, 57–89
 electrophysiological studies of, 34–41
 genetics of, 20–24, 103–122, 120f
 historical perspective on, 4–46
 improvement of, 42–44
 James on, 6–7
 metaphors of, 4–6
 neurobiological views of, 271–298
 stages of, neurochemistry of, 30–31
 time course of, 543f
 types of, 131–132
 variety of mechanisms, 24–26
Memory acquisition, in drug abuse/addiction, 463–467, 469f
Memory buffer, 349
Memory consolidation, 24, 288–289
 adrenergic receptor agonists and, 555
 cellular, 552–553
 dopamine in, 363
 in drug abuse/addiction, 463–464, 467–472, 469f
 enhancement of, 542, 552–558
 everyday physiological, 557–558
 mental and neurobiological correlates of, 554f
 neuropharmacological, 554–557
 exercise/activity and, 557–558
 hallmarks of, 553
 hippocampus in, 34, 288–289, 350, 552–553
 in long-term memory, 292–293
 neocortex in, 553
 NMDA receptors in, 363
 noradrenergic receptor agonists and, 555
 parietal cortex in, 292–293
 protein synthesis in, 27–28, 553–554
 sleep and, 40–41
 striatum in, 363
 systems, 552–553
 temporal medial lobe in, 312–315
 trophic factors and, 555–557
Memory enhancement. See Enhancement
Memory-fitness strategies, 542. See also Enhancement
Memory formation
 changing concepts of, 24–34
 direct processes in, 26
 genetic dissection of, 119–122
 modulatory processes in, 26
 “Memory molecules,” 32–33, 130
Memory reconsolidation, in drug abuse/addiction, 474–475

Memory retrieval
in drug abuse/addiction, 463–464, 469f, 472–475
enhancement of, 542, 558–561
everyday physiological, 560–561
mental and neurobiological correlates of, 559
neuropharmacological, 559–560
entorhinal cortex in, 314, 314f
hippocampus in, 199–201, 314–315, 314f, 323–326, 324f
in long-term memory, 292–293
medial temporal lobe in, 312–315, 314f, 323–326, 329f, 558
parahippocampal gyrus in, 314
parietal cortex in, 292–293
serotonin and, 559–560
state-dependent, 560–561

Memory storage. See Memory consolidation

Mesencephalic reticular formation, projections to nucleus reticularis pontis caudalis via, 394–396, 398f

Messenger RNA (mRNA), 130

Metallothionein 1A (MT1A), 138, 138f

Metaphors of memory, 4–5

Metaphors of Memory: A History of Ideas About the Mind (Draaisma), 4

Methamphetamine abuse, 139

Methylazoxymethanol-acetate (MAM), 132

Methylphenidate, for attention/encoding enhancement, 545

Methylxanthines, for attention/encoding enhancement, 546–547

MF-CA3 pathway, 137–138, 138f

Middle-term memory (MTM), genetics of, 120–121, 120f

Middorsolateral prefrontal cortex, in rule-based memory, 275f, 276–277

Minibrain gene, 107

Mitochondrial failure, in Alzheimer’s disease, 527–528

Mitogen-activated protein kinase (MAPK), 113, 141

and CREB-dependent gene expression, 133
estrogen and, 256

Mnemonics, 42

Modulatory processes, in memory formation, 26

Molecular biology, 20–24. See also specific studies and findings

Monocular deprivation, 63. See also Visual deprivation

Mood, effects on memory and perception, 231–234, 233f

Morphine, 468, 471
and fear-potentiated startle, 396–397
and state-dependent retrieval, 560

Morris water maze, 70–71, 79, 131
aging and navigation of, 489–491, 489f, 492

Mossy fiber inputs, 308
to cerebellum, 428–429, 428f
dentate granule cells to CA3 cells, 203–204, 204f

Mossy fiber-to-AIN (mf-nuc) synapses, 432, 438–440, 441–443

Motivation
animal studies of, 22
in drug abuse/addiction, 460–462
stimulus-reward association and, 230–231
structures and connections in, 460–461, 461f

Motor cortex, skill learning and, 82–83, 83f, 84f

Motor neurons, in fear-potentiated startle, 388f, 390

Motor skill learning, synaptic effects of, 81–85, 83f, 84f

Movement correlates, of place fields, 158–159

Myelination
early sensory deprivation and, 68–69, 68f
environmental complexity and, 76

Myotrophin (MTPN), 138, 138f

Mushroom body (MB), 115–117, 115f
Kenyon cells of, 115–116, 115f
in learning and memory, 116–117
mutations affecting, 106–107, 116–117, 119
neuron types in, 115–116, 115f

Mushroom body miniature gene, 107

Musicians, plasticity in, 87

Mutagenesis
chemical, 105–106
transposon, 106–107

Mutations, 23

Myelination
early sensory deprivation and, 68–69, 68f
environmental complexity and, 76

Myotrophin (MTPN), 138, 138f

Nalot (nal) gene, 106, 115

Narp gene, 503

National Research Council, 43

NBQX (2,3-dihydroxy-6-nitro-7-sulphamoylbenzo(F)-quinoxaline), 394–397, 413, 445

Nebula (nla) gene, 108–109

Neocortex
aging and, 495
in consolidation, 553
in context processing, 173–175
Neocortex (continued)
in encoding, 312
hippocampal back-projections to, 204–206
neurogenesis in adult, 78
plasticity in adult brain, 76
Nerve growth factor (NGF), 144, 555–557
Neural junctions, as sites of learning, 7–9
Neural Networks (journal), 205
Neuregulin, in myelination, 69
Neuroanatomical pathways, genetic dissection of, 115–117
Neuroanatomy. See also specific anatomical structures
historical perspective on, 13–17
Neurobiological views, of memory, 271–298
Neurobiology
attributes of memory, 273f, 274f, 275f, 276
quantitative methods in, 59–62
Neurochemistry. See also specific anatomy, effects, and substances
experience and, 13–17, 29–30
guidelines and criteria for, 33–34
historical perspective on, 13–17, 26–34
of intermediate-term memory, 28, 29, 30–31
of long-term memory, 27–28, 29–30
relationship to stages of memory, 30–31
of short-term memory, 28, 29, 30
Neurodegenerative diseases, 519–534. See also Alzheimer’s disease
Neurofibrillary tangles, in Alzheimer’s disease, 520
neurofibrinomatosis 1 (NF1) gene, 108, 113, 114f
Neurogenesis
in adult brain, 77–80, 495
environmental complexity and, 77–80
sleep and, 79
Neuroinflammation, in Alzheimer’s disease, 523–526
Neuromuscular junction, synaptic plasticity at, genetics of, 118
Neuron(s)
changes in, 129–130
electron microscopy of, 61–62
properties of, 129
quantification of, 59–62
staining of, 59–60, 59f
two-photon imaging of, 62
Neuronal growth-associated proteins (nGAPs), 135–136
Neuropeptide Y, 561
Neuroprotection, in Alzheimer’s disease, 533–534
Nonsteroidal anti-inflammatory drugs (NSAIDs), for Alzheimer’s disease, 526
Noradrenergic receptor agonists, for storage/consolidation enhancement, 555
Norepinephrine
in fear-potentiated startle, 390
memory effects of, 555
Notch gene, 115, 119
Nucleus accumbens, 355, 359
correspondences of, 464
dopamine in, 464–465
long-term potentiation in, 465
regions of, 464
in reward/motivation/addiction, 139, 460–461, 461f, 464–476
Nucleus reticularis pontis caudalis (PnC)
in fear-potentiated startle, 389–390, 391–397
projections to, 393–397
direct, from central nucleus of amygdala, 393–394, 395f, 398f
indirect
from central nucleus of amygdala, 394–396, 398f
from medial nucleus of amygdala, 396–397, 398f
via deep mesencephalic reticular formation, 394–396, 398f
Nicotine addiction, 471
Nicotinic receptor agonists, for attention/encoding enhancement, 547–548
Nitric oxide, in Alzheimer’s disease, 542–543
NMBA receptor(s), 29
in Alzheimer’s disease, 522–531, 533
in amygdala, 405–406, 409–410
in avoidance learning, 363
in continuous attractor network, 211, 212f
Drosophila mutations in, 119
early sensory deprivation and, 67
eoganoceric response memory, 361
environmental complexity and, 73–74
estrogen and, 549–550
in eyelid conditioning, 442
in fear-potentiated startle, 389, 390, 404, 405–406, 415–416
as Hebbian coincidence detector, 118–119
hippocampal pathways of, 139–141, 140f, 201, 328
in long-term depression, 118–119
in long-term potentiation, 118–119, 139–141, 140f, 405, 522
in memory consolidation, 363
and place fields, 159
in plasticity, 118–119, 201
in short-term memory, 367
in striatum, 361, 363, 367
NMBA receptor modulators, 134, 405–406, 415
for attention/encoding enhancement, 546, 548–549
no bridge gene, 107
Nodulis, 115f, 117
Nonsteroidal anti-inflammatory drugs (NSAIDs), for Alzheimer’s disease, 526
Noradrenergic receptor agonists, for storage/consolidation enhancement, 555
Norepinephrine
in fear-potentiated startle, 390
memory effects of, 555
Notch gene, 115, 119
Nucleus accumbens, 355, 359
correspondences of, 464
dopamine in, 464–465
long-term potentiation in, 465
regions of, 464
in reward/motivation/addiction, 139, 460–461, 461f, 464–476
Nucleus reticularis pontis caudalis (PnC)
in fear-potentiated startle, 389–390, 391–397
projections to, 393–397
direct, from central nucleus of amygdala, 393–394, 395f, 398f
indirect
from central nucleus of amygdala, 394–396, 398f
from medial nucleus of amygdala, 396–397, 398f
via deep mesencephalic reticular formation, 394–396, 398f
via ventral periaqueductal gray, 396–397, 398f
via ventromedial hypothalamus, 396–397, 398f

Object–object association, 289
Object-place memory
dentate gyrus in, 202–203
estrogen and, 251
hippocampus in, 192–195, 280–282, 289–290
CA3 system function in, 200–201
parietal cortex in, 289–290
spatial view cells in, 196
Object recognition
corticosterone and, 249–250, 250f
estrogen receptors and, 257
Omm's razor, 130
Occipital cortex, experience-induced changes in, 15
Octopaminergic neurons, of mushroom body, 116
Ocular dominance columns, early sensory (visual) deprivation and, 64
Odor response, fear-potentiated, 386
Olfactory behavior test, 105, 105/109, 112
Olfactory cortex, skill learning and, 83
Olfactory deprivation, 65
Olfactory tubercle, 355, 359
Oligodendrocytes
ey early sensory deprivation and, 68–69
environmental complexity and, 75–76
skill learning and, 85
Olivo-cortico-nuclear loop, 443–445, 444f
“One memory–one neuron” concept, 57–58
On Memory (Ebbinghaus), 5
Operator tasks, aging and, 486
Opioid(s), 29
and state-dependent retrieval, 560
Opioid agonists, 29
Opioid antagonists, 29
Opioid receptor(s)
κ, in drug abuse/addiction, 466–467
μ
in fear-potentiated startle, 397
in long-term potentiation, 140
orb gene, 107
Orbital prefrontal cortex
in knowledge-based memory, 274f, 276
in rule-based memory, 275f, 276–277
Orbitofrontal cortex
in mood states, 233, 233f
in stimulus–reward association, 230–231, 230f, 232f
The Organization of Behavior, 12–13
Ouabain, 29
Outer antennal-cerebral tract (oACT), 116
See also specific hormones

Oxidative stress, in Alzheimer’s disease, 522–523, 527–529
Oxytocin, in drug abuse, 139

Paige, Satchel, 484
Pain, and fear conditioning, 400–401
Paired associate learning, hippocampus in, 194–195, 280–282, 318f
Parahippocampal gyrus
anatomy of, 306–307, 307f
connections of, 306–308, 307f, 315
functional segregation within medial temporal lobe, 315–317
in knowledge-based memory, 289, 297, 297f
in memory retrieval, 314
perceived memory strength and, 326f, 327
representational capacity of, 315
in spatial memory, 289, 293, 315
visuospatial processing in, 315
Parasubiculum, in event-based memory, 297, 297f
Parietal cortex
eogentric processing in, 290–291
in encoding, consolidation, and retrieval, 292–293
interaction with hippocampus, 289–292, 293
in knowledge-based memory, 274f, 276, 289–293, 297, 297f
in long-term memory, 292–293
in object-place memory, 289–290
in perceptual memory, 289, 291–292
in short-term memory, 218–221, 219f, 291
in spatial memory, 289–293
in topological processing, 291
Parietal insula, 401
Parkinson’s disease, 344, 355
double dissociation in, 25
Parvicellular division of amygdala, 399–400
Pattern–association learning, visual stimulus–reward, 228–231, 229f, 230f
Pattern completion, 282–284
CA3 hippocampal system in, 201, 282–284, 316, 326–328
dynamic temporal framework for, 284
Pattern separation
dynamic temporal framework for, 284
neurobiology of, 280
spatial, 202–203, 275, 277–280
in acquisition of spatial information, 279–280
in novelty detection, 279
temporal, 280
Pavlov, Ivan P., 9–11, 44–45
physiological theory of, 11
on “psychical secretion,” 10–11
Pavlovian olfactory learning, 105, 105f, 109, 112, 119
Index

P-elements
- in reverse genetics, 108
- in transposon mutagenesis, 106–107

Peptide(s)
- stress and, 550–552

Perception
- mood and, 231–234, 233f

Perceptual memory
- parietal cortex in, 289, 291–292

Perceptual networks
- interaction in short-term memory, 218–221, 219f, 221f

Performance measures
- in studies of aging, 486–487

Periaqueductal gray
- ventral, projections to nucleus reticularis pontis caudalis via, 396–397, 398f

Perirhinal cortex
- anatomy of, 306–307, 307f
- connections of, 192, 193f, 306–308, 307f, 315
- in consolidation, 289
- in event-based memory, 273f, 276

Perseveration-consolidation hypothesis
- 6, 13, 39

Perseverative errors
- 368–369

Phaedrus
- (Plato), 4

Pharmacologic enhancement
- 43–46, 541–566
- See also specific drugs and enhancements for attention/encoding, 544–550

Phase precession effect
- 172

Phe-Met-Arg-Phe-amide (FMRFamide)
- 113, 114f

Phoneme distinction
- 86

Phormia regina
- genetic studies in, 104

Photography metaphor
- 5

pHstat
- 16

Physiological theory
- Pavlov’s, 11

Physostigmine
- 557

Piaget, Jean
- 58

Pianists
- plasticity in, 87

Pinna reflex
- 390

Pirenzepine
- 29

Pituitary AC activating peptide (PACAP)
- 113, 114f

PKA-R1 gene
- 108, 121

PK j synapses
- See Granule cell-to-Purkinje cell synapses

Place cells
- in entorhinal cortex, 175
- hippocampal, 40–41, 195, 493–494
- CA1 vs. CA3, 170–172
- mnemonic contributions of, 155–181, 157f
- in rats, 198–199

Place fields
- in entorhinal cortex, 175
- future issues on, 176–180
- hippocampal, 156–181, 195
- CA3 vs. CA1, 170–172
- challenges in understanding, 163
- context change responses of, variations in, 165–168, 167f, 168f, 170–171
- context discrimination hypothesis of, 163–169
- in context processing, 156–158, 163–176
dentate gyrus, 203
- expansion patterns of, 172–173
- in long-term potentiation, 160
- memory influences on, 173–175, 174f
- neocortical function and, 173–175
- NMDA receptors and, 159
- nonspatial correlates during spatial tasks, 165, 166f, 177–179
- plasticity of, relationship with synaptic plasticity, 159–160
- relationship to learning and memory, 159–176
- approaches for assessing, 159–163, 160f
- sensitivity to behavior, 159–161, 160f
- sensitivity to idiothetic information, 158–159
- sensitivity to orientation, 158–159
- sensory and movement correlates of, 158–159
- temporal encoding by, 172–173
- striatal, 175–176
- in subiculum, 175

Place learning
- estrogen and, 253–255

Place-recognition memory
- estrogen and, 251
- estrogen receptors and, 257

Place-response paradigm
- striatum in, 363–364

Plasticity
- See also specific types and sites in adult brain, 76–80, 77f
- age and, 17–18
- in amygdala, 404–405
- in basal ganglia, 340, 346–348
- in cerebellum, 432–440
- bidirectional, 443–445
downstream of cerebellar cortex, 438–440
- rules of, 436–440
- sites of, 432–435
cross-species findings of, 19–20, 87
- in drug abuse/addiction, 468, 469f
early sensory deprivation and, 63–70
- environmental complexity and, 70–84
- estrogen and, 255–256
- experience-dependent, 58–59, 129–130
- experience-expectant, 58–59
- fast vs. slow, 340, 346–348
- genetic dissection of, 117–119
- Hebb’s theory of, 12–13
historical perspective on, 12–20
in human brain, 85–87
implications for neurobiological study of
memory, 87–89
NMDA receptors in, 118–119, 201
in prefrontal cortex, 340, 346–348
rate or speed of, 17–18
in striatum, 347
supervised vs. less supervised, 340, 346–348
time course of, 543
Plato, 4
PnC. See Nucleus reticularis pontis caudalis
Polymerase chain reaction (PCR), 130
Positive priming, 292
Positron emission tomography (PET), 39–40,
494
Posterior parietal cortex, in knowledge-based
memory, 274f, 276, 297, 297f
P听听nal cortex, in knowledge-based memory,
297, 297f
Postsynaptic density (PSD), environmental
complexity and, 73–74
Posttranslational modification (PTM), 144
Posttraumatic stress disorder (PTSD), 416, 476
Prefrontal cortex
aging and, 506–508
anatomical loops with basal ganglia, 348–350
anatomy of, 340–341, 340f
cardinal function of, 342
in cognitive control, 340–342
connections of, 340–341, 341f
in cross-modal switching, 295
in delayed-choice tasks, 295
in drug abuse/addiction, 470–474, 476
estrogen and, 255
in goal-directed learning, 340, 349–350
in goal-oriented control, 295
interactions with basal ganglia, 339–350
interaction with hippocampus, 294–296
in knowledge-based memory, 274f, 276
as memory buffer, 349
neuropsychology of, 341–342
plasticity in, vs. basal ganglia plasticity, 340,
346–348
in prospective/retrospective coding, 295–296
in reward/motivation/addiction, 460–461,
461f, 464–466
in rule-based memory, 275f, 276–277, 297–
298, 297f
rulemaps of, 342, 349
in short-term memory, 293–294, 506–508
in decision-making, 223–226, 225f
perceptual networks and, 218–221, 219f,
221f
separate system, computational necessity of,
222
in visual search and attention, 222–226,
224f, 225f
size of, 340
in spatial memory, 293–296
Pregnenolone sulfate (PREGS), 548–549
Prelimbic cortex
in cross-modal switching, 295
in goal-oriented control, 295
interaction with hippocampus, 294
in intermediate-term memory, 294
in rule-based memory, 275f, 276, 293–296,
297–298, 297f
in short-term memory, 294
Premotor cortex
in knowledge-based memory, 274f, 276
in rule-based memory, 275f, 276–277
Presubiculum, in event-based memory, 297, 297f
Primacy effect, 285–287
Primates, plasticity in, 87
Principles of Psychology (James), 6
Problem-solving, 14, 16–17
enriched experience and, 18–19
Probasil extension reflex (PER), 104
Procedural learning, medial temporal lobe in,
311–312
Procedural memory, 24, 131, 272
declarative vs., 193
striatum in, 370
Proenkephalin, 143
Progesterone, 244–245, 258–260
age and, 259
anxiolytic actions of, 258
memory effects of, 258–260
metabolites of, 258–260
production of, 258
Prospective coding, 295–296
Protein Fl, 30
Protein kinase(s), 29–31
and CREB-dependent gene expression,
133–134
genetics of, 112–115
in long-term potentiation, 140
Protein kinase A, 29–31
aging and, 508
and CREB-dependent gene expression, 133
in drug abuse/addiction, 466–467
estrogen and, 256
genetic studies of, 108, 112–113, 121
Protein kinase C, 29–31
and CREB-dependent gene expression, 133
estrogen and, 256
eexercise/activity and, 557–558
 genetics of, 114
Protein kinase G, 30–31
Protein kinase inhibitors, 29–31
Protein synthesis
in avoidance learning, 363
in long-term memory, 26, 27–28, 30, 119
in long-term potentiation, 143–144, 499
in memory consolidation, 27–28, 553–554
in striatum, 363
Protein-synthesis inhibitors, for research use,
27–28
Protocerebral bridge, 115f, 117
“Psychical secretion,” Pavlov on, 10–11
Psychological stress, medial nucleus of amygdala in, 396
Psychology, history of, 5
puhlito (pum) gene, 107
Purkinje cells, 428–429
granule cell synapses (gr-Pkj) to, 430, 436–440
 coupled with nucleo-olivary feedback, 443–445
 in extinction, 438
 long-term depression at, 432, 436–437, 439–441
 long-term potentiation at, 437–438
 skill learning and, 83, 83, 84
Putamen, 355, 357
in learning and memory, 359–360
Pyramidal neurons, 195
aging and, 498–499
behavior correlates of firing, 156
in drug abuse/addiction, 471
early sensory (visual) deprivation and, 64–65
environmental complexity and, 72
estrogen and, 256
location-selective firing of, 156. See also Place fields
 skill learning and, 81, 83
Quantification, in neurobiology, 59–62
Radial arm maze, 70–71
aging and navigation of, 489f, 491
radish (rsh) gene, 106
RAFT-1 protein, 114
Ramon y Cajal, Santiago, 8, 15, 57
Rapid-eye-movement (REM) sleep and learning, 40
 and memory consolidation, 40–41
Ras protein, 113, 114
Recall. See Memory retrieval
Recency effect, 285–287
Receptive fields, visual, early deprivation and, 65
Receptor tyrosine kinase (RTK), 114
Recognition memory
dual-process models of, 317
entorhinal cortex in, 195
familiarity in, 317–320, 319f
hippocampus in, 317–320, 318f, 319f, 321–326, 324f
recollect in, 317–320, 319f
Recollection, in recognition memory, 317–320, 319f, 321–326
Reconsolidation, in drug abuse/addiction, 474–475
Recurrent attractor network, 209
Recursive processing, 348–349
Reference memory, 272
estrogen and, 251
Reference volume, 61–62
Regressive errors, 368–369
Reinforcement. See also Reward(s)
in drug abuse/addiction, 466–467
Reinforcement signal, dopamine, 345
Reinstatement, in drug abuse/addiction, 472–473
Relapse, in drug abuse/addiction, 461, 470, 472–475
Relational learning, hippocampus in, 155–156
Relational memory, medial temporal lobe in, 310–312
Repetition, and memory, 43
Repetition suppression, 324–326, 327f
Reproductive hormones, 243–245, 251–260. See also specific hormones
Response attribute, 273–274
Response learning, 460
 estrogen and, 252–254
Retrieval. See Memory retrieval
Retrograde amnesia
epinephrine and, 245–246
medial temporal lobe in, 312–315
Retrospontal cortex
 in knowledge-based memory, 289, 297, 297f
 in spatial memory, 289, 293
Reversal learning
 acetylcholine in, 371–372
 striatum in, 368–372
Reverse genetics, 108–109
Reward(s)
and drug abuse, 459–477
 learning systems for, 460–461
 neurobiology of, 464–466
 structures and connections in, 460–461, 461f
 visual stimulus association with, 228–231, 229f, 230f
Reward reversal model, 231, 232f
Reward value attribute, 273–274
Ribot, Théodule, 5
Ribot’s law, 5
Rivastigmine, 521
RNA, 27, 31, 52, 130, 499
 RNA interference (RNAi), 111
 RNA silencing, 130
Romanian orphans, 86–87
Rothbaum, Barbara, 416
rsh gene, 119–120
Rule-based memory, 272–277, 275f, 296–298
 attribute organization in, 275
 attribute (information) processing in, 275–277, 296
 neurobiology of, 274f, 276–277, 296–298
 short-term, 293–294
 spatial attribute in, 293–296
Rulemaps, of prefrontal cortex, 342, 349

Saccade adaptation, cerebellum in, 430
SCG10, 135–136
Schaffer collateral-CA1 pathway, 140, 308
Scopolamine, 29
Scotophobin, 31, 32–33, 130
Searle, Lloyd V., 22
Second messengers, inhibition of, 29
Secretase inhibitors, for Alzheimer’s disease, 530, 533
Selective breeding, 21–22
Self-administration, as gold standard of drug addiction, 462–463
Semantic memory, 193–194, 272, 273
Senile plaques, in Alzheimer’s disease, 520
Sensitive period, 58–59, 63, 86
Sensitization in Aplysia, 132
drug-induced locomotor, 462–463
Sensory correlates, of place fields, 158–159
Sensory deprivation, early, 63–70
synaptic effects of, 63–68
Sensory-perceptual attribute, 272, 273
Sequence memory, hippocampus in, 205
Serine 133 residue (serl33) site, 133–134
Serotonin in adenylate cyclase pathway, 113, 114f
in fear-potentiated startle, 390
Serotonin receptor agonists, for retrieval/recall enhancement, 559–560
Shaker gene, 108
Sherrington, Charles, 8–9
Sh gene, 118
Shiberie gene, 116, 117
Shifting of strategies, striatum in, 368–373
Short latency responses (SLRs), cerebellar, 433–435, 439, 441–443
Short-term memory, 24, 272, 284–288
adenosine receptor antagonists and, 546–547
aging and, 486, 506–508
computational approach to, 218–222
dopamine receptor modulators and, 544–546
duration of, 30
enhancement of, 544–552
everyday psychological/physiological, 550–552
neuropharmacological, 544–550
estrogen and, 251, 254, 549–550
GABA receptor antagonists and, 548–549
genetics of, 120f, 121
 glutamate receptor modulators and, 546, 548–549
 hippocampus in, 155–156, 226–227, 272, 277, 284–288
 hippocampus–prefrontal cortex interaction in, 294
 James on, 7
long-term potentiation and, 226–227
neurochemistry of, 28, 29, 30
neurosteroids and, 548–549
nicotinic receptor agonists and, 547–548
NMDA receptors in, 367
operational definition of, 544
parietal cortex in, 218–221, 219f, 291
prefrontal cortex in, 293–294, 506–508
in decision making, 223–226, 225f
interaction with perceptual networks, 218–221, 219f, 221f
separate system, computational necessity of, 222
in visual search and attention, 222–226, 224f, 225f
striatum in, 366–369, 372–373
synaptic modifications in setup of, 226–227
Short-term potentiation (STP), neurochemistry of, 31
Simonides, 42
Single autoassociation network, CA3 system as, 199–201
Single-cell electrophysiology, 12
Single-gene mutant approach, 104
Skill learning, 81–85
cerebrovascular effects of, 85
glial effects of, 85
implications for neurobiological study of memory, 87–89
synaptic effects of, 81–85, 83f, 84f
Skinner, B. F., 24
Sleep and learning, 40
and memory consolidation, 40–41
and neurogenesis, 79
Slow vs. fast plasticity, 340, 346–348
Slow-wave sleep (SWS), 41
“Smart pill,” 43–44, 45–46
Smell input, to amygdala, and fear conditioning, 404
Smooth pursuit, cerebellum in, 429
Social condition (SC), 15, 70
Social recognition memory, stress and, 551f
Socrates, 4
Sodium channel inhibitors, 29
Somatosensory deprivation, 65
Somesthetic cortex, 15
Spatial arbitrary associations, 280–282
Spatial attribute(s), 272–298
consolidation of, 288–289
in event-based memory, 277–289
in knowledge-based memory, 289–293
memory representations of, 273
neurobiology of, 297–298, 297f
in rule-based memory, 293–296
Spatial context, 176–179
Spatial learning/memory, 24
aging and, 487–506
electrophysiological findings in, 498–500
Spatial learning/memory (continued)

human models of, 491–493
molecular findings in, 500–506
neuroanatomical findings in, 495–498, 496f
rodent models of, 487–491, 489f
CREB expression in, 501–503
dentate gyrus in, 202, 289, 293
etorhinal cortex in, 202, 289, 293
event-based, 277–289
exercise/activity and, 557–558
aging effects on, 493–506
knowledge-based, 289–293
parahippocampal gyrus in, 289, 293, 315
parietal cortex in, 289–293
prefrontal cortex in, 293–296
rule-based, 293–296
Spatial manipulation, of genes, 109–111
Spatial pattern completion, 282–284
Spatial pattern separation, 202–203, 277–280
in acquisition of spatial information, 279–280
in novelty detection, 279
Spatial tests, 131
Specificity, problem of, 561
Spinal motor neurons, in fear-potentiated startle, 390
Spiny cells, 344
Stages of memory, neurochemistry of, 30–31
Stains, 59–60, 59f, 61
in environmental complexity studies, 72, 72f
Standard colony, 15
Startle reflex, fear-potentiated, 383–417. See also Fear-potentiated startle
State-dependent retrieval, 560–561
State space, 207–208
Stausen (stau) gene, 107
Stereological methods, 61
Steroids
adrenal, 243–250, 551–552
gonadal, 243–245, 251–260
neurosteroids, memory effects of, 548–549
stress, memory effects of, 243–250, 550–552
Stimulus-driven processing, 339
Stimulus–response association, 289
dopamine in, 360–361
striatum in, 356, 360–366, 372
Stimulus–reward association, 228–231, 229f, 230f
STM. See Short-term memory
Stone maze, aging and navigation of, 488, 489f
Storage. See Memory consolidation
Stress
bed nucleus of stria terminalis in, 411–415, 415f
and drug abuse/addiction, 472–473
medial nucleus of amygdala in, 396
memory effects of, 550–552, 551f
and neurogenesis in adult brain, 78
Stress–cognition axis, and attention/encoding enhancement, 550–552
Stress hormones, 243–250. See also Specific hormones
Striatum, 342–345, 343f, 355–370
acetylcholine in, 357, 358, 364–365, 371–372
AMPA receptors in, 363
anatomy of, 355, 357–359
in avoidance learning, 362–363, 370
in conditioning, 39–40
connections of, 356, 357–358
in consolidation, 363
damage or dysfunction of, 345
in declarative memory, 370
in delayed-alternation test, 356, 366–367
direct and indirect pathways of, 343f, 344
direction memory, 368
dopamine in, 345, 357, 358–359, 360–361, 363
dorsal
in learning and memory, 359–360
terminology for, 359–360
in egocentric response memory, 356, 361–366, 367, 372
estrogen and, 252–253, 254–255, 256
estrogen receptors in, 257
in expression of learned strategy, 363–365
functional separation in, 356–357
GABA in, 358
in habit, 26, 360
lateral, in learning and memory, 360–366
lesion studies of, 355–356
matrix of, 343–344
medial, in learning and memory, 366–372
in memory storage, 363
in mnemonic processing, 356
in motor behavior, 355
neurotransmitters in, 357, 358–359
NMDA receptors in, 361, 363, 367
place cells of, 175–176
plasticity in, 347
in posttraining-manipulation paradigm, 362–363
in procedural memory, 370
protein synthesis in, 363
in reversal-learning, 368–372
in short-term memory, 366–369, 372–373
in strategy shifting, 368–373
striosomes of, 343–344
unitary role vs. multiple processes in, 356–357
ventral, 359
Index 599

String musicians, plasticity in, 87
Striosomes, 343–344
Strychnine
and fear-potentiated startle, 390
and memory consolidation, 554–555
Subiculum
in event-based memory, 297, 297f
place cells of, 175
Substance P, in fear-potentiated startle, 396–397
Substantia nigra, 342–344, 343f
dopamine in, 464–465
in reward/motivation/addiction, 464–465
Substantia nigra pars reticulata (SNpr), 344
dopaminergic teaching signals in, 345
Superconsolidation, in drug abuse/addiction, 476–477
Superior colliculus, projections to nucleus reticularis pontis caudalis via, 394–396
Supervised vs. less supervised plasticity, 340, 346–348
Supplementary motor cortex
in knowledge-based memory, 274f, 276
in rule-based memory, 275f, 276–277
Su-var(3) gene, 108
Synapse(s)
in adult brain, plasticity of, 76–77, 77f
aging and, 497
cerebellar, organization of, 428–429
competition among, 65
early sensory (visual) deprivation and, 63–68
electron microscopy of, 61–62, 61f
environmental complexity and, 71–77, 72f, 77f
Hebb, 38
long-term potentiation at, 73–74
pruning of, 66–68, 85–86, 88–89
quantification of, 61–62
Sherrington on, 8–9
skill learning and, 81–85, 83f, 84f
turnover of, 66–67
Synaptic change
Hebb’s theory of, 13
in short-term memory setup, 226–227
Synaptic junctions, 7–8
Synaptic plasticity
in Aplysia, 35–37
in CA3 system of hippocampus, 201
enhancement mechanisms and, 562–563
estrogen and, 255–256
genetic dissection of, 117–119
NMDA receptors in, 118–119, 201
relationship with place field plasticity, 159–160
time course of, 543f
Synaptic strength, in continuous attractor network, 210–211, 212f
Synaptic tagging, in long-term potentiation, 144–145
Synaptic weight, in continuous attractor network, 209–211, 212f
Systems consolidation, 552–553
Tablet metaphor, 4–5
Tanzi, Eugenio, 8, 57
TARGET system, 110f, 111, 112
Tau protein, in Alzheimer’s disease, 528, 530–531
Telegraphy metaphor, 5
Temporal attribute, 273–274
Temporal cortex. See also inferior temporal cortex; Medial temporal lobe
interaction in short-term memory, 218–221, 219f, 221f
Temporal encoding, hippocampal, 172–173
Temporal manipulation, of genes, 109–111, 110f
Temporal pattern separation, 280
Teuber, Hans-Lukas, 12, 25
Thalamic-cortico-accumbens-pallido loop, 460–461
Thalamos
in conditioning, 39–40
connection to amygdala, and fear conditioning, 400–404
in reward/motivation/addiction, 460–461
Theaetetus (Plato), 4
Theta rhythm, place cell firing and, 172, 173
Thompson, Richard F., 38–39
Thorndike, Edward L., 9, 25, 44
time course, of learning/memory, 543f
Tissue plasminogen activator (tPA), in long-term potentiation, 142–143
Tolman, Edward C., 21–22, 24
Tolotschinoff, I. F., 9
Top–down processing, 339, 349
Topological processing, parietal cortex in, 291
Trace conditioning, 24
estrogen and, 254
hippocampus in, 132
medial temporal lobe in, 311
Training, neurochemical and neuroanatomical effects of, 13–17
Transcription, 131
Transfer of memory, 32
Transgene targeting, 110–111, 110f
Transitive inference tasks, 323–324, 325f
Transposon mutagenesis, 106–107
Treisman’s feature integration theory, 290
Trial-and-error learning, 9
Tripartite attribute-based model, 272, 296, 298
Triple dissociation, 25–26
Trophi factors, for storage/consolidation enhancement, 555–557
Tryon, Robert C., 21–22
Tumor necrosis factor-α, in Alzheimer’s disease, 525
turnip (tn) gene, 106, 109
Two-photon laser scanning fluorescent microscopy, 62
in deprivation studies, 65–66

Unconditioned stimulus (US), 24, 131–132
Ungar, Georges, 32–33
Upstream activating sequence (UAS), 110–111, 110/
US. See Unconditioned stimulus

Vagus nerve, and memory effects of epinephrine, 246–249, 247/
Vascular growth factor (VGF), 144
Vasopressin, and state-dependent retrieval, 560
Ventral pallidum, in reward/motivation/addiction, 460–461, 461f, 472–473, 474
Ventral periaqueductal gray, projections to nucleus reticularis pontis caudalis via, 396–397
Ventral stream processing, 227–228, 227f
Ventral striatum, 359
in conditioning, 39–40
Ventral tegmental area (VTA), 343f, 345
dopamine in, 464–465, 470
Ventralateral prefrontal cortex, in rule-based memory, 275f, 276
Ventralateral striatum, 359–360
Ventricomedial hypothalamus, projections to nucleus reticularis pontis caudalis via, 396–397
Vestibulo-ocular reflex adaptation, cerebellum in, 430–431
vimentin gene, 139
Virtual navigation, 492–493
Vision, and fear conditioning, 403–404
Visual correlates, of place fields, 158
Visual cortex
connections to hippocampus, 192, 193f
early sensory deprivation and, 63–70
plasticity in adult brain, 76–77, 77f
skill learning and, 81–85
Visual-cue discrimination, striatum in, 360–361
Visual deprivation, 63–70
cerebrovascular effects of, 68–70
glial effects of, 68–70, 68f
human effects and studies of, 86
implications for neurobiological study of memory, 87–89
selective types, effects of, 64–65
syraptic effects of, 63–68
Visual–object recognition, invariant, 227–228
Visual processing, mood and, 231–234
Visual search
medial temporal lobe in, 311–312
prefrontal cortex in, 222–226, 224f, 225f
Visual stimulus–reward association, 228–231, 229f, 230f
Visual system
computational models of, 227–235
convergence in, 227–228, 227f
volardo (vol) gene, 106–107, 118

Waldeyer, Wilhelm von, 8
Watson, James, 20
Watson, John B., 10
Wax tablet metaphor, 4–5
Wernicke’s area, in knowledge-based memory, 274f, 276
Whytt, Robert, 10
Wild-type transgenes, 111
Win–stay rule, 285
Working memory. See Short-term memory
“Worm runners,” 130
Writing, as metaphor of memory, 4
Wundt, Wilhelm, 5

Zebrafish, embryogenesis in, 103
zif/268 gene, 137, 142–143, 503–505