Sequence Analysis

Human genomes as email attachments
Scott Christley1,†, Yiming Lu1,†, Chen Li1,* and Xiaohui Xie1,2,*
1Department of Computer Science and 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, CA 92697, USA.
Associate Editor: Prof. Alfonso Valencia

ABSTRACT

Summary: The amount of genomic sequence data being generated and made available through public databases continues to increase at an ever-expanding rate. Downloading, copying, sharing and manipulating these large data sets is becoming difficult and time-consuming for researchers. We need to consider using advanced compression techniques as part of a standard data format for genomic data. The inherent structure of genome data allows for more efficient lossless compression than can be obtained through the use of generic compression programs. We present a series of techniques that in combination reduces a single genome to a size small enough to be sent as an email attachment.

Availability: Our algorithms are implemented in C++ and are freely available from http://www.ics.uci.edu/~xhx/project/DNAzip.

Contact: xhx@ics.uci.edu or chenli@ics.uci.edu

1 INTRODUCTION

With the announcement of the 1000 genomes project (1000genomes.org), the day of individual genomes is almost upon us. The project is estimated to generate about 8.2 billion bases per day, the equivalent of more than two human genomes every 24 hours, during its two-year production phase. With the total sequence to exceed 6 trillion nucleotide bases, it represents sixty times more sequence than all the public DNA data that has been deposited over the past 25 years. Despite the availability of cheaper and higher capacity hard drives, management of such a large data set is not a trivial task. Archival of these data sets is being handled by the National Center for Biotechnology Institute (NCBI) and other international centers, but this doesn’t alleviate the difficulties for researchers to download, copy, share and manipulate the genomic data as part of their analysis. General-purpose compression programs like gzip offer a substantial decrease in the size of the data, but the data can be compressed even further through special purpose algorithms that take the properties of genomic sequence into account. In this article, we present a series of compression techniques when taken together reduces the size of a single genome by orders of magnitude. We apply our algorithm to James Watson’s genome (Wheeler et al. 2008), compressing it to a mere 4 million bytes (MB).

2 METHODS

†To whom correspondence should be addressed. *Joint first authors.

The key insight is to consider that any two human genomes are more than 99% identical, so it is much more efficient to store genomes as variations from a common reference genome; therefore only that 1% of variation needs to be stored. This technique diverges from the research attempting the challenging problem to compress a single genome (Chen et al. 2002) or recent research on compressing a large database of unrelated sequences (White and Hendy, 2008). We do not consider the process of generating the variations, which can be a challenging problem in itself, but assume that the variation data has been provided. Variation data is comprised of single nucleotide polymorphisms (SNPs) and insertions/deletions of multiple nucleotides (indels). A SNP is stored as a position value on a chromosome and a single nucleotide letter of the polymorphism, an insertion is stored as a position value and the sequence of nucleotide letters to be inserted, and a deletion is stored as a position value and the length of the deletion. There can also be inversions, which can be stored more efficiently if handled separately, but currently we just consider them as an indel. Given the variation data for a genome relative to a reference genome, we consider the following compression techniques to reduce the variation data even smaller:

2.1 Variable Integers for Positions (VINT)

Each position value for a variation indicates the place on a chromosome where the variation occurs. As the chromosomes sizes can be as large as 247 MB, this requires 4 bytes (standard C integer data type) to store the full possible range of position values. For many small values, a full 4 bytes is not needed, so our first compression technique is to use integers with a variable number of bits thus allowing smaller positions to be stored more efficiently. A variable integer (VINT) uses a single bit within one byte as an end-of-integer flag; so one byte can store values from 0 to 127, two bytes can store values 128 to 16383, etc. Any number of bytes can be concatenated together in a VINT to optimally store a position value with the one bit flag indicating the end of the VINT.

For the variation data, the position value for SNPs and indels are stored with a VINT. Furthermore, the sequence data for a SNP and an insertion is stored using 2 bits for each letter, and the length of the deletion is stored as a VINT.

2.2 Delta Positions (DELTA)

The positions are still stored as absolute values which means that variations will require increasing storage as they occur further towards the end of the chromosome. The next compression technique we consider is to store the position value as a relative position (DELTA) from the position of the previous variation; that is the difference between the current and previous position going from the beginning to the end of each chromosome. The relative position will always be less than or equal to the absolute position, also many variations tend to occur in nearby groups, so the relative values can be quite small.

2.3 SNP Mapping (DBSNP)

Besides most of the genome being common among humans, much of the variation, especially SNPs, is also shared. In addition, the large majority of
the SNPs are bi-allele, existing in only one of the two possible forms. Therefore in addition to having a reference genome, we can also use a reference variation map allowing common variation to be stored more efficiently. We consider using the SNPs deposited in the NCBI dbSNP database as our reference variation map though any list of SNPs could be used. This compression technique (DBSNP) transforms the reference SNP map into an ordered list of bits or bitmap whereby each bit has a value of 1 if that common SNP is in our genome’s variation data, otherwise it has a value of 0. This technique has the potential of increasing the size if there are very few common SNPs as the bitmap storage would exceed the space saved by storing the individual SNPs, but in practical use we have not encountered this. Furthermore, the size difference can be calculated and the reference SNP map discarded if it would increase the size.

2.4 K-mer Partitioning (KMER)

The last compression technique is inspired by the observation that the sequence in the human genome is highly non-random, littered with repeat sequences or sequences with low complexity. We partition the insertion sequence data into k-mers, then use Huffman coding (Huffman, 1952) to encode all of the k-mers. Huffman coding uses the shortest possible representation based upon the frequency of the k-mer strings, and the sequence data is stored as a list of Huffman codes. If the length of the sequence data is not an integral number of k-mers then the remaining letters are stored using their 2-bit representation.

3 EXAMPLE

We applied our compression algorithm to James Watson’s (JW) genome (Wheeler et al., 2008) using the hg18 release from the UCSC Genome Browser as our reference genome and the UCSC SNP track 129 as our reference SNP map. The results can be seen in Table 1.

Mapping the JW genome to the reference genome results in 3.5M differences (variations) including 3.3M SNPs and 220K indels, which altogether can be packed into a 84MB file if we keep only the positions of the variations and the corresponding nucleotide changes. Compressing using gzip reduces the file sizes further, but our compression is even better at 4.5 times smaller than the gzip files, resulting in a final data size of 4.1MB for the JW genome.

There are three notable reductions in compression size in Table 1: 1) Using DELTA to encode positions of variations leads to a 52% reduction when compared to VINT; 2) DBSNP mapping cuts in half the data size of the SNP variation; 3) KMER results in 58% reduction in the insertion variations.

The NCBI dbSNP contains about 11 million (M) SNPs, 99% of which are bi-allele. Of these bi-allele SNPs, 9M are consistent with the human reference genome in the sense that the alleles in the reference genome belong to one of the two forms in the dbSNPs, and are coded as a bit vector with 1.13M bytes. The JW genome contains 3.32M SNPs with 2.72M in common with those in dbSNP, leaving 0.61M as novel SNPs. This provides empirical evidence that using a reference SNP map is a worthwhile compression technique. The final compressed SNP data at 3.2 MB means that each of the 3.32 million SNPs require slightly less than one byte per SNP to store with full information of the position in the genome and the polymorphism.

For the insertion data, we experimented with different size k-mers to find the k giving the best compression (considering both the insertion size distribution and the k-mer frequency, see Supp Figures). This turned out to be k=4 for the JW genome and corresponds to the results shown in Table 1.

4 CONCLUSION AND DISCUSSION

We have shown that by using a series of techniques we can significantly reduce the size needed to store a human genome. Given other human genomes have similar variation, the 1000 human genomes with its 6 trillion bases can be stored in 4 to 5 gigabytes, easily handled by today’s computers. Our technique does require a reference human genome (about 3 GB) and a reference SNP map (about 1.2 GB), but this cost is amortized over the total number of genomes.

A major advantage of our method is that we exploit the unique characteristics of the human genome – the availability of a reference genome, the sharing of a set of common variations, and the high frequency of repeat sequences. Our method is easy to implement and runs in time that scales only linearly to the number of variations.

The techniques proposed here can be further improved by considering additional characteristics of the human genome, such as the uneven distribution of allele frequencies at different loci and the structure of linkage disequilibrium (The International HapMap Consortium, 2003). Storing SNP variations using haplotypes rather than individual SNPs is likely able to reduce the data size further.

ACKNOWLEDGEMENTS

We thank David Wheeler for providing access to the sequenced JW genome and its mapping to the human reference genome.

Funding: This work was supported in part by the funding from University of California Irvine and National Science Foundation.

Conflict of Interest: none declared.

REFERENCES

