
Extracting STEP Geometry and
Topology from a Solid Modeler:

Parasolid-to-STEP

Thomas R. Kramer

May 2, 1991

NISTIR 4577

Funding for the work described in this paper was provided to Catholic University by the National
Institute of Standards and Technology under cooperative agreement Number 70NANB9H0923.

Parasolid-to-STEP

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Trademarks
Parasolid is a registered trademark of Shape Data Limited.

UNIX is a trademark of AT&T Technologies, Inc.

Sun-3 is a trademark of Sun Microsystems, Inc.

Acknowledgments
Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under cooperative agreement
Number 70NANB9H0923.

The National PDES Testbed is funded by the Computer-aided Acquisition and Logistic
Support (CALS) Office of the Department of Defense.

ii

Parasolid-to-STEP

Table of Contents
1 Introduction..1

1.1 What is Parasolid-to-STEP ..1
1.2 Express...1
1.3 NIST Tools for STEP...1
1.4 Parasolid...2
1.5 Entities ...2
1.6 Audience ..2
1.7 Acknowledgment ...2

2 Shape Models..3
2.1 Introduction..3
2.2 Parasolid Boundary Representation...3
2.3 STEP Boundary Representation ..4
2.4 Comparison of STEP and Parasolid Representations4

2.4.1 Topology...4
2.4.2 Logical Structures ...7
2.4.3 Geometry...10

3 Output Format and Scope of Parasolid-to-STEP11
3.1 Output File ...11

3.1.1 Hierarchical Structure ...12
3.2 Scope..14

3.2.1 Parasolid Input ..14
3.3 STEP Input Schema and Output Entity Types...15

4 Using Parasolid-to-STEP...16
4.1 Environment...16
4.2 Getting an Executable ..16
4.3 Timing..17
4.4 Command Call ...17
4.5 Messages and Errors ..18

4.5.1 Healthy Messages ...18
4.5.2 Error Messages..18

5 How Parasolid-to-STEP Works..20
5.1 Approach..20
5.2 Details ..20

5.2.1 What the Main Function Does ..20
5.2.2 Keeping Track of What Has Already Been Converted.....................20
5.2.3 Two Important Variables ..21

iii

Parasolid-to-STEP

6 Error Handling in Parasolid-to-STEP ...22
6.1 General Approach ..22
6.2 Error Sources ...22

6.2.1 Parasolid Function Errors ...22
6.2.2 STEP Working Form Function Errors ..22
6.2.3 PTS Function Errors ...22
6.2.4 Parasolid Model Errors ...23

6.3 If an Error is Found..23

7 Software of Parasolid-to-STEP...25
7.1 Overview..25
7.2 Hierarchy of Function Calls...25
7.3 Use of Fed-X and STEP Working Form Functions...................................27
7.4 Use of Parasolid Functions ..28
7.5 Descriptions of Parasolid-to-STEP Functions ...28

8 Other Comments ..40
8.1 Observations on Parasolid..40
8.2 Testing Parasolid-to-STEP...40
8.3 Building Systems Similar to Parasolid-to-STEP40
8.4 Schema Dependence ..41
8.5 Miscellany..42

Appendix A: References ...43

Appendix B: STEP File for Test Part..45

Appendix C: STEP File for Test Part (Compressed).....................47

iv

Parasolid-to-STEP

List of Figures
Figure 1. Comparison of Parasolid and STEP Models ..6
Figure 2. Example Part ..12
Figure 3. Hierarchy of Function Calls ...26

v

Parasolid-to-STEP

Page 1

1 Introduction

1.1 What is Parasolid-to-STEP

Parasolid-to-STEP is a software system for converting a Parasolid model of a single
solid object stored in a Parasolid transmit file to a STEP physical file containing
topology and geometry for a boundary representation of the object. Parasolid is a
commercial solid modeling software system made available by Shape Data, Limited.
STEP is the emerging international Standard for the Exchange of Product Model Data.

In addition to a Parasolid transmit file, the Parasolid-to-STEP system takes as input an
Express schema file defining STEP geometry and topology entities. As will be
discussed in section 8.4, however, the system is not schema independent. It requires that
the input schema file define a specific set of STEP geometry and topology entities.

Parasolid-to-STEP will be frequently be abbreviated as “PTS” in this paper.

1.2 Express

Data descriptions are handled in STEP by defining an information model in the Express
data modeling language [Schenck90] for each type of data that is needed. Once an
information model is in place, data representing a specific product may be put into a
computer or on paper according to the rules for mapping Express to a STEP physical
file [Altemueller88a, Altemueller88b]. The data section of a STEP physical file
normally consists wholly of instances of data entities of the sort made available by the
Express model. Express information models can also be used for automatically
prescribing the format of a database in a computerized database system or the format
of information about a product in the active memory of a computer.

1.3 NIST Tools for STEP

Tools for dealing with STEP data have been developed at NIST. An overview of many
of these tools is given in “An Introduction to the NIST PDES Toolkit” [Clark90a]. This
section discusses only those tools that are used in the Parasolid-to-STEP system.

A system called Fed-X [Clark90b, Clark90c] takes as input an information model
written as an Express schema file and builds an Express Working Form for the schema
(in the C programming language) in the internal memory of a computer. This Working
Form can be used by other C programs. The Fed-X system also includes a library of C
functions for manipulating Express Working Forms.

A system called STEPparse [Clark90d, Clark90e] takes as input a STEP physical file
representing a product and builds a STEP Working Form for the product (in the C
programming language) in the internal memory of a computer. STEPparse uses the
Fed-X system to parse and represent an information model; an Express Working Form
is required in order to define what sorts of data may be in a STEP Working Form.
STEPparse also includes a library of functions for manipulating STEP Working Forms.

Parasolid-to-STEP

Page 2

1.4 Parasolid

Parasolid can be used either as a library of C functions which may be included in a C
program, or interactively. In Parasolid-to-STEP it is used as a library. Parasolid saves
representations of the shapes of objects in files called “transmit” files. When the
Parasolid system is being used, it can read a transmit file to bring a part model into
active computer memory, and it can write out a transmit file for a part that is already in
active memory.

The conceptual view of the representation of a solid object in Parasolid is that of a
hierarchical arrangement of entities. There is a top-level entity which is the body. It is
composed of entities called shells, which are composed of entities, and so forth. Each
entity has an identifier called a “tag” in Parasolid. Parasolid keeps track of the
connections in the hierarchy, so that given the tag of one entity, the user can easily
retrieve the tags of all other entities which have a specific type of connection to it.
Below the lowest level in the hierarchy of entities is a lot of information represented as
real numbers or arrays of real numbers that are not entities and have no tags. The axis
of a circle, for example is represented as an anonymous array, not as a tagged entity
which could have been called a unit_vector.

Additional details of Parasolid are presented in the next chapter.

1.5 Entities

What Express calls an “entity,” we are calling an “entity type,” and we are using
“entity” to mean what would be called an “entity instance” in STEP terms. The usage
in this paper is intended to be more in keeping with the common meanings of these
terms. Parasolid uses “entity” in the same way as this paper. The term Entity (starting
with a capital E), however, refers to the construct of that name used in Fed-X.

1.6 Audience

This paper is aimed at persons who want to use the Parasolid-to-STEP system for
converting Parasolid models to STEP boundary representation models. It is also aimed
at persons who want to understand how the system works; a reader who does not care
how it works can stop reading at the end of chapter 4, “Using Parasolid-to-STEP.” This
paper does not, by itself, provide sufficient information for programmers who want to
rewrite the software or use parts of it in other systems. However, the software was
written with the intent of making it easy to read and is heavily commented, so that a C
programmer familiar with boundary representations could probably deal with it after
reading this paper.

1.7 Acknowledgment

The Parasolid-to-STEP system could not have been built in its current form without the
software written at NIST by Stephen N. Clark for handling Express information models
and STEP product data.

Parasolid-to-STEP

Page 3

2 Shape Models

2.1 Introduction

The shape of a solid object may be expressed in many ways amenable to automated data
processing. These include: exact boundary representation, facetted boundary
representation, wire frame, constructive solid geometry, octree, and form features.
Information models for several of these have been readied for inclusion in STEP. PTS
uses only boundary representations. STEP entity types used in PTS (listed in Section
3.3) are drawn from the STEP topology and geometry schemas only.

Within boundary representations, a distinction may be made between systems which
constrain the user to build data representations only of objects which could actually
exist in the real world and systems which allow the user to build data representations of
impossible objects or data components (such as vertices) that have no physical
manifestation except as part of an actual object. The former are generally called
manifold modelers, and the latter non-manifold. The term “manifold” has an exact
mathematical definition, which we will not give here, but in three dimensions a
mathematical manifold corresponds well to a physically realizable object.

2.2 Parasolid Boundary Representation

The only scheme used by the Parasolid system for representing solid objects is an exact
boundary representation scheme [Shape90]. The Parasolid system is a manifold
modeler; any three dimensional body defined in Parasolid is physically realizable.
Conversely, any physically realizable body can be described in Parasolid. The
functions provided by Parasolid for manipulating bodies do not allow the user to model
an impossible object.

As noted earlier, Parasolid stores information in files called “transmit” files, which may
be written or read using functions provided in the Parasolid system. Transmit files may
be written either as binary data or as ASCII text data. The Parasolid-to-STEP system
uses only the text version. Individual characters and groups of characters in these files
are easy enough to read and interpret. A transmit file consist of lots of numbers
(integers and numbers with decimal points in them) separated by spaces. The meaning
of the file as whole, however, is completely obscure to a reader who does not know the
format, and Shape Data keeps the format as proprietary information.

Shape Data also does not disclose the format of the data structures in active computer
memory for shape representation. This means that a user cannot meaningfully
circumvent the system’s desire to deal with only manifold models, either by modifying
structures in active memory or by using a text editor on a transmit file. It also means
that it is not possible to reformat a Parasolid transmit file directly into a STEP physical
file or to construct a STEP Working Form by parsing a Parasolid transmit file. It is
always necessary to use the Parasolid system as an intermediary.

Parasolid-to-STEP

Page 4

2.3 STEP Boundary Representation

The STEP geometry and topology schemas [Smith 88] provide the entity types required
for building exact boundary representations. The schemas were clearly developed with
this as the foremost intended use, and this is how Parasolid-to-STEP uses them.

Unlike Parasolid, STEP does not include modeling functions. The STEP geometry and
topology schemas provide entity types that can be used for shape representation, and
they provide many constraint rules regarding entities - things like requiring that the
number of vertices referenced in an edge_loop be twice the number of edges. However,
there are no rules provided for how entities of these types may be included in a file to
represent specific objects. For example, can a face_logical_structure be used as a
component of more than one closed shell, or, is it legal to include a cartesian point
which is not used for defining any other entity? The official documentation [Smith88]
of the geometry and topology schemas does not deal with questions of this sort. A STEP
application protocol specifying how to use STEP geometry and topology to build a file
giving a boundary representation is in draft stage [Weick90]. The format adopted for
the physical file prepared by Parasolid-to-STEP is discussed in the next chapter of this
paper.

A STEP boundary representation is more general than a Parasolid boundary
representation because STEP allows 0-dimensional, 1-dimensional, and 2-dimensional
manifolds, as well as 3-dimensional manifolds.

2.4 Comparison of STEP and Parasolid Representations

2.4.1 Topology

Because Parasolid builds representations in which all topological entities are required
to be components of a physically realizable solid object, some constraints on
topological entities are automatic. A Parasolid face, for example, is always a face of a
solid object, so one side of the face can be distinguished from the other. A STEP face,
on the other hand, is not necessarily a component of any solid object, so there is no
natural differentiation between the two sides. To deal with the wider range of cases it
must handle, STEP provides “logical structures” which attach a binary flag to a base
topology type.

Parasolid does not have entity types equivalent to logical structures. Parasolid does,
however, have explicit sense flags and implicit senses for many types of entities, which
serves the same function as logical structures in STEP.

Figure 1 shows a comparison of topology in the STEP and Parasolid models, depicting
the entity types and their relationships. Parasolid is shown on the left, STEP on the
right. The two models are shown with corresponding types in the same relative location.
For example, the second box from the top is “shell (plus sense)” on the left and
“shell_logical_structure” on the right. This means that a Parasolid shell, plus knowing
its sense (which can be extracted from Parasolid), is equivalent to a STEP
shell_logical_structure and its shell. Where the word “flag” is used in a Parasolid entity
type, that means a binary flag whose value is provided by a call to a Parasolid function.
Where the word “sense” is used, that means sense information that may be deduced by

Parasolid-to-STEP

Page 5

examining information provided by calls to Parasolid functions. For example, the flag
for a Parasolid face tells whether the face normal, which always points away from
material, is in the same direction as the normal to the surface of the face, or in the
opposite direction. The sense of a shell, however, must be deduced from its position in
the list of shells belonging to a body, the outer shell being first in the list.

The most striking feature of the two models is that they are almost exactly the same,
allowing for a Parasolid entity type being equivalent to a STEP entity type plus its
associated logical structure. The names of the entity types are all identical, with the
exception that a Parasolid “body” is equivalent to a STEP “region.”

One significant difference between Parasolid and STEP that is not shown on Figure 1
is that it must be possible to map each STEP face to a plane. Parasolid does not have
this limitation. This becomes significant in PTS only in the case of an entire sphere or
an entire torus. Parasolid does not require any loops on such surfaces. These two
surfaces cannot be mapped to a plane without at least a vertex_loop for a sphere and an
edge_loop for a torus. PTS has to make these loops from scratch, using information
about the geometry of the surface to build the underlying geometry of the loop. The
PTS functions which handle this problem are named make_extras_for_face and
make_extras_for_torus.

The rule about mapping a STEP face to a plane is not contained in the Express schema
for topology. Rather it is in the text accompanying the schema, which explains what the
schema means. A corollary of the rule is that every STEP face must have at least one
loop_logical_structure, and this corollary is included in the Express schema.

Parasolid-to-STEP

Page 6

Figure 1. Comparison of Parasolid and STEP Models

loop

surface
(plus flag)

edge
(plus sense)

vertex

shell
(plus sense)

body

face
(plus sense
and flag)

curve

point

loop
logical structure

surface
logical structure

edge

vertex

shell

region

face
logical structure

curve
logical structure

point

shell
logical structure

face

loop

edge
logical structure

curve

surface

Parasolid Model Structure STEP Model Structure

KEY: Entity above or left may have more than one of entity below or right
 Entity above or left has exactly one of entity below or right

Parasolid-to-STEP

Page 7

2.4.2 Logical Structures

A detailed examination follows of how logical flags required for STEP logical
structures are determined by PTS for each Parasolid entity type for which STEP has a
corresponding logical structure. By providing a “logical structure” partner for almost
all base topology entity types, STEP has gone farther than necessary and left room for
alternate methods of defining entities for the same thing. In particular,
curve_logical_structures are completely unneeded since an edge can always be defined
to have the same sense as its underlying curve. Parasolid does this, so PTS adopts the
convention that only “true” curve_logical_structures will be used.
Loop_logical_structures are not needed if the convention is adopted that traversals in
opposite directions around the same edge or edges will be defined as two different
loops. Parasolid uses this convention, and PTS has adopted it. Thus, PTS uses only
“true” loop_logical_structures for converting Parasolid loops. In the case of an entire
torus, discussed in section 2.4.1, where a STEP edge_loop must be built for which there
is no Parasolid loop, it is more efficient to build only one loop and have
loop_logical_structures with true and false logical values, so that has been
implemented.

Curve

STEP has a positive sense for each curve. The definition of each type of curve tells what
the positive sense is for that type. The logical value in a STEP curve_logical_structure
used in an edge is defined to be true if the curve is traversed in its positive direction
while going along the curve from the first vertex of the edge to the second.

Similarly, Parasolid has a positive sense for each curve. The definition of each type of
curve tells what the positive sense is for that type. For all of the curve types handled by
PTS, the positive direction is the same in both models.

As noted above, PTS has adopted the convention that the logical value in a
curve_logical_structure made by PTS is always true. Parasolid makes it easy to observe
this convention, since the vertices of any open edge on a curve are returned by the
Parasolid IDCOEN function ordered going in the positive sense of the curve from the
first vertex to the second, and this vertex order is used by PTS for defining each edge.

PTS makes one STEP curve and one STEP curve_logical_structure (the true one) for
each curve in the Parasolid model.

Edge

STEP has a positive sense for each edge. If an edge is open, the positive sense is from
the first vertex to the second. If the edge is closed, the positive sense may be in either
direction as long as the logical flags of (i) the curve_logical_structure underlying the
edge and (ii) any edge_logical_structure defined on the edge, are set correctly. The
logical value in a STEP edge_logical_structure used in a loop is defined to be true if the
positive sense of the edge is the same as the positive sense of the loop.

Parasolid does not have a sense for an edge.

As noted above, PTS makes the positive sense of each edge it creates be the same as the
direction of the underlying curve.

Parasolid-to-STEP

Page 8

PTS makes one STEP edge and two STEP edge_logical_structures (one true and one
false) for each edge in the Parasolid model.

Open Edge

If an edge is found in a Parasolid loop of two or more edges, the edge must be open. In
this case, it may be determined by examining the list of vertices of the loop, the list of
edges of the loop, and the vertices of the edge (all of which are returned by appropriate
Parasolid function calls), whether the underlying curve of the Parasolid edge (and hence
the corresponding edge created by PTS) is being traversed in the positive or negative
direction while traversing the loop in the positive direction. PTS assigns a logical value
accordingly when making the STEP edge_logical_structure to be included in a loop.

Closed Edge

If a Parasolid loop has only one edge, it must be closed, which can happen in PTS only
if the underlying curve of the edge is a circle or an ellipse. In Parasolid, such an edge
may have no vertices, one vertex, or two occurrences of one vertex. STEP requires that
every edge have a start vertex and end vertex. If Parasolid does not have any vertex for
an edge, PTS finds an arbitrary point on the curve, uses it to make a vertex, and uses
the vertex for the start and end of the edge.

The PTS convention that only true logical structures will be made for curves and loops
forces decisions on setting logical values into edges. If a loop has only one (necessarily
closed) edge, it is necessary to retrieve a list of the two loops on the edge in order to
determine if the direction of the original loop is the same as the direction of the edge
(which always has the same direction as its underlying curve). Parasolid provides this
list with the first loop in the list going in the loop positive direction around the edge in
the curve positive direction. Thus, if the given loop is the first one in the list, the logical
value is true. If the given loop is second in the list, the logical value is false.

Shell

In STEP, a shell normal is defined to be positive when it is pointing away from
whatever the shell encloses (whether space or material). The logical value for a STEP
shell_logical_structure used for a region is defined to be true if the shell normal points
away from the interior of the region and false otherwise.

Parasolid does not have a flag indicating the sense of a shell, but when the IDCOEN
function is asked for the shells of a region, the outer one is always first in the list, and
all the others enclose voids in the interior of the region.

Thus, PTS assigns the logical value true to the shell_logical_structure whose shell is the
outer shell of a region and false to the shell_logical_structure for all other shells (since
they are inner shells).

PTS makes one STEP shell and one STEP shell_logical_structure (true or false, as
appropriate) for each shell in the Parasolid model.

Parasolid-to-STEP

Page 9

Face

In STEP, the positive sense of the normal to a face is arbitrary. The logical value for a
STEP face_logical_structure used for a shell is defined to be true if the face normal
points in the same direction as the shell normal, and false otherwise.

In Parasolid, the normal of a face always points away from material.

The design decision in building PTS was to have the positive sense of each face
generated by PTS agree with the positive sense of the corresponding Parasolid face.
Thus, PTS assigns a true logical value to every face_logical_structure used in a STEP
shell it builds that is the outer shell of a region (since the shell normal points out and
the face normals point out) and false to every face_logical_structure in a shell that is an
interior shell of the region (since the shell normal points out and the face normals point
in).

PTS makes one STEP face and one STEP face_logical_structure (true or false, as
appropriate) for each face in the Parasolid model.

Surface

STEP has a positive sense for each surface. The definition of each type of surface tells
what the positive sense is for that type. The logical value for a STEP
surface_logical_structure used for a face is defined to be true if the surface normal
points in the same direction as the face normal.

Parasolid has a positive sense for each surface. The definition of each type of surface
tells what the positive sense is for that type. Surfaces may, however, become reversed.
The Parasolid OUTSUR function returns a flag which tells whether this has happened
to any given surface.

The positive senses of STEP and Parasolid surfaces are the same for all surfaces
handled by PTS.

The Parasolid IDSOFF function returns a flag which tells whether the Parasolid surface
normal has the same sense as the Parasolid face normal. PTS makes the STEP surface
with the same sense as unreversed Parasolid surface. The logical value for a
surface_logical_structure in a face is assigned by PTS as true if either (i) the Parasolid
surface is unreversed and the Parasolid surface normal is in the same direction as the
Parasolid face normal, or (ii) the Parasolid surface is reversed and the Parasolid surface
normal is in the opposite direction from the Parasolid face normal. Otherwise, the
logical value is assigned as false.

PTS makes one STEP surface and one or two STEP surface_logical_structures (one
true, one false, or one of each, as appropriate) for each surface in the Parasolid model.

Loop

In both Parasolid and STEP, a loop may consist of a single vertex (such a loop is called
a vertex_loop), or it may be an edge_loop. In Parasolid, a loop is associated with only
one face, and the positive direction of an edge_loop has the face on its left, looking at
the face from outside the material while traversing the loop.

Parasolid-to-STEP

Page 10

A vertex_loop is a vertex which serves as a boundary of a surface. In the surfaces
handled by PTS, the only instance of this is the vertex at the tip of a cone. The tip of a
cone is identified by Parasolid as a vertex_loop on the face of the cone, and the
corresponding STEP entity is created as a vertex_loop by PTS.

As mentioned above, PTS adopts the convention that the logical value of a STEP
loop_logical_structure used for building a face is always true. If the loop is a
vertex_loop the logical value is irrelevant, so true is fine. If the loop is an edge_loop,
as noted above, the loop always is defined in the positive direction on the face.

PTS makes one STEP edge_loop or one vertex_loop for each loop in the Parasolid
model. PTS also makes one STEP loop_logical_structure (the true one) for each loop
in the Parasolid model.

2.4.3 Geometry

In general, for simple geometry, STEP and Parasolid have the same geometry entity
types, use the same names, and have identical or very similar methods of definition. For
complex geometry, the differences are more substantial, but PTS does not handle
complex geometry.

Points

STEP provides three kinds of points. Only one, cartesian_point, is used by PTS.
Parasolid provides one kind of point, cartesian point.

Curves

STEP provides line, four conics (circle, ellipse, parabola, and hyperbola), four types of
bounded_curve, four types of curve_on_surface, and two types of offset_curve.
Parasolid provides line, two conics (circle and ellipse), intersection curve, and
parametric curve (including b_spline). PTS deals only with three of the types common
to the two systems: line, circle, and ellipse.

Surfaces

STEP provides five “elementary surfaces” (plane, cylinder, cone, sphere, and torus),
plus swept surface, bounded surface, and offset surface. Parasolid provides the same
five elementary surfaces, plus swept surface, spun surface, blending surface and
parametric surface. PTS deals with only the five elementary surfaces: plane, cylinder,
cone, sphere, and torus.

Placing Geometry Entities in 3-Space

STEP and Parasolid differ in how curves and surfaces are placed in 3-space. STEP uses
entities while Parasolid uses parameters.

STEP and Parasolid both locate an ellipse in space by having a convention for attaching
a coordinate system to the ellipse and then specifying the location and orientation in
space of the attached coordinate system. STEP locates the coordinate system using an
axis_placement, which is a STEP entity. Parasolid locates the coordinate system using
parameters which are real numbers or arrays of real numbers, and are not Parasolid
entities. Location of surfaces and circles is similar. Thus, for each Parasolid surface,

Parasolid-to-STEP

Page 11

ellipse, or circle, the STEP model built by PTS has four or five entities: the surface
itself, an axis2_placement, and a cartesian_point plus one or two directions required to
define the axis2_placement.

The situation for lines is similar but simpler. PTS builds a line, point, and direction in
STEP for each Parasolid line.

3 Output Format and Scope of Parasolid-to-STEP

3.1 Output File

The output of Parasolid-to-STEP is a STEP physical file prepared in accordance with
the “Tokyo” version of STEP. In particular, geometry and topology entities are as
defined in [Smith88] and the file is arranged according to the rules for STEP file
structure and the mapping from Express to a STEP physical file given in
[Altemueller88a] and [Altemueller88b]. The overall structure of the file is, as required,
a header section followed by a data section.

In addition, the file is formatted to be easily read by humans: in the data section of the
file, each entity definition starts on a new line, the entities are numbered in sequential
order starting with 1, and a modest amount of white space is left to improve readability.
Parasolid-to-STEP has two printing options: the number of decimal places to be kept
and whether superfluous trailing zeros should be suppressed. Numbers are rounded,
rather than truncated, to the selected number of places. An example of a PTS output file
is shown in Appendix B. Entity id numbers in this section refer to that example. The
part described in that file is shown in Figure 2. The part consists of a cylinder with a
conical tip at the bottom and a flat top. The top is bevelled by planes on both sides and
has a spherical dimple surrounded by a toroidal groove.

The entity numbers in the file which correspond to the numbered faces in Figure 2 are:

entities 1-17 face 1 - sphere
entities 18-68 face 2 - plane
entities 69-86 face 3 - plane
entities 87-104 face 4 - plane
entities 105-124 face 5 - cone
entities 125-139 face 6 - cylinder
entities 140-158 face 7 - plane
entities 159-170 face 8 - torus

Parasolid-to-STEP

Page 12

3.1.1 Hierarchical Structure

At first glance, the entities in the data section of the output file appear to be in random
order, since entities of every type are scattered throughout the file. Actually, the entities
are arranged in hierarchical blocks by topological entity type. The hierarchy is the
STEP model structure as shown on the right in Figure 1.

Figure 2. Example Part

1

2

3

4

5

6

8
7

Parasolid-to-STEP

Page 13

The blocks described here are simply sets of adjacent lines. They are not marked in the
file in any way. This block structure is a side effect of the way PTS works, not an
intentional desirable feature of PTS. For human readability, it is more desirable to
group entities of the same type together and to have them ordered within entity type, as
shown in Appendix C.

Because the Tokyo version rules for constructing a STEP physical file require that an
entity be defined before it is referenced, the entity at the top of each block in the
hierarchy is defined in the last line of the block in the file. Thus, in PTS, a region is
always defined in the last line of the data section (entity 173 in the example).

Preceding the region definition is a set of blocks, each of which defines a
shell_logical_structure. There is only one shell in the example, so it takes up entities 1
through 172. Each block defining a shell_logical_structure has a closed shell (171) as
the next to last entity and a shell_logical_structure (172) as the last entity. Preceding
that is a set of blocks, each of which defines a face_logical_structure. There are eight
faces in the example, so there are eight such blocks in the file.

Each face_logical_structure block (look at 18-68 in the example) ends with the same
four entity types: some type of surface (65), a surface_logical_structure (66) on that
surface, a face (67) on the surface_logical_structure, and a face_logical_structure (68)
on the face. Immediately preceding the surface definition is a block of entities (63-64)
required for defining the surface. Before that is a set of blocks (19-27, 28-62) each of
which defines a loop_logical_structure used in defining the face.

Each loop_logical_structure block (look at 28-62 in the example) ends with an
edge_loop (61) or a vertex_loop followed by a loop_logical_structure (62). If the loop
is an edge_loop, this is preceded by a set of blocks, each of which defines an
edge_logical_structure (28-37, 38-46, 47-54, 55-60). If the loop is a vertex_loop (117),
it is preceded by two lines defining a point (115) and a vertex (116) at the point.

Each edge_logical_structure block (look at 47-54 in the example) ends with a line
defining an edge_logical_structure (54). If the edge used to build the
edge_logical_structure has not been defined previously, the beginning of the block will
define the curve (49), curve_logical_structure (50), point or points (51), and vertex or
vertices (52) needed to build the edge. If a vertex has been defined previously, however,
it is not defined again (such as 44, which is used in line 53). If the edge of an
edge_logical_structure block has been defined previously (69, for example), the block
consists of a single line.

Parasolid-to-STEP

Page 14

3.2 Scope

Parasolid-to-STEP takes as input a Parasolid transmit file which defines a single
Parasolid three-dimensional body; this corresponds to a region in STEP. It has an outer
closed shell and zero or more other closed shells, each of which represents a completely
enclosed void in the body. PTS also takes as input a file defining a STEP schema which
includes geometry and topology entity types.

3.2.1 Parasolid Input

The Parasolid transmit file used as input to PTS may include Parasolid entities of the
following Parasolid types. None of the entities in the file should have a transformation
attached to it. These entity types include only geometry and topology. PTS does not
deal with Parasolid features as input.

GEOMETRY
TYPTCA cartesian point
TYCUCI circle
TYSUCO cone
TYSUCY cylinder
TYCUEL ellipse
TYCUST line
TYSUPL plane
TYSUSP sphere
TYSUTO torus

TOPOLOGY
TYTOED edge - if closed, must be normal (EDEDCN) or ring (ENEDRN)
TYTOFA face
TYTOLO loop - hole (ENLOHO), peripheral (ENLOPE) or other (ENLONA)
TYTOBY body - must be solid (ENBYSO)
TYTOSH shell
TYTOVX vertex - must be normal (ENVENO) or isolated (ENVEIS)

Parasolid-to-STEP

Page 15

3.3 STEP Input Schema and Output Entity Types

The names of STEP entity types PTS will make follow. They include selected geometry
and topology entity types only. PTS will not make entities of any other geometry or
topology entity type or entities from any other STEP schema (such as features or
tolerances). PTS expects to find all these entity types defined in the STEP schema
which is input. If any of these is missing from the schema, PTS will print an error
message and stop. The schema may include other definitions, rules, etc.; they will be
read and checked for having correct syntax, but they will not be used.

Each entity type is expected to have the attributes given in the “Tokyo” version of the
STEP geometry and topology. The attributes must be in the same order and have the
same meaning as given in the Tokyo version. The names of the attributes, however, are
irrelevant to PTS. If the name of an attribute in the schema is “axis” and is changed to
“dir_axis,” without changing what it means, for example, this would have no effect on
PTS.

GEOMETRY
axis2_placement
cartesian_point
circle
conical_surface
cylindrical_surface
direction
ellipse
line
plane
spherical_surface
toroidal_surface

TOPOLOGY
closed_shell
curve_logical_structure
edge
edge_logical_structure
edge_loop
face
face_logical_structure
loop_logical_structure
region
shell_logical_structure
surface_logical_structure
vertex
vertex_loop

Parasolid-to-STEP

Page 16

4 Using Parasolid-to-STEP

4.1 Environment

The executable file for Parasolid-to-STEP is “parasolid_to_step.” It is slightly less than
5 megabytes in size. When PTS starts up and finishes parsing in the standard STEP
schema of geometry and topology (before the Parasolid file is loaded), the size of the
process resident in active memory is about 2 megabytes. Loading the Parasolid file
causes the process to grow by about a tenth of a megabyte per 1000 equivalent STEP
entities. Building the STEP model causes the process to grow by about one megabyte
per 1000 STEP entities. Converting a 22028 byte Parasolid file for which the STEP
output file contained 939 entities (35896 bytes) caused the process to grow to a
maximum of just over 3 megabytes. Converting a 216302 byte Parasolid file for which
the STEP output file contained 7907 entities (334240 bytes) - the largest one tested -
caused the process to grow to a maximum of 9.4 megabytes. The machine used to run
PTS to convert a specific Parasolid file must be capable of handling a process of the
size expected for that file. A crude estimate would be: process size in megabytes equals
2 plus 40 times Parasolid file size in megabytes. PTS is known to run well on a
Sun3/160 computer with 16 megabytes of RAM or a Sun3/60 with 24 megabytes of
RAM. Testing has not been done with other machines.

In order to use Parasolid-to-STEP, it is necessary to have the Parasolid system, which
is available for licensing from Shape Data, Limited.

The output file produced by Parasolid-to-STEP is as described in chapter 3. An
example output file is shown in Appendix B for the part shown in Figure 2. A separate
system, “compress-step,” built in Common LISP by the author, may be use to reformat
the PTS output file to be more concise and easier to read. Appendix C contains the file
produced by running the PTS output shown in Appendix B through compress-step.
Compress-step performs several operations, the most important of which are (i) putting
the file into total order based on entity type and attribute values, and (ii) deleting
duplicate entities. Development of a C version of compress-step has begun.

4.2 Getting an Executable

If a user has access to the /usr/local/pdes/src directory at NIST, and access to a Sun3
computer, the conversion may be done conveniently by using the executable which is
in the parasolid_to_step subdirectory of /usr/local/pdes/src.

For other machines running a UNIX or SunOS operating system, if a user has a copy of
the NIST PDES Toolkit software, has access to the “gcc” C compiler, has the PTS
source code (parasolid_to_step.c) in the parasolid_to_step subdirectory of the Toolkit
“src” directory, and is the owner of the parasolid_to_step subdirectory, then an
executable may be created by changing directories to the parasolid_to_step
subdirectory and giving the command “make.”

Parasolid-to-STEP

Page 17

4.3 Timing

The four time consuming stages of running Parasolid-to-STEP are parsing the STEP
schema, loading the Parasolid transmit file, converting the Parasolid model to a STEP
model, and printing the STEP file. Total running time and time for each stage have been
measured when PTS is running on a Sun3/60 with 24 megabytes of RAM. For a model
with 939 STEP entities, total time was about 1 minute. For a model with 7907 STEP
entities, total time was about 13 minutes. Total time increases roughly in proportion to
the increase in size of the input file, as does the output file size (which is usually about
1.5 times input file size).

Schema parsing requires about 20 seconds when the standard STEP geometry and
topology schema is used.

Reading the Parasolid input file took two seconds for the smaller file and 20 seconds
for the large one.

Converting the model took 34 seconds for the small model and 12 minutes for the large.

Printing the output file took 6 seconds for the small file and 40 seconds for the large.

4.4 Command Call

The executable file for Parasolid-to-STEP is “parasolid_to_step.” When it is used as a
command, there is one required argument: the name of a Parasolid transmit file. The
argument should not have the suffix “.xmt_txt” on it. That is added by the system. The
file itself must have the suffix “.xmt_txt”. The “.xmt_txt” file must be in the directory
from which the call to “parasolid_to_step” is made.

In addition, the function has two options. The “-s” option is followed by the STEP
output file name the user wants. The “-e” option is followed by the name of the Express
schema input file.

The STEP output file name defaults to step.out, and the Express schema file name
defaults to geom-topo.exp . The schema must include the geometry and topology entity
type definitions listed in section 3.3.

Example 1 - The simplest possible form of a call to parasolid_to_step:

parasolid_to_step cover

For this call to work, the directory from which the call is made must contain the files:
parasolid_to_step, cover.xmt_txt, and geom-topo.exp . The output file will be called
step.out.

Example 2 - A call to parasolid_to_step using all options:

../parasolid_to_step -e ../geom-topo.exp -s block.step clevis2_block

For this call to work, the directory from which the call is made must contain the file
clevis2_block.xmt_txt, and the parent directory must contain the files geom-topo.exp
and parasolid_to_step . The output file will be called block.step and will be found in the
directory from which the call was made.

Parasolid-to-STEP

Page 18

After model conversion is complete and before output file printing starts, the user is
prompted to enter the number of decimal places to be used for printing numbers and is
prompted to say whether superfluous trailing zeros should be suppressed when printing
numbers. With zero suppression on, PTS would print 3.123 rather than 3.12300000, for
example. The minimum number of decimal places is 1. The maximum is 16.

4.5 Messages and Errors

While Parasolid-to-STEP is running it prints messages from time to time to let the user
know it is alive and well, or that it isn’t.

4.5.1 Healthy Messages

As long as PTS is healthy, it prints messages as follows, shown in italics. Items that may
change depending upon the command are shown in boldface italics. User input is
shown in non-italics. In item 5 below, which gives the number of STEP entities created
so far, another line is printed each time another Parasolid face is converted.

1. STAMOD: Start Modeler
 Modeler version number 220
2. Compiling Express from/usr/local/pdes/src/parasolid_to_step/geom-topo.exp
3. Loading Parasolid fileshuttle_block.xmt_txt.
4. Converting Parasolid model to STEP working form model.
5. 42STEP entities

70STEP entities
92STEP entities

 •
 •
 •

939STEP entities
6. Enter number of decimal places
 for printing real numbers, minimum 1 maximum 16 :6
7. Suppress trailing zeros for real numbers ? (y/n) :y
8. STOMOD: Stop Modeler

4.5.2 Error Messages

Error handling is covered in detail in chapter 6. The basic approach of PTS is to print
one or more helpful messages and quit if something is wrong. Errors encountered
during model conversion are discussed in chapter 6. The main function of PTS will
detect problems with the command call or the files and print messages (shown in italics)
as follows.

Incorrect Command Call

If the command call is incorrectly constructed, for example by using an illegal -x
option:

parasolid_to_step: illegal option -- x
usage: parasolid_to_step [-e express][-s step] input_name

Parasolid-to-STEP

Page 19

Schema File Won’t Open

If the STEP schema file cannot be opened (probably because the wrong file name or
path name was used):

Error opening schema file [file name].

Parasolid Modeler Will Not Start

Modeler did not start

Fed-X Will Not Start

Express did not initialize

Problem With STEP Schema

If Fed-X cannot parse the schema, it will probably print one or more messages itself.
This will be followed by:

Errors in Express input

If the schema does not include definitions of all 24 required STEP entity types:

Schema differs from expected

If the required entity types are defined in the schema, but they are defined differently
from what is expected by PTS, no error will occur during schema parsing. An error will
occur later during model conversion.

Parasolid File Will Not Load

If the Parasolid file cannot be read in (probably because wrong file name or path name
was used, or the file is not a transmit file):

Loading Parasolid file shuttle_block.xmt_txt.xmt_txt.
GETMOD called in load_object returned non-zero ifail 58.
Parasolid would not load shuttle_block.xmt_txt.

The easiest way to get the file name wrong is to include the .xmt_txt suffix in the
function call. This error will be apparent in the error message, since the suffix will be
included twice, as shown in the first line above.

Any Error in Model Conversion

Error in model conversion

Output File Cannot be Opened

Error opening output file [file name]

Parasolid-to-STEP

Page 20

5 How Parasolid-to-STEP Works

5.1 Approach

The approach implemented in Parasolid-to-STEP is to parse in the Express schema by
using Fed-X (the NIST express parser), create a Parasolid model in active memory by
using the Parasolid file loading function to read in a Parasolid transmit file, and then
traverse the tree of connected entities in the Parasolid model, building a STEP Working
Form product model from geometry and topology entities which correspond to the
Parasolid entities as the Parasolid model is traversed. The similarity between the
Parasolid and STEP models shown in Figure 1 makes it feasible to build the STEP tree
in parallel with traversing the Parasolid tree. Once the STEP Working Form product
model is built, a set of file printing functions prints the STEP physical file from it.

This approach isolates the effect of changes in the physical file format to the printing
functions. It also provides a little help in dealing with changes in the geometry and
topology schemas, but not much. In general, the boundary representation modeling
approaches of both STEP and Parasolid are hard-coded in this system.

5.2 Details

5.2.1 What the Main Function Does

The main function goes through the following steps in the order shown here. After each
step it checks to be sure it succeeded before proceeding to the next step. The steps that
take a noticeable amount of time are 5, 8, 10, and 12.

1. get the command line arguments from the call to Parasolid-to-STEP
2. open the STEP schema file for reading
3. start the Parasolid system
4. initialize the Express schema parser
5. parse the STEP schema (two passes)
6. close the schema file
7. check that parsing the schema defined all required entity types
8. load the Parasolid transmit file to create the Parasolid model
9. create an empty STEP Working Form Product
10. traverse the Parasolid model, filling the STEP Working Form Product
11. open the STEP output file for writing
12. print the STEP file from the list of entities in the STEP Working Form Product
13. close the STEP output file
14. stop the Parasolid system

5.2.2 Keeping Track of What Has Already Been Converted

Parasolid provides that when it is started, the user may direct that some number of user
fields (each of which holds an integer) will be attached to each Parasolid entity.
Parasolid-to-STEP keeps track of the status of converting a Parasolid entity by
employing these user fields. PTS uses three such fields in each entity. The first user
field of each Parasolid entity is used to hold the entity number of the STEP entity

Parasolid-to-STEP

Page 21

created as a counterpart, the second user field holds the entity number of the “true”
logical structure built on that STEP entity (if any), and the third user field holds the
entity number of the “false” logical structure built on that STEP entity (if any). All
STEP entities which have a Parasolid counterpart are created by PTS by a call to the
add_entity_mark function, which fills in the first user field as well as creating the entity.
All “logical structure” entities whose base type parent has a Parasolid counterpart are
created by PTS by a call to the add_logical_entity_mark function, which fills in the
second or third user field as well as creating the logical structure entity.

The PTS functions which convert Parasolid entities to STEP entities almost always
check one, two, or all three user fields of the Parasolid entity. The checks are made for
several purposes. If the Parasolid entity is an edge, for example, the first field will tell
if the STEP counterpart exists; if so, exactly one of the two logical structures on the
edge should also already have been created, and it should have the opposite sense from
the one which is now required. The user fields provide this information. If the Parasolid
entity is a face, as another example, no STEP equivalent should have been created,
since each Parasolid face should be encountered only once in traversing the Parasolid
model. Again, the user fields provide this information.

If STEP entities must be created which have no counterpart entity in the Parasolid
model, obviously the user fields are not useful in keeping track of them. This happens
when STEP points, directions, and axis placements must be created to define the STEP
equivalent of a Parasolid curve or surface. When that happens, duplicate entities may
well be created, such as two points at the same place or two unit vectors in the same
direction. PTS does not try to forestall creating such duplicates except for the six
principal unit vectors, each of which will be created at most once.

5.2.3 Two Important Variables

STEP entities are given id numbers in sequential order starting with 1 by PTS. In order
to keep track of which number comes next, the “line_number” global variable is used.
It is referenced and reset by the add_entity_mark and add_logical_entity_mark
functions and it is referenced but not set by the convert_shell and make_direction
functions.

Another key variable used throughout PTS is the STEP Working Form Product being
built. It is passed around as an argument (always named “product”) rather than being a
global variable. Most of the functions which take it as an argument add entities to it.

Parasolid-to-STEP

Page 22

6 Error Handling in Parasolid-to-STEP

6.1 General Approach

Parasolid-to-STEP does a great deal of checking when it runs. Both the data being used
and the operation of function calls being made are checked. During operation, PTS calls
functions written by the author, functions for manipulating the STEP Working Form,
and Parasolid functions.

Errors in the command call to PTS by the user are discussed in Chapter 4, “Using
Parasolid-to-STEP.”

The first stage of PTS operation, parsing the STEP schema file, is handled entirely by
Fed-X. The documentation of Fed-X [Clark90b, Clark90c] should be consulted if there
are problems. The rest of PTS’s work (reading in the Parasolid transmit file, converting
the resulting Parasolid body to a STEP Working Form Product whose top-level entity
is a region, and printing a STEP file for the product) uses Parasolid functions, Express
and STEP Working Form functions, and PTS functions written by the author.

6.2 Error Sources

6.2.1 Parasolid Function Errors

Every Parasolid function has an argument which is a pointer to a failure indicator. This
failure indicator is set by Parasolid when a call to the function is made. PTS checks the
failure indicator after every call to any Parasolid function. If there is an error, the PTS
function which prints Parasolid error messages is called right away. Most of the error
handling for Parasolid functions is embedded in the compiler macros named MODELn
and is invisible in the text of the PTS functions which call Parasolid functions.

6.2.2 STEP Working Form Function Errors

Most of the STEP Working Form functions also have an argument which is a pointer
to a failure indicator. This failure indicator is checked by PTS for only a few of the more
critical Working Form functions. Many of the Working Form functions themselves also
print messages to “stderr” in case of error.

6.2.3 PTS Function Errors

The PTS functions whose names start with “convert” or “make” all return something.
All of these functions have “error_return” values of the correct type, which indicate that
an error has occurred. Most of the error handling for these functions is embedded in the
compiler macros named CALLn and is invisible in the text of the PTS functions which
call these functions.

Any time a user flag set by PTS in a Parasolid entity is examined, and it indicates that
an entity should have been made in the STEP Working Form Product being built, a
check is made that the STEP entity exists.

Parasolid-to-STEP

Page 23

6.2.4 Parasolid Model Errors

The input data for PTS comes from a Parasolid transmit file. When this file is read in
by Parasolid, a model is automatically set up in active memory by Parasolid. Many
explicit checks are made of the validity of this model. The names of the functions which
make such checks with the error messages they print and an explanation (if needed) are
listed in Table 1. The functions are in alphabetical order. The checks made on the
Parasolid model are spot checks only, not a comprehensive validation of the model. In
most cases, a spot check is made if the PTS function making the check will not work if
an unexpected situation exists.

6.3 If an Error is Found

If an error is detected during operation of PTS, usually the function in which the failure
occurred will print a message and return an error indicator to the function which called
it. Then the calling function will check the error indicator, print its own message, and
return an error indicator to its calling function, and so on up the hierarchy of function
calls to the top of the stack. When the main function of PTS is notified of an error, it
exits PTS after printing its message, and does not print an output file.

This method of error handling leaves the user with a clear description of the error, and
a trace of the stack at the time the error occurred. It does not provide the user with any
method of error recovery. If the problem is in the Parasolid transmit file, it is expected
that either the file will be changed and another attempt made to convert it, or it will not
be converted. If the problem lies in any of the three software packages, the error will
have to be fixed and PTS rebuilt - not something the user is expected to be able to do.

It would be nice to be able to deal with valid entity types in the input file
(transformations, b-splines, and intersection curves, for a start) which cannot be
handled by PTS, in such a way that a blank space would be left in the output file for the
user to fill in later, without aborting the entire conversion process. This has not been
attempted.

Error messages are printed to “stderr.”

Parasolid-to-STEP

Page 24

Table 1. Checks on Parasolid Model
Function Message Error Condition

convert_curve Cannot handle intersection curve

Cannot handle parametric curve

Unknown curve type

convert_edge Vertices of edge do not match up

Edge used more than twice

Edge used twice in same direction

convert_face Face used twice

Found two outside loops

convert_loop Loop used twice

Numbers of edges and vertices differ

convert_loop_ Edge used more than twice

edge Edge used twice in same direction

Curve not circle or ellipse

Ring edge has vertices

Zero or more than 2 vertices

two different vertices

Bad edge type

convert_point Unknown point type

convert_shell Shell used twice

convert_surface Unknown surface type

convert_vertex_ Number of vertices is not 1

loop Vertex not isolated

find_ring_sense Ring edge not connected to 2 loops

Parent loop not connected to edge

main Parasolid entity is not a solid body

make_extras_ Surface is not a sphere or torus

for_face

make_vertex_ Bad axis unit vector for circle

on_curve Curve not circle or ellipse

The vertices at the nth edge of a loop are not the
same as the nth pair of vertices of the loop.

An edge is part of more than two loops.

An edge is traversed twice in the same direction.

A face has been used twice.
A face has two outside loops.

A loop is being converted for the second time.

An edge is part of more than two loops.

An edge is traversed twice in the same direction.

A loop with more than one edge does not have the
same number of edges and vertices.

An edge that forms a complete loop has two
different vertices.

The curve of a closed loop is not a circle or ellipse.

A closed normal edge has been found with zero or
more than two vertices.

A ring edge has vertices.

An edge is neither a ring edge not a closed edge.

A point is not a cartesian point.

A shell has been used twice.

A surface is not a plane, cylinder, sphere, cone, or
torus.

A vertex loop has more than one vertex.

The vertex of a vertex loop is not isolated type.

A ring edge is not used for making two loops.

A loop is not connected to an edge which is an
edge of the loop.

A curve being converted is a parametric curve.

A curve being converted is not a circle, line,
ellipse, intersection curve, or parametric curve.

A curve being converted is an intersection curve.

A Parasolid entity is not a solid body.

A purported unit vector does not have length 1.

The surface of a face with no loops is not a sphere
or torus.

The curve of a loop with no vertices is not a circle
or ellipse.

Parasolid-to-STEP

Page 25

7 Software of Parasolid-to-STEP

7.1 Overview

The C software written by the author for Parasolid-to-STEP is all in the file
parasolid_to_step.c in the parasolid_to_step directory of /usr/local/pdes/src. In order to
build an executable file, of course, the compiler needs to draw on the Parasolid system,
the Fed-X system, and the STEP Working Form functions. These are all referenced
appropriately by the Makefile in the parasolid_to_step directory and by the “include”
directives to the compiler at the beginning of parasolid_to_step.c.

The PTS software is written in ANSI C [ANSI89]. It has been written to be readable.
Compiler macros replace several of the uglier C special character combinations with
English words. Almost no abbreviations are used for function or variable names, and
the code is heavily commented. In general, function and variable names are words
joined together with underscores, as in “parasolid_to_step.”

7.2 Hierarchy of Function Calls

The hierarchy of function calls used by Parasolid-to-STEP is shown in Figure 3. The
figure does not include:

1. calls to Parasolid functions

2. calls to Fed-X or STEP Working Form functions

3. calls to report_ifail (which follows every call to a Parasolid function)

4. calls to add_entity_mark, which is called by:
convert_edge, convert_edge_loop, convert_face, convert_loop_edge,
convert_region, convert_shell, convert_vertex, convert_vertex_loop,
make_axis2_no_x, make_axis2_with_x, make_circle, make_cone,
make_cylinder, make_direction, make_ellipse, make_extras_for_face,
make_extras_for_torus, make_line, make_plane, make_point, make_sphere,
make_torus, make_vertex_on_curve.

5. calls to add_logical_entity_mark, which is called by:
convert_curve, convert_edge, convert_face, convert_loop, convert_loop_edge,
convert_shell, convert_surface, make_extras_for_face, make_extras_for_torus.

Parasolid-to-STEP

Page 26

Figure 3. Hierarchy of Function Calls

main

find_express
_classes

convert_
region

start_
modeler

print_
file

get_
arguments

convert_
shell

stop_
modeler

convert_
face

load_
object

convert_
loop

convert_
surface

make_
cone

make_
sphere

make_
plane

convert_
edge_loop

convert_
vertex_loop

convert_
loop_edge

make_
cylinder

convert_
edge

convert_
curve convert_

vertex

make_
torus

make_axis2_
with_x

make_
line

make_
ellipse

convert_
point

array_vector_
cross

ask_
integer

make_
direction

make_axis2_
no_x

make_
circle

ask_
yes_no

print_file_
header

print_file_
data

print_file_
trailer

print_object

print_entity

print_real

find_
ring_sense

make_vertex
_on_curve

make_
point

make_extras
for_face

pick_point_
on_circle

array_vector_
length

Function calling flows downwards and horizontally along solid lines, except that
print_entity calls, its caller (print_object) as indicated by an arrow going upwards.

error_
exit

make_extras
for_torus

Parasolid-to-STEP

Page 27

7.3 Use of Fed-X and STEP Working Form Functions

The Fed-X system is accessed in Parasolid-to-STEP by function calls to
EXPRESSinitialize, EXPRESSpass_1, and EXPRESSpass_2.

In addition, the following Express Working Form and STEP Working Form functions
are called by PTS. They are described in [Clark90c] and [Clark90e].

CSTget_name
ERRORhas_error_occurred
ERRORreport
ENTITYget_all_attributes
ENTITYget_name
LISTadd_first
LISTadd_last
LISTcreate
LISTdo
LISTempty
LISTfree
OBJcreate
OBJcreate_entity
OBJaggr_at
OBJaggr_at_put
OBJaggr_lower_bound
OBJaggr_upper_bound
OBJfast_get_attribute
OBJget_name
OBJget_type
OBJinitialize
OBJis_external
OBJput_name
OBJput_value
PRODadd_object
PRODcreate
PRODget_contents
PRODget_named_object
SCHEMAget_scope
SCOPElookup_entity
TYPEget_class
TYPEget_entity

Parasolid-to-STEP

Page 28

7.4 Use of Parasolid Functions

Parasolid-to-STEP calls the following Parasolid functions. They are described in
[Shape90].

ENBYTY ENquire BodY TYpe
ENEDTY ENquire EDge TYpe
ENLOTY ENquire LOop TYpe
ENVETY ENquire VErtex TYpe
GETMOD GET archived MODel
GTTGLI GeT values from a TaG LIst
IDCOEN IDentify COnnected ENtities
IDCOFE IDentify Curve OF Edge
IDPOFV IDentify Point OF Vertex
IDSOFF IDentify Surface OF Face
OUTCUR OUTput CURve
OUTPOI OUTput POInt
OUTSUR OUTput SURface
OUUFEN OUtput User Field of ENtity
SEUFEN SEt User Field of ENtity
STAMOD STArt MODeller
STOMOD STOp MODeller

7.5 Descriptions of Parasolid-to-STEP Functions

Brief descriptions of the PTS functions follow in alphabetical order.

The functions whose names start with “convert” are similar to one another. Each such
function converts a Parasolid entity into an equivalent STEP entity and/or one of the
logical structure counterparts to the STEP entity. All of these functions call on
add_entity_mark and/or add_logical_entity_mark to do the actual STEP entity creation.

The functions whose names start with “make” are also similar. In most cases, such
functions take a few arguments which are numbers or arrays of numbers and create a
STEP entity of the given type from the numbers. All of these functions call on
add_entity_mark and/or add_logical_entity_mark to do the actual STEP entity creation.
With the exception of make_point, none of these functions has a corresponding
Parasolid entity for the STEP entity being made.

In these descriptions, whenever a function is said to “make” a STEP entity, it is to be
understood that the entity is added to the STEP product being built, unless a description
explicitly states otherwise. Since all STEP entities are put into the product by either
add_entity_mark or add_logical_entity_mark, calls to these functions are not
mentioned.

add_entity_mark

This function takes a Product being constructed (product), an entity class name (class),
a Linked list of attributes (attributes), and a Parasolid entity tag (tag), which may be
null.

Parasolid-to-STEP

Page 29

The function makes a STEP entity from a list of its attributes and adds the STEP entity
to the STEP Working Form Product being constructed. The external variable
line_number is used as the line number of the STEP entity and also (converted to a
string) as the name of the entity.

If the Parasolid entity tag is not null, the line_number is inserted as the value of the first
user field of the Parasolid entity. This makes it possible to determine if any Parasolid
entity has already been converted to STEP form.

If the function runs without error it returns the new STEP entity. Otherwise, it returns
a null Object.

add_logical_entity_mark

This function takes an Object (object) which is an instance of a STEP entity, a STEP
Working Form Product (product), an Entity (class), a Parasolid tag (tag), which is null
or is the tag of the Parasolid entity corresponding to the object, and a boolean
enumeration constant (logical_flag). The class should be the _logical_structure
equivalent of the entity class of the object. For example, if object is a loop, class should
be loop_logical_structure. If tag is null, that indicates there is no Parasolid entity
corresponding to the STEP entity being built.

The function checks the Parasolid entity (if there is one) to see if the corresponding
STEP logical entity already exists. If so, it finds it in the product and returns it.

If not, it creates a STEP entity of type class and inserts it in the product. If tag is not
null, the function also puts the name of the corresponding STEP logical entity in the
second (for true) or third (for false) user field of the Parasolid entity. Then it returns the
STEP entity.

array_vector_cross

This function computes the cross product of two 3d vectors (first and second) expressed
as arrays of three doubles. It returns an array of 3 doubles.

array_vector_length

This function computes the length of a 3D vector (vector) expressed as an array of 3
doubles. It returns a double.

ask_integer

This function takes a string (prompt), and two integers (minimum and maximum). It
prints the prompt on the screen and reads the user’s response as an integer. If minimum
and maximum are not equal, it checks that the response falls between the minimum and
the maximum and prompts again if not. When the user provides a response in bounds,
it is returned.

Parasolid-to-STEP

Page 30

ask_yes_no

This function takes a string (prompt). It prints the prompt on the screen followed by “?
(y/n) :” and reads the user’s response as a character. If the character is y, 1 is returned.
If the character is n, 0 is returned. Otherwise, the user is prompted again. Only the first
character of the user’s response is used. The rest is discarded. Thus, “yes” and “no” will
also be recognized as valid responses (but Y and N will not).

CALLn

This “function” is used to make error-handling invisible in the text of PTS functions. It
is actually a series of compiler macros defined for values of n from 2 through 5. It sets
a variable to the value returned by some other PTS function (call it “foo”) which returns
a STEP Working Form Object. The value of n is the number of arguments to foo. The
first argument to CALLn is the variable, the second is foo, and the rest of the arguments
are the arguments to foo. CALLn calls foo and sets the variable to the value returned.
Then it tests to see if the value is OBJECT_NULL. If so, it prints an error message of
the form “bar called foo, which failed,” where bar is the name of the function from
which the CALL is being made. Then it returns an error return value specified by bar.

In order for CALLn to work, every function which contains a CALLn must have a local
variable “function_name,” the value of which is a string that should be the function
name, and a local variable “error_return,” the value of which has the same type as the
type returned by the function. The names of these two variables are built into CALLn.

CALLn has a counterpart named MODELn for calling Parasolid functions.

convert_curve

This function takes the tag (parasolid_curve) of a Parasolid curve and a STEP Working
Form Product (product). It calls the appropriate curve converter (one of make_line,
make_circle, make_ellipse) to make the STEP curve. It then makes the companion
curve_logical_structure.

The function returns the STEP curve_logical_structure.

convert_edge

This function takes the tag (parasolid_edge) of a Parasolid edge, two Parasolid vertices
(start_vertex and end_vertex), and a STEP Working Form Product (product).

The start_vertex and the end_vertex are the upstream and downstream vertices of the
edge with respect to the sense of the edge_loop. parasolid_vertex1 and
parasolid_vertex2 are the upstream and downstream vertices of the edge with respect
to the sense of the curve of the edge. If start_vertex = parasolid_vertex1 and end_vertex
= parasolid_vertex2, then the logical flag of the edge_logical_structure is true. If they
are reversed, it is false.

The function returns the STEP edge_logical_structure.

Parasolid-to-STEP

Page 31

convert_edge_loop

This function takes the tag (parasolid_loop) of a Parasolid loop, the tag
(parasolid_edges) of a list of Parasolid edges, the tag (parasolid_vertices) of a list of
Parasolid vertices, an integer (number_edges) representing the number of edges in the
list, and a STEP Working Form Product (product). It calls convert_loop_edge (if there
is only one edge) or makes several calls to convert_edge (if there is more than one edge)
to make the STEP entities for the edge(s) of the loop. Then it makes the edge_loop.

The function returns the STEP edge_loop.

convert_face

This function takes the tag (parasolid_face) of a Parasolid face, an integer
(shell_counter), and a STEP Working Form Product (product). It calls convert_surface
to make the STEP entities for the surface of the face. It calls either convert_loop (if
there is at least one Parasolid loop) or make_extras_for_face (if there are no Parasolid
loops) to make the STEP entities for the loop(s) of the face. It then makes the face and
its companion face_logical_structure.

The sense of the face_logical_structure is set according to the value of the shell counter,
being true if the counter is 1 and false otherwise.

The “reverse” flag returned by IDSOFF says whether the normal to the face (which
always points away from material), is in the same direction as the normal to the surface.
It is passed to convert_surface.

The function returns the STEP face_logical_structure.

convert_loop

This function takes the tag (parasolid_loop) of a Parasolid loop and a STEP Working
Form Product (product). It calls convert_edge_loop or convert_vertex_loop to make
the STEP loop corresponding to the Parasolid loop. Then it makes the companion
loop_logical_structure. The sense of the loop_logical_structure is always true.

The function returns the STEP loop_logical_structure.

convert_loop_edge

This function takes the tag (parasolid_edge) of a Parasolid edge, the tag
(parasolid_loop) of a loop on the edge, and a STEP Working Form Product (product).
The edge is expected to be a full circle or ellipse. Any other loop type will cause an
error.

Finding the sense of the edge is accomplished by calling find_ring_sense.

The loop edge may be a ring with no vertices or a closed edge with one or two vertices.
If the closed edge has two vertices, they must be the same vertex. Parasolid will not
allow two different vertices in the same place. A STEP edge is retrieved from the
product or converted from the Parasolid edge. The edge is used to make an
edge_logical_structure with the appropriate logical value.

If there is no vertex, the function will generate a point on the edge to use as a vertex.
The same vertex will do for the start and end of the edge.

Parasolid-to-STEP

Page 32

The function returns the STEP edge_logical_structure.

convert_point

This function takes the tag (parasolid_point) of a Parasolid point and a STEP Working
Form Product (product). If the point has already been converted to STEP form, the
STEP point is returned. If not, make_point is called to make the STEP point. The STEP
point is returned.

convert_region

This function takes the tag of a Parasolid solid body (body) and an empty STEP
Working Form Product (product) as arguments. The function fills up the STEP
Working Form Product so it represents a solid of the same shape as the Parasolid body,
using STEP topology and geometry entities. The function returns 1 if there are no
errors, 0 otherwise.

convert_shell

This function takes the tag (parasolid_shell) of a Parasolid shell, an integer
(shell_counter) which will be 1 for the first shell in a region, and something larger for
the other shells, and a STEP Working Form Product (product). It calls convert_face to
make the STEP entities for the faces of the shell. It makes the shell and its companion
shell_logical_structure. The sense of the shell_logical_structure is true if shell_counter
is 1, and false otherwise.

The function returns the shell_logical_structure.

convert_surface

This function takes the tag (parasolid_surface) of a Parasolid surface, an integer flag
(reversed), and a STEP Working Form Product (product). If the surface has already
been converted, it retrieves the STEP surface from the product. If not, it calls the
appropriate surface converter (one of make_plane, make_cylinder, make_torus,
make_sphere, make_cone) to make the STEP surface. It then makes the companion
surface_logical_structure. The sense of the surface_logical_structure is obtained by
considering the “reversed” argument and using the Parasolid surface enquiry function,
OUTSUR, to see if the surface is reversed from its normal sense.

The Parasolid surface normal vectors for the surface types handled all point in the same
direction as the STEP normals for the corresponding surfaces. See the documentation
of OUTSUR in Chapter 21 of the Parasolid manual, and the entity definitions in the
STEP geometry schema.

The function returns the STEP surface_logical_structure.

convert_vertex

This function takes the tag (parasolid_vertex) of a Parasolid vertex and a STEP
Working Form Product (product). If the vertex is already converted, the function does
nothing. If not, it calls convert_point to make the STEP entity for the point of the vertex.
Then it makes the vertex on the point.

The function returns the STEP vertex.

Parasolid-to-STEP

Page 33

convert_vertex_loop

This function takes the tag (parasolid_loop) of a Parasolid loop, the tag
(parasolid_vertices) of a list of Parasolid vertices, an integer (number_vertices)
representing the number of vertices in the list, and a STEP Working Form Product
(product). It expects the number of vertices to be 1, and checks for that. This vertex is
a Parasolid vertex_loop, such as at the tip of a cone. The function makes the
corresponding STEP vertex_loop.

The function returns the STEP vertex_loop.

error_exit

This function prints a message and calls the exit function.

find_express_classes

This function takes a Schema (schema) and sets a number of external variables, each of
which is supposed to be a particular entity class, to the appropriate class from the
schema. If any class cannot be found in the schema, the function prints an error
message. If all classes are found, the function returns 1. Otherwise it returns 0.

The function works by building an array of pointers to the external variables and a
corresponding array of the strings which are the names of the entity classes that should
be in the schema. Then it calls SCOPElookup_entity repeatedly to find and set the value
of each external variable. The values (which are Entities) are extracted from the scope
of the schema.

find_ring_sense

This function takes a Parasolid edge (parasolid_edge) and a Parasolid loop
(parasolid_loop) which has parasolid_edge as its sole underlying edge. The function
returns an integer which is 1 if the curve of the edge has the same sense as the loop and
0 if not. If there is an error, it returns 2.

It works by calling IDCOEN to return a list of the two loops of the edge. IDCOEN puts
the loop which is on the surface to the left of the edge (as it is traversed in the direction
of the curve of the edge) first in the list. Thus, if the parasolid_loop is first in the list,
the parasolid_loop has the same sense as the curve, and if the parasolid_loop is second
in the list, the parasolid_loop has the opposite sense from the curve.

get_arguments

This function takes five arguments. The first two are the standard command line
arguments of a C main function: an integer (argc) giving the number of entries on the
command line, and an array (argv) of strings which are the command line entries. The
next three arguments (schema_name, input_name, output_name) are empty strings into
which the correct information will be placed. The function copies the appropriate
names into schema_name (defaults to geom-topo.exp), output_name (defaults to
step.out), and input_name.

The function uses the C library function getopt to deal with argc and argv.

The function returns 1 if it executes without error, and 0 otherwise.

Parasolid-to-STEP

Page 34

load_object

This function takes one argument: a string (input_file) which is the name of a Parasolid
transmit file describing a single solid object. It loads the file into Parasolid, which
automatically creates a model of the object. If the load is successful, it returns the tag
of the object. If not, it returns a null tag.

main

This is the main function for Parasolid-to-STEP. It proceeds as described in subsection
5.2.1.

make_axis2_no_x

This function takes a STEP Working Form Product (product) and two arrays of three
doubles representing (i) a cartesian point (point) which is to be the value of the location
attribute of the axis2_placement, and (ii) a direction (axis) which is to be the value of
the axis attribute. It calls make_point to make the point and make_direction to make the
direction and uses them to make an axis2_placement. The ref_direction (the x-axis
direction) of the axis2_placement is null.

The function returns the STEP axis2_placement.

make_axis2_with_x

This function takes a STEP Working Form Product (product) and three arrays of three
doubles representing (i) a cartesian point (point) which is to be the value of the location
attribute of the_axis2 placement, (ii) a direction (axis) which is to be the value of the
axis attribute, and (iii) a direction (reference) which is to be the value of the
ref_direction attribute, i.e. the x-axis direction. It calls make_point to make the point
and make_direction (twice) to make the two directions and uses them to make an
axis2_placement.

The function returns the STEP axis2_placement.

make_circle

This function takes a STEP Working Form Product (product), two arrays of three
doubles representing a cartesian point (point) which is the center of the circle and a
vector (unit_vector) which gives the direction of the normal to the plane of the circle,
and a double (radius) representing the radius of the circle. It makes a STEP
axis2_placement and a real number object, and uses them to make a circle.

The function returns the STEP circle.

make_cone

This function takes a STEP Working Form Product (product), two arrays of three
doubles representing a point on the axis (point) and a unit vector in the direction of the
axis (unit_vector), a double (radius) representing the radius of the cone, and a double
(half_angle) representing half the angle of the cone. It makes an axis2_placement with
no reference direction for the x-axis, and uses it as the axis. Then it makes the
conical_surface, which is returned.

Parasolid-to-STEP

Page 35

make_cylinder

This function takes a STEP Working Form Product (product), two arrays of three
doubles representing a point on the axis (point) and a unit vector in the direction of the
axis (unit_vector), and a double (radius) representing the radius of the cylinder. It
makes an axis2_placement with no reference direction for the x-axis, and uses it as the
axis. Then it makes the cylindrical_surface, which is returned.

make_direction

This function takes a STEP Working Form Product (product) and an array of three
doubles representing a direction (unit_vector). It returns a STEP direction.

In order to avoid making a lot of copies of the same direction vector, a static array of
the STEP names of six common direction vectors ((1,0,0), (-1,0,0), (0,1,0), (0,-1,0),
(0,0,1), and (0,0,-1)) is maintained. Every time make_direction is called, a check is
made to see if the direction to be made is one of those, and, if so, whether it is already
named. If the direction is one of those and is already named, the existing one is retrieved
by name from the product and returned. If the direction of one of those but is not already
named, it is made, its name is stored, and it is returned. If the direction is not one of
those, it is made and returned.

make_ellipse

This function takes (i) a STEP Working Form Product (product), (ii) an array of three
doubles representing a cartesian point (point) at the center of the ellipse, (iii) two arrays
of three doubles representing two unit vectors (axis1 and axis2) which give the
directions of the major and minor radii of the ellipse, and (iv) two doubles (major and
minor) representing the length of the major and minor radii of the ellipse. It makes a
STEP axis2_placement (with an x-direction) and two real number objects and uses
them to make the ellipse.

The STEP ellipse needs the normal to the plane of the ellipse, so that is generated as the
cross product of axis1 and axis2. A check is made to be sure the length of this is very
near one.

The STEP ellipse is returned.

make_extras_for_face

This function takes the tag (parasolid_surface) of a Parasolid surface and a STEP
Working Form Product (product). The face on which this function works is known to
have no loops in Parasolid, which is possible only if the surface is an entire sphere or
torus. This function checks the surface type and returns a null object if the surface is not
a sphere or torus.

If the surface is a sphere, this function makes (i) a point at the north pole, (ii) a vertex
on the point, (iii) a vertex_loop on the vertex, (iv) a true loop_logical_structure on the
vertex_loop, and (v) a list of the one loop_logical_structure, which is returned but not
added to the product.

If the surface is a torus, it calls make_extras_for_torus, which returns a list of two
loop_logical_structures. The list is returned.

Parasolid-to-STEP

Page 36

make_extras_for_torus

This function takes the tag (parasolid_surface) of a Parasolid surface which is known
to be a torus, and a STEP Product (product). The face on the surface is known to have
no loops in Parasolid.

The function puts a loop around the large equator of the torus, so that the torus can be
mapped to a plane. It makes (1) a point on the circle (by calling pick_point_on_circle
and make_point) (2) a vertex on the point, (3) a circle around the large equator (by
calling make_circle), (4) a curve_logical_structure on the circle, (5) an edge on the
curve_logical_structure with its ends at the vertex, (6) an edge_logical_structure on the
edge, (7) a list object of the edge_logical_structure (8) an edge_loop on the list object,
(9) a true loop_logical_structure on the edge_loop, (10) a false loop_logical_structure
on the edge_loop, and (11) a list object of the two loop_logical_structures, which is
returned but is not added to the product.

make_line

This function takes a STEP Working Form Product (product) and two arrays of three
doubles representing a cartesian point (point) which is the location of a point on the line
and a vector (axis) which gives the direction of the line. It makes a STEP point and a
STEP direction and uses them to make a line.

The STEP line is returned.

make_plane

This function takes a STEP Working Form Product (product) and two arrays of three
doubles representing a point on the plane (point) and a normal to the plane (normal). It
makes an axis2_placement with no reference direction for the x-axis, and uses it to
make the plane, which is returned.

make_point

This function takes a STEP Working Form Product (product), an array of three doubles
representing a point on the plane (point), and the tag (parasolid_point) of a Parasolid
point. The tag may be null. The function makes a STEP point and returns it.

make_sphere

This function takes a STEP Working Form Product (product), an array of three doubles
representing the point at the center of the sphere (point), and a double (radius)
representing the radius of the sphere. It makes an axis2_placement with a vertical axis
and no reference direction for the x-axis, and uses it as the position. Then the
spherical_surface is made and returned.

make_torus

This function takes a STEP Working Form Product (product), two arrays of three
doubles representing a point on the axis (point) and a unit vector in the direction of the
axis (unit_vector), a double (major_radius) representing the major radius of the torus,

Parasolid-to-STEP

Page 37

and a double (minor_radius) representing the minor radius of the torus. It makes an
axis2_placement with no reference direction for the x-axis, and uses it as the axis. Then
the toroidal_surface is made and returned.

make_vertex_on_curve

This function takes a STEP Working Form Product (product), and the tag
(parasolid_curve) of a curve which is a circle or an ellipse. It makes a vertex on the
curve. For an ellipse, the point is the one at the end of the minor radius. For a circle, the
point is found by calling pick_point_on_circle.

The function makes a STEP point at the proper location, makes a STEP vertex on the
point, and returns the STEP vertex.

MODELn

This “function” is used to make error-handling invisible in the text of PTS functions. It
is actually a series of compiler macros defined for values of n from 0 through 7.
MODELn calls a Parasolid function (call it “foo”) which always has a void returned
value. The value of n is one less than the number of arguments to foo (the last argument
to foo is always “ifail,” which is not included in the arguments to MODELn). The first
argument to MODELn is foo, and the rest of the arguments are the arguments to foo.
MODELn calls foo. Then it calls “report_ifail,” which prints an error message and
returns a non-zero value if foo executed improperly. If report_ifail returns a non-zero
value, MODELn returns an error return value specified by the function in which the
MODELn occurs.

In order for MODELn to work, every function which contains a MODELn must have
(i) a local variable “function_name,” the value of which is a string that should be the
function name, (ii) a local variable “ifail,” the value of which is a Parasolid IFAIL, and
(iii) a local variable “error_return,” the value of which has the same type as the type
returned by the function. The names of these three variables are built into MODELn.

MODELn has a counterpart named CALLn for calling PTS functions.

pick_point_on_circle

This function takes three arrays of three doubles (center, axis, and point) and a double
(radius). The center, axis and radius are those of a circle. The function finds a point on
the circle and copies its coordinates into point. The axis is supposed to be a unit vector.
If it is, the function returns 1. If not, it returns zero.

A unit vector (radial) is found perpendicular to axis. Then the point on the circle is
found by moving one radius from the center of the circle in the direction of radial.

The algorithm for finding the components of radial is to pick a coordinate axis for
which the component of axis has a length of 0.5 or more (there must be one or the length
of axis could not be 1). The order of preference for the coordinate axis is z, x, y. Then
one of the components of radial (not the one on the selected coordinate axis) may be
arbitrarily set to zero, and the other two components may be found by writing two
simultaneous equations which say that the dot product of radial with the axis must be
zero and the length of radial must be 1.

Parasolid-to-STEP

Page 38

This method deals with the case of axis lying on one of the principal axes, and protects
against numerical instability in case axis is very close to one of the principal axes.

print_entity

This function takes a non-null STEP Object (value), a file pointer (file), an integer
(places) representing the number of decimal places to which real numbers should be
rounded, and an integer (is_attribute) which is a flag indicating whether an entity
should be printed by using its reference number (if it has one). The function prints a
STEP representation of the Object in the file.

The function does not return anything.

print_file

This function takes a STEP Working Form Product (product) and a file pointer (file) as
arguments. It asks the user to specify the number of decimal places for printing real
numbers and whether trailing zeros should be suppressed. Then it calls the functions
print_file_header, print_file_data, and print_file_trailer to do what their names
indicate. The options are passed to print_file_data. The file is printed in STEP physical
file format.

The function does not return anything.

print_file_data

This function takes a STEP Working Form Product (product), a file pointer (file), an
integer (places) specifying the number of decimal places for printing real numbers, and
an integer (suppress) which indicates whether trailing zeros should be suppressed. The
function prints the data section of a STEP physical file representing the product. The
objects in the model are printed in the same order in which they were created.

The function does not return anything.

The STEP Working Form function STEPprint was used as the point of departure.

print_file_header

This function takes a STEP Working Form Product (product), a file pointer (file), and
a string (description) describing the nature of the STEP file being printed, and prints a
perfunctory file header.

The function does not return anything.

print_file_trailer

This function takes a STEP Working Form Product (product) and a file pointer (file)
for a STEP file which is almost complete, and prints the last few lines of the file.

The function does not return anything.

Parasolid-to-STEP

Page 39

print_object

This function takes a STEP Object (value), a file pointer (file), an integer (places)
representing the number of decimal places to which real numbers should be rounded,
and an integer (is_attribute) which is a flag indicating whether an entity should be
printed by using its reference number (if it has one). The function prints a STEP
representation of the Object in the file.

The function does not return anything.

print_real

This function takes a real number (value), a file pointer (file), an integer (places)
representing the number of decimal places to which real numbers should be rounded,
and a integer flag (suppress) indicating whether trailing zeros are to be suppressed.
Places must be a positive integer not greater than 16. The function prints the number in
the file, unless places is out of bounds, in which case it does nothing.

If the suppress flag is non-zero, trailing zeros are suppressed, except for one
immediately after the decimal point, if there is one there. Otherwise, zeros are used as
necessary to fill up the number to the indicated number of places.

The function does not return anything.

report_ifail

This function takes the name (name) of a Parasolid function, the name (caller) of the
function that called the Parasolid function, and a failure code (ifail). The function prints
an error message and returns true (1) if ifail is not zero. Otherwise, it returns false (0).

start_modeler

This function takes a pointer (world) to a tag and starts the Parasolid modeler by calling
STAMOD with appropriate arguments. It fills in the value of world with the tag of the
world which is created. It prints the modeler version number and returns true (1) if the
STAMOD works. Otherwise it prints an error message and returns false (0).

It tells the modeler to use the journal file named “para_to_step.”

This function was copied from the Parasolid manual with minor changes.

The user field argument of Parasolid entities is set to 3 because three user fields are
used, as described in section 5.2.2.

stop_modeler

This function takes no arguments. It stops the Parasolid modeler by calling STOMOD
with appropriate arguments. It returns true (1) if STOMOD works. Otherwise it prints
an error message and returns false (0).

This function was copied from the Parasolid manual with minor changes.

Parasolid-to-STEP

Page 40

8 Other Comments

8.1 Observations on Parasolid

Parasolid appears to be a robust system. It never broke down while PTS was being built
and did not make any detectable errors.

The Parasolid extraction routines (identifying connected entities, ascertaining the type
of an entity, outputting data regarding a curve, etc.) are well-suited to the use being
made of them by PTS.

8.2 Testing Parasolid-to-STEP

The Parasolid-to-STEP system has been tested by using it to convert a few dozen
Parasolid transmit files (including five sent to NIST by a private firm) to STEP physical
files. PTS worked as intended on all these files and has no known bugs. It is believed
to be robust.

8.3 Building Systems Similar to Parasolid-to-STEP

Building a STEP to Parasolid system (the reverse of PTS) that runs from a STEP
boundary representation appears to be possible but much more difficult because the
Parasolid input routines do not allow building bits and pieces of topology. Parasolid
provides input routines that make it easy to define primitive solids and swept solids and
to do boolean operations. Thus, converting a STEP constructive solid geometry (CSG)
model to a Parasolid model would probably be straightforward. Similarly, since many
features in the STEP Form Features Information Model are much like simple solids,
building a Parasolid model from STEP form features is also a more tractable problem.
The Off-Line Programming system developed by the author [Kramer91] does this for
a limited range of feature types.

It might be feasible to print a Parasolid transmit file directly from a STEP Working
Form Product (or possibly even directly from a STEP boundary representation file
without using the Working Form), without using the Parasolid system if the format of
Parasolid transmit files were known.

The heart of the conversion process in PTS is the “convert_region” function, which
converts a Parasolid body in active memory to a STEP Working Form product in active
memory. It would be easy to include this function in other systems, providing the
capability, for example, of building a STEP Working Form by reading in a Parasolid
transmit file and then processing the Working Form further rather than just printing it
out. As another example, the function could be used to print out a STEP file from a
Parasolid model in active memory, rather than having to read in a transmit file.

As may be seen in Figure 3, all the functions having to do with printing a STEP physical
file hang from a single branch of the PTS function call hierarchy. The entire branch
could be replaced simply by substituting some other version of “print_file,” if some
other form of output were desired.

Parasolid-to-STEP

Page 41

The current PTS system could be strengthened by adding more curve and surface types,
parametric curves, intersection curves, and swept surfaces, for example. This could be
done by adding capabilities to the system without having to make structural changes.
Most of the existing functions would not have to be changed at all.

The STEP standard is still evolving. The geometry and topology schemas and the rules
for mapping a schema to a physical file in the latest draft are somewhat different from
the Tokyo version (on which PTS is based). Updating PTS to conform to the current
standard should be straightforward and require only a few days.

It would probably be feasible to build a system that prints a STEP file from a Parasolid
model in active memory without calling on the Fed-X or STEP Working Form
functions at all. The latter would be replaced wherever they appear in PTS with printing
functions. This would have the advantage of being independent of the other systems
and the disadvantage of being harder to update in case of changes to STEP.

8.4 Schema Dependence

Parasolid-to-STEP requires a STEP schema as input only because Fed-X, and therefore
STEPparse, requires a schema. Fed-X and the STEP Working Form functions are
schema independent. They will run with any valid schema and any valid physical file
based on the schema. This is possible because they do not process semantic knowledge
of the subject matter of the schema or physical file.

PTS, on the other hand, is not schema independent. Although it requires a schema as
input, it requires entity types to be defined in the schema as described in section 3.3.
PTS cannot be made schema independent because it is based on specific semantic
knowledge: how geometry and topology can be used in two slightly different ways to
give the boundary representation of a solid object. This knowledge is implicit in the
functions that comprise PTS. It would be possible to eliminate the requirement that the
schema exist before the call to PTS is made by having PTS print out the schema it wants
when it starts up and feed it to Fed-X, but this has not been done.

One design decision in building PTS involves schema dependence. The STEP Working
Form functions provide alternate methods of building entities. It is possible (i) to create
an empty entity of a given type and then assign values to the attributes of the entity, or
(ii) to create an entity of a given type (with the values of all attributes specified) from
an ordered list of values of the entity’s attributes. In the first method, the order of the
list of attributes does not need to be known. In the second method, the names of the
attributes do not need to be known. Thus, the two methods provide different kinds of
protection from changes in the schema. The first protects against changes in attribute
order, the second against changes in attribute name. Neither protects against changes
that add attributes or that change the meaning of an attribute. The second method is
used in PTS.

Parasolid-to-STEP

Page 42

8.5 Miscellany

Parasolid-to-STEP undertakes almost no memory management. It allocates itself a lot
of memory to build structures (mainly lists) which it could give back to the operating
system by freeing them when they are no longer needed. It does not do this. This has
not been a problem for any of the test parts. Because the amount of reusable memory
wasted by PTS is not large compared with the amount needed through the end of a call
to PTS, memory management in PTS would be useful only in the case of a conversion
that was slightly too big for the system without it - a small percentage of likely inputs.
If the functions of PTS were to be incorporated in some other system that had a longer
lifetime and included memory management itself, however, adding memory
management to the PTS functions would be very desirable.

The Fed-X and STEP Working Form software built by Stephen N. Clark work almost
flawlessly and comprise a generally impressive system.

PTS was built using release 2.2 of Parasolid. It was rebuilt using release 3.1. The timing
data given in section 4.3 of this paper were taken using release 3.1. No changes in the
PTS source code were required (or made) to accommodate the use of release 3.1.

Parasolid-to-STEP

Page 43

A References

[Altemueller88a] Altemueller, J.,The STEP File Structure, ISO TC184/SC4/WG1
Document N279, September, 1988

[Altemueller88b] Altemueller, J.,Mapping from Express to Physical File Structure,
ISO TC184/SC4/WG1 Document N280, September, 1988

[ANSI89] American National Standards Institute,Programming Language C,
Document ANSI X3.159-1989

[Clark90a] Clark, S. N.,An Introduction to the NIST PDES Toolkit, National
Institute of Standards and Technology, Interagency Report 4336,
May 1990, 7 p.

[Clark90b] Clark, S.N.,Fed-X: The NIST Express Translator, National Institute
of Standards and Technology, Interagency Report 4371, July 1990,
11 p.

[Clark90c] Clark, S.N.,NIST Express Working Form Programmer’s Reference,
National Institute of Standards and Technology, Interagency Report
4407, September 1990, 51 p.

[Clark90d] Clark, S.N.,The NIST Working Form for STEP, National Institute
of Standards and Technology, Interagency Report 4351, June 1990,
6 p.

[Clark90e] Clark, S.N.,NIST STEP Working Form Programmer’s Reference,
National Institute of Standards and Technology, Interagency Report
4353, June 1990, 23 p.

[Clark90f] Clark, S.N.,The NIST PDES Toolkit: Technical Fundamentals,
National Institute of Standards and Technology, Interagency Report
4335, May 1990, 24 p.

[Clark90g] Clark, S.N.,QDES Administrative Guide, National Institute of
Standards and Technology, Interagency Report 4334, May 1990, 12
p.

[Clark90h] Clark, S.N.,QDES User’s Guide, National Institute of Standards
and Technology, Interagency Report 4361, June 1990, 35 p.

[Kramer91] Kramer, T.R.,The Off-Line Programming System (OLPS): A
Prototype STEP-Based NC-Program Generator, proceedings of a
seminarProduct Data Exchange for the 1990’s, New Orleans,
Louisiana, NCGA, February 1991, Vol. 2

[McLay90] McLay, M. J., and Morris, K.C.,The NIST STEP Class Library,
National Institute of Standards and Technology, Interagency Report
4411, August 1990, 20 p.

Parasolid-to-STEP

Page 44

[Morris90] Morris, K.C.,Translating Express to SQL: A User’s Guide, National
Institute of Standards and Technology, Interagency Report 4341,
May 1990, 17 p.

[Nickerson90] Nickerson, D.,The NIST Database Loader: STEP Working Form to
SQL, National Institute of Standards and Technology, Interagency
Report 4337, May 1990, 7 p.

[Schenck90] Schenck, D., ed.,Exchange of Product Model Data - Part 11: The
Express Language, ISO TC184/SC4 Document N64, July 1990

[Shape90] Shape Data Limited,Parasolid v3.0 Reference Manual, Shape Data
Limited, Cambridge, England, June 1990

[Smith88] Smith, B., and G. Rinaudot, eds.,Product Data Exchange
Specification First Working Draft, National Institute of Standards
and Technology, Interagency Report 88-4004, December 1988

[Weick90] Weick, W.,Application Protocol for the Data-Transfer of STEP
B_Rep Models Via a Physical File, Version 2.0, PROCAD GmbH,
Karlsruhe, Germany, September 1990

Parasolid-to-STEP

Page 45

B STEP File for Test Part

This file is a STEP boundary representation
of the part shown in Figure 2. It was
produced by Parasolid-to-STEP.

STEP;

HEADER;
 FILE_IDENTIFICATION(
 ‘PARASOLID TO STEP’,
 ‘some date’,
 (‘Noman’),
 (‘NIST’),
 ‘1.0’,
 ‘1.0’,
 ‘originating system’);
 FILE_DESCRIPTION(‘This file was produced by the
NIST parasolid_to_step tool.’);
 IMP_LEVEL(‘1.0’);
ENDSEC;

DATA;
@1 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@2 = DIRECTION(, 0.0, 0.0, 1.0);
@3 = AXIS2_PLACEMENT(, #1, #2,);
@4 = CIRCLE(, 1.0, #3);
@5 = CURVE_LOGICAL_STRUCTURE(#4, .T.);
@6 = CARTESIAN_POINT(, 1.0, 0.0, 7.0);
@7 = VERTEX(#6);
@8 = EDGE(#7, #7, #5);
@9 = EDGE_LOGICAL_STRUCTURE(#8, .T.);
@10 = EDGE_LOOP((#9));
@11 = LOOP_LOGICAL_STRUCTURE(#10, .T.);
@12 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@13 = AXIS2_PLACEMENT(, #12, #2,);
@14 = SPHERICAL_SURFACE(, 1.0, #13);
@15 = SURFACE_LOGICAL_STRUCTURE

(#14, .F.);
@16 = FACE(, (#11), #15);
@17 = FACE_LOGICAL_STRUCTURE(#16, .T.);
@18 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@19 = AXIS2_PLACEMENT(, #18, #2,);
@20 = CIRCLE(, 4.5, #19);
@21 = CURVE_LOGICAL_STRUCTURE(#20, .T.);
@22 = CARTESIAN_POINT(, 4.5, 0.0, 7.0);
@23 = VERTEX(#22);
@24 = EDGE(#23, #23, #21);
@25 = EDGE_LOGICAL_STRUCTURE(#24, .F.);
@26 = EDGE_LOOP((#25));
@27 = LOOP_LOGICAL_STRUCTURE(#26, .T.);
@28 = CARTESIAN_POINT(, -5.0, 0.0, 7.0);

@29 = DIRECTION(, 0.0, 1.0, 0.0);
@30 = LINE(, #28, #29);
@31 = CURVE_LOGICAL_STRUCTURE(#30, .T.);
@32 = CARTESIAN_POINT(, -5.0, -6.244998, 7.0);
@33 = VERTEX(#32);
@34 = CARTESIAN_POINT(, -5.0, 6.244998, 7.0);
@35 = VERTEX(#34);
@36 = EDGE(#33, #35, #31);
@37 = EDGE_LOGICAL_STRUCTURE(#36, .F.);
@38 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@39 = DIRECTION(, 0.0, 0.0, -1.0);
@40 = AXIS2_PLACEMENT(, #38, #39,);
@41 = CIRCLE(, 8.0, #40);
@42 = CURVE_LOGICAL_STRUCTURE(#41, .T.);
@43 = CARTESIAN_POINT(, 5.0, -6.244998, 7.0);
@44 = VERTEX(#43);
@45 = EDGE(#44, #33, #42);
@46 = EDGE_LOGICAL_STRUCTURE(#45, .F.);
@47 = CARTESIAN_POINT(, 5.0, 0.0, 7.0);
@48 = DIRECTION(, 0.0, -1.0, 0.0);
@49 = LINE(, #47, #48);
@50 = CURVE_LOGICAL_STRUCTURE(#49, .T.);
@51 = CARTESIAN_POINT(, 5.0, 6.244998, 7.0);
@52 = VERTEX(#51);
@53 = EDGE(#52, #44, #50);
@54 = EDGE_LOGICAL_STRUCTURE(#53, .F.);
@55 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@56 = AXIS2_PLACEMENT(, #55, #39,);
@57 = CIRCLE(, 8.0, #56);
@58 = CURVE_LOGICAL_STRUCTURE(#57, .T.);
@59 = EDGE(#35, #52, #58);
@60 = EDGE_LOGICAL_STRUCTURE(#59, .F.);
@61 = EDGE_LOOP((#37, #46, #54, #60));
@62 = LOOP_LOGICAL_STRUCTURE(#61, .T.);
@63 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@64 = AXIS2_PLACEMENT(, #63, #2,);
@65 = PLANE(, #64);
@66 = SURFACE_LOGICAL_STRUCTURE

(#65, .T.);
@67 = FACE(#62, (#27, #62), #66);
@68 = FACE_LOGICAL_STRUCTURE(#67, .T.);
@69 = EDGE_LOGICAL_STRUCTURE(#36, .T.);
@70 = CARTESIAN_POINT(, 0.0, 0.0, 12.0);
@71 = DIRECTION(, -0.707107, 0.0, 0.707107);
@72 = DIRECTION(, 0.707107, 0.0, 0.707107);
@73 = AXIS2_PLACEMENT(, #70, #71, #72);
@74 = ELLIPSE(, 11.313708, 8.0, #73);
@75 = CURVE_LOGICAL_STRUCTURE(#74, .T.);
@76 = EDGE(#35, #33, #75);
@77 = EDGE_LOGICAL_STRUCTURE(#76, .T.);
@78 = EDGE_LOOP((#69, #77));
@79 = LOOP_LOGICAL_STRUCTURE(#78, .T.);
@80 = CARTESIAN_POINT(, -5.0, 0.0, 7.0);
@81 = DIRECTION(, 0.707107, 0.0, -0.707107);

Parasolid-to-STEP

Page 46

@82 = AXIS2_PLACEMENT(, #80, #81,);
@83 = PLANE(, #82);
@84 = SURFACE_LOGICAL_STRUCTURE

(#83, .F.);
@85 = FACE(#79, (#79), #84);
@86 = FACE_LOGICAL_STRUCTURE(#85, .T.);
@87 = EDGE_LOGICAL_STRUCTURE(#53, .T.);
@88 = CARTESIAN_POINT(, 0.0, 0.0, 12.0);
@89 = DIRECTION(, 0.707107, -0.0, 0.707107);
@90 = DIRECTION(, -0.707107, 0.0, 0.707107);
@91 = AXIS2_PLACEMENT(, #88, #89, #90);
@92 = ELLIPSE(, 11.313708, 8.0, #91);
@93 = CURVE_LOGICAL_STRUCTURE(#92, .T.);
@94 = EDGE(#44, #52, #93);
@95 = EDGE_LOGICAL_STRUCTURE(#94, .T.);
@96 = EDGE_LOOP((#87, #95));
@97 = LOOP_LOGICAL_STRUCTURE(#96, .T.);
@98 = CARTESIAN_POINT(, 5.0, 0.0, 7.0);
@99 = DIRECTION(, -0.707107, 0.0, -0.707107);
@100 = AXIS2_PLACEMENT(, #98, #99,);
@101 = PLANE(, #100);
@102 = SURFACE_LOGICAL_STRUCTURE

(#101, .F.);
@103 = FACE(#97, (#97), #102);
@104 = FACE_LOGICAL_STRUCTURE(#103, .T.);
@105 = CARTESIAN_POINT(, 0.0, 0.0, 0.0);
@106 = AXIS2_PLACEMENT(, #105, #2,);
@107 = CIRCLE(, 8.0, #106);
@108 = CURVE_LOGICAL_STRUCTURE(#107, .T.);
@109 = CARTESIAN_POINT(, 8.0, 0.0, 0.0);
@110 = VERTEX(#109);
@111 = EDGE(#110, #110, #108);
@112 = EDGE_LOGICAL_STRUCTURE(#111, .F.);
@113 = EDGE_LOOP((#112));
@114 = LOOP_LOGICAL_STRUCTURE(#113, .T.);
@115 = CARTESIAN_POINT(, 0.0, 0.0, -7.0);
@116 = VERTEX(#115);
@117 = VERTEX_LOOP(#116);
@118 = LOOP_LOGICAL_STRUCTURE(#117, .T.);
@119 = CARTESIAN_POINT(, 0.0, 0.0, -7.0);
@120 = AXIS2_PLACEMENT(, #119, #39,);
@121 = CONICAL_SURFACE(, 0.851966, 0.0, #120);
@122 = SURFACE_LOGICAL_STRUCTURE

(#121, .T.);
@123 = FACE(#114, (#114, #118), #122);
@124 = FACE_LOGICAL_STRUCTURE(#123, .T.);
@125 = EDGE_LOGICAL_STRUCTURE(#76, .F.);
@126 = EDGE_LOGICAL_STRUCTURE(#59, .T.);
@127 = EDGE_LOGICAL_STRUCTURE(#94, .F.);
@128 = EDGE_LOGICAL_STRUCTURE(#45, .T.);
@129 = EDGE_LOOP((#125, #126, #127, #128));
@130 = LOOP_LOGICAL_STRUCTURE(#129, .T.);
@131 = EDGE_LOGICAL_STRUCTURE(#111, .T.);
@132 = EDGE_LOOP((#131));

@133 = LOOP_LOGICAL_STRUCTURE(#132, .T.);
@134 = CARTESIAN_POINT(, 0.0, 0.0, 0.0);
@135 = AXIS2_PLACEMENT(, #134, #2,);
@136 = CYLINDRICAL_SURFACE(, 8.0, #135);
@137 = SURFACE_LOGICAL_STRUCTURE

(#136, .T.);
@138 = FACE(, (#130, #133), #137);
@139 = FACE_LOGICAL_STRUCTURE(#138, .T.);
@140 = EDGE_LOGICAL_STRUCTURE(#8, .F.);
@141 = EDGE_LOOP((#140));
@142 = LOOP_LOGICAL_STRUCTURE(#141, .T.);
@143 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@144 = AXIS2_PLACEMENT(, #143, #39,);
@145 = CIRCLE(, 2.5, #144);
@146 = CURVE_LOGICAL_STRUCTURE(#145, .T.);
@147 = CARTESIAN_POINT(, -2.5, 0.0, 7.0);
@148 = VERTEX(#147);
@149 = EDGE(#148, #148, #146);
@150 = EDGE_LOGICAL_STRUCTURE(#149, .F.);
@151 = EDGE_LOOP((#150));
@152 = LOOP_LOGICAL_STRUCTURE(#151, .T.);
@153 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@154 = AXIS2_PLACEMENT(, #153, #2,);
@155 = PLANE(, #154);
@156 = SURFACE_LOGICAL_STRUCTURE

(#155, .T.);
@157 = FACE(#152, (#142, #152), #156);
@158 = FACE_LOGICAL_STRUCTURE(#157, .T.);
@159 = EDGE_LOGICAL_STRUCTURE(#24, .T.);
@160 = EDGE_LOOP((#159));
@161 = LOOP_LOGICAL_STRUCTURE(#160, .T.);
@162 = EDGE_LOGICAL_STRUCTURE(#149, .T.);
@163 = EDGE_LOOP((#162));
@164 = LOOP_LOGICAL_STRUCTURE(#163, .T.);
@165 = CARTESIAN_POINT(, 0.0, 0.0, 7.0);
@166 = AXIS2_PLACEMENT(, #165, #2,);
@167 = TOROIDAL_SURFACE(, 3.5, 1.0, #166);
@168 = SURFACE_LOGICAL_STRUCTURE

(#167, .F.);
@169 = FACE(, (#161, #164), #168);
@170 = FACE_LOGICAL_STRUCTURE(#169, .T.);
@171 = CLOSED_SHELL

((#17, #68, #86, #104, #124, #139, #158, #170));
@172 = SHELL_LOGICAL_STRUCTURE(#171, .T.);
@173 = REGION(#172, (#172));
ENDSEC;

ENDSTEP;

Parasolid-to-STEP

Page 47

C STEP File for Test Part
 (COMPRESSED)

This file is a STEP boundary representation of
the part shown in Figure 2. It was produced by
running the file shown in Appendix B through
the “compress-step” facility.

STEP;

HEADER;
 FILE_IDENTIFICATION
 (‘PARASOLID TO STEP’,
 ‘some date’,
 (‘Noman’),
 (‘NIST’),
 ‘1.0’,
 ‘1.0’,
 ‘originating system’);
 FILE_DESCRIPTION
 (‘This file was produced by the NIST
 parasolid_to_step tool.’);
 IMP_LEVEL
 (‘1.0’);
ENDSEC;

DATA;
@1 = CARTESIAN_POINT (, -5.0, -6.245, 7.0);
@2 = CARTESIAN_POINT (, -5.0, 0.0, 7.0);
@3 = CARTESIAN_POINT (, -5.0, 6.245, 7.0);
@4 = CARTESIAN_POINT (, -2.5, 0.0, 7.0);
@5 = CARTESIAN_POINT (, 0.0, 0.0, -7.0);
@6 = CARTESIAN_POINT (, 0.0, 0.0, 0.0);
@7 = CARTESIAN_POINT (, 0.0, 0.0, 7.0);
@8 = CARTESIAN_POINT (, 0.0, 0.0, 12.0);
@9 = CARTESIAN_POINT (, 1.0, 0.0, 7.0);
@10 = CARTESIAN_POINT (, 4.5, 0.0, 7.0);
@11 = CARTESIAN_POINT (, 5.0, -6.245, 7.0);
@12 = CARTESIAN_POINT (, 5.0, 0.0, 7.0);
@13 = CARTESIAN_POINT (, 5.0, 6.245, 7.0);
@14 = CARTESIAN_POINT (, 8.0, 0.0, 0.0);
@15 = DIRECTION (, -0.70711, 0.0, -0.70711);
@16 = DIRECTION (, -0.70711, 0.0, 0.70711);
@17 = DIRECTION (, 0.0, -1.0, 0.0);
@18 = DIRECTION (, 0.0, 0.0, -1.0);
@19 = DIRECTION (, 0.0, 0.0, 1.0);
@20 = DIRECTION (, 0.0, 1.0, 0.0);
@21 = DIRECTION (, 0.70711, 0.0, -0.70711);
@22 = DIRECTION (, 0.70711, 0.0, 0.70711);
@23 = AXIS2_PLACEMENT (, #2, #21,);
@24 = AXIS2_PLACEMENT (, #5, #18,);
@25 = AXIS2_PLACEMENT (, #6, #19,);

@26 = AXIS2_PLACEMENT (, #7, #18,);
@27 = AXIS2_PLACEMENT (, #7, #19,);
@28 = AXIS2_PLACEMENT (, #8, #16, #22);
@29 = AXIS2_PLACEMENT (, #8, #22, #16);
@30 = AXIS2_PLACEMENT (, #12, #15,);
@31 = LINE (, #2, #20);
@32 = LINE (, #12, #17);
@33 = CIRCLE (, 1.0, #27);
@34 = CIRCLE (, 2.5, #26);
@35 = CIRCLE (, 4.5, #27);
@36 = CIRCLE (, 8.0, #25);
@37 = CIRCLE (, 8.0, #26);
@38 = ELLIPSE (, 11.31371, 8.0, #28);
@39 = ELLIPSE (, 11.31371, 8.0, #29);
@40 = CONICAL_SURFACE (, 0.85197, 0.0, #24);
@41 = CYLINDRICAL_SURFACE (, 8.0, #25);
@42 = PLANE (, #23);
@43 = PLANE (, #27);
@44 = PLANE (, #30);
@45 = SPHERICAL_SURFACE (, 1.0, #27);
@46 = TOROIDAL_SURFACE (, 3.5, 1.0, #27);
@47 = VERTEX (#1);
@48 = VERTEX (#3);
@49 = VERTEX (#4);
@50 = VERTEX (#5);
@51 = VERTEX (#9);
@52 = VERTEX (#10);
@53 = VERTEX (#11);
@54 = VERTEX (#13);
@55 = VERTEX (#14);
@56 = CURVE_LOGICAL_STRUCTURE (#31, .T.);
@57 = CURVE_LOGICAL_STRUCTURE (#32, .T.);
@58 = CURVE_LOGICAL_STRUCTURE (#33, .T.);
@59 = CURVE_LOGICAL_STRUCTURE (#34, .T.);
@60 = CURVE_LOGICAL_STRUCTURE (#35, .T.);
@61 = CURVE_LOGICAL_STRUCTURE (#36, .T.);
@62 = CURVE_LOGICAL_STRUCTURE (#37, .T.);
@63 = CURVE_LOGICAL_STRUCTURE (#38, .T.);
@64 = CURVE_LOGICAL_STRUCTURE (#39, .T.);
@65 = EDGE (#47, #48, #56);
@66 = EDGE (#48, #47, #63);
@67 = EDGE (#48, #54, #62);
@68 = EDGE (#49, #49, #59);
@69 = EDGE (#51, #51, #58);
@70 = EDGE (#52, #52, #60);
@71 = EDGE (#53, #47, #62);
@72 = EDGE (#53, #54, #64);
@73 = EDGE (#54, #53, #57);
@74 = EDGE (#55, #55, #61);
@75 = EDGE_LOGICAL_STRUCTURE (#65, .T.);
@76 = EDGE_LOGICAL_STRUCTURE (#65, .F.);
@77 = EDGE_LOGICAL_STRUCTURE (#66, .T.);
@78 = EDGE_LOGICAL_STRUCTURE (#66, .F.);
@79 = EDGE_LOGICAL_STRUCTURE (#67, .T.);

Parasolid-to-STEP

Page 48

@80 = EDGE_LOGICAL_STRUCTURE (#67, .F.);
@81 = EDGE_LOGICAL_STRUCTURE (#68, .T.);
@82 = EDGE_LOGICAL_STRUCTURE (#68, .F.);
@83 = EDGE_LOGICAL_STRUCTURE (#69, .T.);
@84 = EDGE_LOGICAL_STRUCTURE (#69, .F.);
@85 = EDGE_LOGICAL_STRUCTURE (#70, .T.);
@86 = EDGE_LOGICAL_STRUCTURE (#70, .F.);
@87 = EDGE_LOGICAL_STRUCTURE (#71, .T.);
@88 = EDGE_LOGICAL_STRUCTURE (#71, .F.);
@89 = EDGE_LOGICAL_STRUCTURE (#72, .T.);
@90 = EDGE_LOGICAL_STRUCTURE (#72, .F.);
@91 = EDGE_LOGICAL_STRUCTURE (#73, .T.);
@92 = EDGE_LOGICAL_STRUCTURE (#73, .F.);
@93 = EDGE_LOGICAL_STRUCTURE (#74, .T.);
@94 = EDGE_LOGICAL_STRUCTURE (#74, .F.);
@95 = EDGE_LOOP ((#75, #77));
@96 = EDGE_LOOP ((#76, #88, #92, #80));
@97 = EDGE_LOOP ((#78, #79, #90, #87));
@98 = EDGE_LOOP ((#81));
@99 = EDGE_LOOP ((#82));
@100 = EDGE_LOOP ((#83));
@101 = EDGE_LOOP ((#84));
@102 = EDGE_LOOP ((#85));
@103 = EDGE_LOOP ((#86));
@104 = EDGE_LOOP ((#91, #89));
@105 = EDGE_LOOP ((#93));
@106 = EDGE_LOOP ((#94));
@107 = VERTEX_LOOP (#50);
@108 = LOOP_LOGICAL_STRUCTURE (#95, .T.);
@109 = LOOP_LOGICAL_STRUCTURE (#96, .T.);
@110 = LOOP_LOGICAL_STRUCTURE (#97, .T.);
@111 = LOOP_LOGICAL_STRUCTURE (#98, .T.);
@112 = LOOP_LOGICAL_STRUCTURE (#99, .T.);
@113 = LOOP_LOGICAL_STRUCTURE (#100, .T.);
@114 = LOOP_LOGICAL_STRUCTURE (#101, .T.);
@115 = LOOP_LOGICAL_STRUCTURE (#102, .T.);
@116 = LOOP_LOGICAL_STRUCTURE (#103, .T.);
@117 = LOOP_LOGICAL_STRUCTURE (#104, .T.);
@118 = LOOP_LOGICAL_STRUCTURE (#105, .T.);
@119 = LOOP_LOGICAL_STRUCTURE (#106, .T.);
@120 = LOOP_LOGICAL_STRUCTURE (#107, .T.);
@121 = SURFACE_LOGICAL_STRUCTURE (#40, .T.);
@122 = SURFACE_LOGICAL_STRUCTURE (#41, .T.);
@123 = SURFACE_LOGICAL_STRUCTURE (#42, .F.);
@124 = SURFACE_LOGICAL_STRUCTURE (#43, .T.);
@125 = SURFACE_LOGICAL_STRUCTURE (#44, .F.);
@126 = SURFACE_LOGICAL_STRUCTURE (#45, .F.);
@127 = SURFACE_LOGICAL_STRUCTURE (#46, .F.);

@128 = FACE (, (#110, #118), #122);
@129 = FACE (, (#113), #126);
@130 = FACE (, (#115, #111), #127);
@131 = FACE (#108, (#108), #123);
@132 = FACE (#109, (#116, #109), #124);
@133 = FACE (#112, (#114, #112), #124);
@134 = FACE (#117, (#117), #125);
@135 = FACE (#119, (#119, #120), #121);
@136 = FACE_LOGICAL_STRUCTURE (#128, .T.);
@137 = FACE_LOGICAL_STRUCTURE (#129, .T.);
@138 = FACE_LOGICAL_STRUCTURE (#130, .T.);
@139 = FACE_LOGICAL_STRUCTURE (#131, .T.);
@140 = FACE_LOGICAL_STRUCTURE (#132, .T.);
@141 = FACE_LOGICAL_STRUCTURE (#133, .T.);
@142 = FACE_LOGICAL_STRUCTURE (#134, .T.);
@143 = FACE_LOGICAL_STRUCTURE (#135, .T.);
@144 = CLOSED_SHELL
 ((#137, #140, #139, #142, #143, #136, #141, #138));
@145 = SHELL_LOGICAL_STRUCTURE (#144, .T.);
@146 = REGION (#145, (#145));
ENDSEC;

ENDSTEP;

