
Martin-Luther University of Halle-Wittenberg
Department of Engineering Science

IEC61499, distributed applications,
discrete state modelling,

verification

Valeriy VYATKIN
Hans-Michael HANISCH

MODELING OF IEC 61499 FUNCTION BLOCKS A CLUE TO THEIR
VERIFICATION

Abstract. This paper suggests a way of modelling of discrete measurement and control applications
following to the new international standard IEC 61499. The applications which are distributed and event
driven, require an adequate formalism, clear enough to be adopted by engineers. The presented formalism
of signal/net systems proved to be suitable for modelling of distributed applications alone, as well as for the
interconnected systems combined with the model of the plant.
Based on the modelling, numerous problems of verification can be effectively solved. The model checking
is performed by a bunch of developed analysing tools, including the VEDA (Verification Environment for
Distributed Applications) and SESA (Signal/Event systems analyser). It includes: test for reachability of
dangerous states, search of the never executable code, and validation or invalidation of arbitrary
input/output specifications.

INTRODUCTION

Modelling of controllers is widely recognised in academic circles as an important step
towards their verification and validation of the control systems. Gradually this
understanding finds its way to the practical applications. Meantime practice of the controller
design undergoes dramatic changes, which are associated with the use of new distributed
architectures based on smart field devices and distributed controllers. The latest trends in the
programming for such architectures are presented in the IEC61499 – international standard
under development [3]. Purpose of the research, whose some results this paper presents, is
to provide an adequate modelling and verification framework for the applications developed
following to the IEC61499. The standard especially emphasises on the software reusability
issue, stressing on such means as modularity, encapsulation, and polymorphism, which
explains the need for a theoretical ground, which would enable development and
investigation of IEC61499 applications by formal methods.

Based on the analysis of the standard, we have chosen the Signal/net systems (abbr.
SNS) as the basic formalism. The SNS were developed for discrete state modelling of
manufacturing systems and their control. They were partly inspired by the idea of
Condition/Event systems as defined by Sreenivas and Krogh in 1991 [5]. The distinctive
feature of the SNS is that they preserve the graphical notation and the non-interleaving
semantics of Petri nets and extend it with a clear and concise notion of signal inputs and
outputs. Primarily these models were called Net Condition Event Systems (abbr. NCES),
and later Signal/Net Systems. They have been applied to a few discrete event system

problems, including controller synthesis, verification, and performance analysis and
evaluation.

The SNS support the way of thinking of and modelling a system as a set of modules
with a particular dynamic behaviour and their interconnection via signals. The behaviour of
a module can be described by a Petri net in the classical sense or even by a SNS. Each
module is equipped with inputs and outputs of two types: condition inputs/outputs carrying
state information, and event inputs/outputs carrying state transition information. An
illustrative example of the graphical notation of a module is provided in Figure 1.

A module

event input

event output

event output arc

transition

flow arc

token

place

module boundary

event input arc

condition input
condition input arc

condition output

condition output arc

Figure 1. Graphical notation of the module.

Condition input signals as well as event input signals are connected with transitions
inside the module. Whether a transition of a module fires does not only depend on the
current marking (as it is the case in classical Petri nets) but also on the incoming condition
and event signals. Incoming condition signals enable/disable a transition by their values in
addition to the current marking. Incoming event signals force transitions to fire if they are
enabled by marking and by condition signals. Hence, we get a modelling concept that can
represent enabling/disabling of transitions by signals as well as enforcing transitions by
signals. More than this, the concept provides a basis for a compositional approach to build
larger models from smaller components. "Composition" is performed by connecting inputs
of one module with outputs of another module. If the module is autonomous (it has no
inputs), such a system is called "Signal/Event net", and it can be analysed without any
additional information about its external environment.

Such features of SNS as event arcs and modular design closely correspond to the
design techniques as provided by IEC 1499. Thus we have an intuitively clear but formal
way to model a system. The modelling technique supports a bottom-up modelling as well as
top-down strategy. Even after the composition, the state of the system is distributed, and the
original structure of the modules is preserved. Hence, composition is far less complicated as
building the cross product of automata or the interleaving language. This allows us to build
efficient models of realistic scale.

Due to the space limitations, we illustrate in this paper only basic principles of
modelling with SNS, omitting rigorous definitions and proofs. They can be found in the
journal versions, one of which is already submitted [7].

FIRING RULES FOR MODELLING OF INTERCONNECTED SYSTEMS

Modelling of a controller interconnected in the closed loop system with a plant gives
best results but also brings a lot of complications due to the deeply different nature of
processes in plants and controllers. Some experience in modelling of interconnected systems
and some features of distributed applications have required a certain modification of the
firing rules of Signal/Event nets. Lack of space would not allow us to give the rigorous
definitions of Signal/Event nets behaviour, but interested reader can find it in [4]. We
present here only remarks on the firing rules which have to be mentioned in addition to the
intuitively clear semantics of Petri nets. Attempts to use such already existing formalisms,
as purely asynchronous Petri nets, or the Grafcet, which is a purely synchronous Petri net
variation, brings considerable complication of the model.

Transitions in SNS can be either independent, or forced. Independent transitions are
those having no incoming event arcs, while the forced have one or more of such arcs.
Independent transition can be either spontaneous, or obliged to fire. A spontaneous
transition may or (may not) fire when it is enabled by tokens. In non-timed models we
assume that at least one of enabled independent transitions (including at least one of
currently enabled obliged transitions, if any) must fire.

Transitions in SNS are executed in steps. A step is formed from some (at least one, or
no, depending on timed/non-timed the model is) of currently enabled spontaneous
transitions, at least one of currently enabled obliged transitions, and all the transitions forced
by event signals coming from the transitions included in the step.

In timed models a specific type of obliged transitions is required to let time elapse
when no transition is enabled by marking. This type is called synchronous. A synchronous
transition has no pre- or post-places, and has one or more outgoing event arcs. It fires only if
at least one of the transitions forced by it also is included into step.

a.)

p3

p4

p1

p2

t1t2 t3

t4

t5

 b.)

p3

p4

p1
[1,3]

p2

t1t2 t3

t4

t5

Figure 2. Non-timed (a) and timed (b) sketch plant/controller models.

In the example in Figure 2,a we have a non-timed model, where the left module
corresponds to the model of plant, its transitions 1 and 2 are spontaneous. Places 1 and 2
model two states of the plant. The right module corresponds to the controller, which
registers the event of transition from state 1 (p1) to the state 2 (p2) – transition t3, then
performs some computations – transition t4, and returns to the initial state. Transition t5 is
obliged and serves to model the clock generator of the controller. Thus, the first step in the
given marking is formed from the spontaneous t1, forced t3, and obliged t5: S1={t1,t3,t5}.
Second steps can be S2={t4,t5} and S2={t2,t4,t5}.

In the timed model in Figure 2,b the arc (p1,t1) is marked with the time interval [1,3],
where 1 is the low time bound, and 3 is the high bound, which means that t1 would fire only
within [1,3] interval. However, at normal firing rules t1 would never fire because t5 is
always enabled and is included in every step. For this purpose t5 is made synchronous, it is
included into the step only if t4 also would be included (in this case, iff t4 is enabled) . Thus
we can get the following sequence of steps: S1={} – time elapses by 1 unit, S2={t1,t3},
S3={t4,t5}, and so on.

PROGRAM STRUCTURES DEFINED BY THE IEC1499 STANDARD

According to the draft of IEC 1499 [IEC1499], the generic structure of an application
is a function block, which can be either basic or composite. Functionality of a basic function
block in IEC1499 is provided by means of algorithms, which process input and internal data
and generate output data. The block consists of head and body, where the head is connected
to the event flow, and the body to the data flow. The algorithms included in the block are
programmed in the languages defined in IEC 1131.

An application which is defined as a collection of interacting function blocks
connected by event and data flows, can be distributed over multiple resources and devices
which is the significant difference of this new approach in contrast to IEC 1131. For
example, as illustrated in Figure 3, a control application may include a function block FB1,
implementing the controller itself, as well as a block FB3 responsible for operator interface
(displaying the current state of the system and processing human interactions), and a block
(FB2) which would implement a locking controller or supervisor. All these may be supplied
by some standard or user defined blocks (IN1,OUT3) implementing a communication
interface of devices where the blocks reside. For instance, the controller may be placed in
one device D1 (let us say a PLC), the operator interface in another device (PC) – D2, and
the supervisor in another resource of the first device (PLC) – D1.

Causal behaviour of the block (i.e. sequencing of algorithms' calls) is organised in
IEC1499 by means of Execution Control (EC), which is a state machine, connecting event
inputs with algorithms and event outputs. Execution Control is defined by Execution
Control Charts (ECCs), whose notation is simplified from the Sequential Function Charts of
IEC1131-3. Therefore, there is no more a sequential control function for interacting
function blocks as it would be the case in IEC 1131. The execution control of function
blocks is distributed as well and is established by event interconnections among several
function blocks.

FB 1

D 2D 1

D n

FB 2

FB 3

OUT3

IN1

Figure 3.

EVENT
EVENT

EVENT
EVENT

INIT
EX

INITO
EXO

INTEGRAL_REAL
HOLD
XIN
CYCLE

XOUTBOOL
REAL
REAL

REAL

START

INIT MAIN MAININIT INITO EXO

INIT EX

1 1

ECC

ALGORITHM MAIN IN ST:
 IF NOT HOLD THEN
 XOUT := XOUT + XIN * DT;
 END_IF
END_ALGORITHM

ALGORITHM INIT IN ST:
 XOUT := 0.0;
 DT:= TIME_TO_REAL(CYCLE);
END_ALGORITHM

MAININIT

Figure 3. An example of interface of function block, its execution control and definition of
algorithms.

The ECC consists of EC states exactly one of which is initial, EC transitions, and EC
actions. The EC initial state shall have no associated EC actions. Other EC states may have
zero or more associated EC actions. An EC action consists of the associated algorithm, and
the event to be issued on completion of the algorithm. The ECC can utilise (but not modify)
event input (EI) variables, and utilise and/or modify event output (EO) variables. Also, the
ECC can utilise but not modify Boolean variables declared in the function block type
specification. An EC transition shall be represented graphically or textually as a directed
link from one EC state to another (or to the same state). Each EC transition shall have an
associated Boolean condition, equivalent to a Boolean expression utilising one or more
event input variables, input variables, output variables, or internal variables of the function
block.

Figure 3 shows an example of both the external interface of the block INTEGER-
REAL, and its execution control chart.

SYSTEM

DEVICE

RESOURCE

SUBAPPLICATION/
COMPOSITE FB

BASIC
FUNCTIONAL
BLOCK

IEC 1131
Instruction List

IEC 1131
SFC

Data
Elements

Event
Function
Blocks

Service
Interface

Taking in account
properties of the
hardware

Taking in account
communication
delays

Scheduling
function

Sequences of
primitives
Communication FBs

Management FBs

Verification of
qualitative
computational
and
rough
technological
properties

+"Quantative
computational"
properties
verification
and system
validation

Execution
Control Chart

Figure 4. An extent of modelling and verification results depending on the scale of modelled structures.

ESSENTIALS OF MODELING BY SIGNAL/NET SYSTEMS

The work on modelling of the structures of IEC1499 is based on some previously
conducted research on the modelling of interconnected controller/plant systems. Interested
reader may refer for example to the work [2]. Here we consider the function blocks of
IEC1499 as parts of a controller.

We assume that implementation of the functionality of the blocks as described by the
standard is achieved by the corresponding program modules, provided either by operating
system, or included in the code of the block by compiler. When the components of function
block are modelled by SNS we keep in mind the correspondence between SNS patterns and
the algorithmic patterns, which form the program modules.

In this context the formalism of SNS is used for modelling of objects of different
nature: plants and control devices. This requires to be careful with usage of some of its
features. For example, while model of plant often benefits from the use of non-determinism
(in conflict resolution), in the model of controller it would be inadequate. Spontaneous
transitions are helpful to model events in the plant, but not appropriate when the controller
is concerned. SNS allows simultaneous firing of several transitions, but a computing device
cannot perform execution of several commands simultaneously. We must make sure that
simultaneous transitions correspond either to the commands, executed in different resources
or devices, or to the commands, whose order of execution is really irrelevant.

The following examples show the principles of modelling. In general, transitions are
used to model commands, while places model states, or values of variables.

DATA STORAGE AND ASSIGNMENT

Boolean variable cell can be modelled by the net having two places p0 and p1 and two
transitions ts and tr as shown in the Figure 5. Setting of the variable is modelled by transition
ts and resetting by tr.

p0

p1

ts tr

Set

TRUE

FALSE

Reset

Figure 5. Model of a Boolean variable cell.

LINEAR SEQUENCE OF COMMANDS

Consider how modelled linear sequence of commands SET X; RESET Y. Transitions t1, t2

which correspond to the commands are forced by transition tsg which makes them to fire as
soon as they become enabled. Thus tsg models synchronous nature of the computing device,
where commands are forced by generator of impulses.
Transition tsg has to fire every time. In timed models, however time elapses only when no
transition is able to fire immediately. Therefore, to obtain the required behaviour, tsg has to
fire only when any of the transitions, forced by it, is enabled. To implement this specific
feature, we introduce particular type of transitions, called “synchronous”. Model of every
device (in terms of IEC1499) has only one synchronous transition, which forces thereby all
the commands within this device.

Cell X

Cell Y

Set

Start

Set

TRUE

TRUE

FALSE

FALSE

Reset

Reset

t1

t0

tsg

t2

pi

ps

p0

pf

SET X

RESET Y

Figure 6. Model of sequence of two commands.

Sequence of transitions t1, place pi and transition t2 can be considered as sort of transition
from place ps to place pf. Then the model of sequence can be seen as an SNS module, forced
to start by transition t, as depicted in the Figure 7.

Sequence

Start t

ps

pf

tsg

Figure 7. Model of sequence initiated by one transition.

CONDITIONAL CHOICE

Conditional choice of type IF X THEN Sequence A ELSE Sequence B can be modelled in
SNS as shown in Figure 8. Transition tA has incoming condition arc which relays value of
X, and tB has incoming condition arc marked with not X. Since the conditions are
orthogonal, only one of the transitions is able to fire.

Sequence A

Sequence B

Start

Start

pi

pA pB

tA tB

X

X

tsg

Figure 8. Model of conditional choice

BOOLEAN OPERATIONS

Since every Boolean variable is modelled by two places (as was shown in Figure 5),
we do not need a specific model for getting negation of a Boolean variable.

As for AND, and OR operations, they can be modelled as shown in Figure 9, a) and b)
correspondingly. Both models have two incoming event signals: compute and reset.
Computation of the result takes one state transition.

a).

p0

p1

t1 t2

reset

X & Y

Y
TRUEX

compute

 b).

p0

p1

t1 t2 t3

reset

X YV

Y
TRUEX

compute

Figure 9. Models of Boolean operations.

The over examples of modelling serve to illustrate basic principles of mapping from
commands of programming language to SNS models and back. In the models presented
below we would not provide the exact correspondence between SNS models and
algorithmic equivalents, relying on the presented examples.

MODELING OF BASIC FUNCTION BLOCK

The standard provides certain hierarchy of program structures, which implies the
corresponding strategy of modelling - we begin with the simplest basic functional blocks,
gradually extending the modelling framework to the whole applications and systems. We
concentrate mostly on the execution control issues described by the Execution Control
Charts and by the structure of event interconnections. Thus we pay little attention to the
modelling of the component algorithms as long as they do not strongly concern the
execution logic of the block. Calls of the algorithms can be modelled by the corresponding
state or time delays when it is essential. This agrees with the practical view on modelling -
to get more or less valuable results we need to concentrate only on the important issues
sacrificing the neglectable ones.

As for the variety of data types defined by the standard, we divide them to the four
categories: event signals, which are modelled mainly by event arcs of NCES; Boolean
variables which can be modelled by marking of a place in the NCES model and by
condition signals, which relay the value of variable without affecting the token flow of the
net; time parameters, which are mapped onto corresponding permeability intervals of some
NCES arcs, and other numerical data which are not precisely modelled as far as it does not
concern the logic of execution. Based on the analysis of the IEC1499 draft we conclude that
model of a basic function block should include the following components:

1. Event input state machine (EI-SM) implementation module (one for each event input);
2. Event input variables storage (EIVS) models (one for each event input);
3. Model of EC operation state machine (ECO-SM);
4. Module implementing ECC (ECC model), including the sub-modules implementing

actions and algorithms (optional);
5. Model of the scheduling function, which serves in the standard to implement the

discipline of call of algorithms. Since the draft of the standard provides little information
on the issue, so far we accepted only the "immediate execution" mode;

6. Event output variables (EOV) models (one for each event output);

MODELING OF INPUT AND OUTPUT

s0

s1

t0

t1

t2

t3

Figure 10. Event input
state machine

According to the standard, information about events is transmitted
between function blocks by means of event variables. For each
event input (EI) shall be maintained an EI variable plus a storage
element which exhibits the behaviour defined by the state machine
in Figure 10. Its transition arcs are marked both with conditions of
transitions and with operations, executed upon the transitions as
listed in the Table 1. Though it is not directly stated in the draft of
the standard, we assume that the state machine defines a Mealey
automaton with input and output symbols associated with arcs.

Transition Condition Operation
t0 Map input (1) None

t1 Event arrives ECC invocation request (2)
t2 Event arrives Implementation dependent
t3 Map input (1) Set EI variable (3)

NOTES:

1. This condition is issued by the ECC state machine shown in Figure 2.2.2.2-2.

2. This operation consists requesting the resource to invoke the ECC.

3. This operation consists of setting the value of the corresponding EI input variable to TRUE (1) and sampling the input
variables associated with the event input by a WITH declaration as described in 2.2.1.1. This sampling shall be a critical
operation.

Table 1 - Transitions of event input state machine
The SNS model of event input is shown in Figure 11. It includes model of the storage
element (places p1-p2, transitions t1-t4), and model of the variable (places p3-p4, transitions
t5-t6).

event

map
input

sample
data

clear

ECC
invocation
request

TRUE

Event Input

Storage element EI variable

p1

p2

t1 t2 t3 t4

p3

p4

Figure 11. Model of event input variable.

Places in the model have the following meaning:
p1- "Ready" - is ready to detect new event;

p2- "Locked" - event occurred, but its processing by Execution Control has not started yet;
p3- Value of the event input variable is FALSE;
p4- Value of the event input variable is TRUE;

The operations consist of the issuance of event signals "ECC invocation request" at t1
and "Set Event Input variable" (t2,t5). The storage element ensures the correct detection of
events and the correct sequence of their processing, which is achieved in co-operation with
the further described execution control state machine. Initial state of the model is defined by
the marking {p1,p3}. Event input forces transition t1 which changes the state to {p2,p3} and
causes the event signal "ECC invocation request". Processing of this signal is performed by
resource and will be explained below in the corresponding section.

It implies that only those event inputs are set to TRUE which have been mapped by the
execution control. This happens when the execution control starts to process these events.
According to the standard, once event input variable is set to TRUE it can be reset only by
the execution control, and only in the case if a transition in the execution control chart
clears. Until a transition clears all the event input variable remain to be in their state. Event
output is also implemented as an NCES module, containing two states and two transitions
forced by event signals "Set event output" and "Issue output events".

EXECUTION CONTROL OPERATION STATE MACHINE (ECO SM)

Operation of the Execution Control Chart is described in the IEC1499 by means of the state
machine (ECC SM) shown in Figure 12,a with transitions and actions defined as in the table
2.

t2 t1

t4 t3

s0

s1

s2

Figure 12.

Operation of the Execution Control Chart is described in the IEC1499
by means of the state machine (ECC SM) shown in Figure 12,a with
transitions and actions defined as in the table 2.
Multiple actions, associated with arcs of the automaton, are interpreted as
executed sequentially. Thus, actions associated with t1 are interpreted as
follows:
1. Confirm input(s) mapped;
2. Evaluate transitions;

First operation sends an event signal to the model of corresponding
state machine implementing the storage element of the event input, and the
second sends an activation signal to the NCES model of the Execution
Control Chart. It is essential to ensure that the latter signal is issued after the
first operation has been completed, because value of the event input variable
might be required for evaluation of transitions in the model of ECC.

Transition Condition Operations

t1 Invoke ECC (1) map inputs (2), evaluate transitions (3a,b)

t2 no transition clears Issue events (4)

t3 a transition clears Schedule algorithms (5)

t4 Algorithms complete (6) Clear EI variables(7), set EO variables (8),
evaluate transitions (3)

Table 2. Transitions of ECC operation state machine

NOTES TO TABLE 2 (shortened from the original version):

1. This condition is issued by the resource at an implementation-dependent time
after it has received one or more "ECC invocation requests" from one or more of
the event input state machines specified in Figure 10 and Table 1.

2. This operation consists of issuing "map input" commands to all of the event input
state machines of the function block.

3. (a) This operation consists of evaluating the conditions at all the EC transitions
following the active EC state and clearing the first EC transition (if any) for
which a TRUE condition is found. "Clearing the EC transition" consists of
deactivating its predecessor EC state and activating its successor EC state.
(b) Software tools may provide means for determining the order in which the EC
transitions following an active EC state are to be evaluated.

4. This operation consists, for each event output for which the value of its
associated EO variable is TRUE (1), of sampling each output variable associated
with the event output by a WITH declaration, then issuing an event at the event
output followed by resetting the value of the associated EO variable to FALSE
(0). This sampling shall be a critical operation.

5. This operation consists of requesting the resource to schedule for execution the
algorithms named in the EC actions associated with the active EC state.

6. This condition consists of the completion of execution of all the algorithms
associated with the active EC state (always TRUE for an EC state which has zero
associated algorithms).

7. This operation consists of resetting to FALSE (0) the values of all the EI
variables used in evaluating the transition conditions of the previously cleared
transition.

8. This operation consists of setting to TRUE (1) the value of the EO variables
named in the EC action blocks of the active EC state.

Basic structure of ECO-SM model is similar to the original ECO SM (places p1,p3,p4

correspond to the states S0,S1,S2). Marking in the place p1 (state S0) means that the state
machine is ready to process event, which we call "ECC idle". We introduce also an
additional "transitional" place p2 in the ECO-SM model, which ensures that variable setting
is completed before the transition evaluation. Since the transition from p2 to p3 is not forced
by any event and the net is assumed to be timed, it fires as soon as p2 becomes marked. The
same role plays the place p5 - it ensures that new transition evaluation is done after the event
variables used in the previously cleared transition have been reset. Literally, the standard
provides the following definition of the last operation associated with transition t4: "This
operation consists of resetting to FALSE (0) the values of all the EI variables used in
evaluating the transition conditions of the previously cleared transition."

invoke ECC

synchro signal

no transitions clear

a transition clears

algorithms completed

inputs mapped

issue output events

evaluate transitions

schedule algorithms

set EO

clear EI

Execution Control State Machine

p1

p4

p5

p2

p3

t6

t3

t1

t5t2

t4

Figure 13. Model of the execution control state machine

To our opinion, this phrase is rather ambiguous, since no definition is given what
means "used in evaluating the transition conditions of the previously cleared transition".
Logically, these are all the transitions from the previously active state of the ECC. However,
the standard does not require the set of transitions to be complete. In this case, if an event
occurs, variable of which is not include in any of the transition conditions in a state S, it
would not be cleared. Consider example. Let function block has 3 event input variables: ei1,
ei2, ei3 and the execution control chart presented in Figure 14-a. Desired behaviour of the
block is to pass to the state 3 at input sequence ei1,ei2 and to the state 4 at the sequence
ei1,ei3. Implicitly the evaluation rules imply that if ei3 occurs at the state 1, the ECC
remains to be in this state. However, the sequence ei3, ei1, ei2 might take the ECC in either
of the states 3 or 4, instead of state 3, as desired. This is due to the fact, that ei3 will not be
cleared if occurs at state 1, and will remain TRUE in state 2, where it might fire the
transition to the state 4, after the event ei2 occurs, depending on the sequence of condition
evaluation. That is defined in the standard as follows: "This operation (t1-evaluate

transitions) consists of evaluating the conditions at all the EC transitions following the
active EC state and clearing the first EC transition (if any) for which a TRUE condition is
found. Software tools may provide means for determining the order in which the EC
transitions following an active EC state are to be evaluated."

State1

State2

State3 State4

ei1

ei3ei2

State1

State2

State3 State4

ei1

ei2 ei3

ei2Vei3

Figure 14. a).ECC which accepts sequence ei3,ei1 as ei1,ei3 b).Corrected ECC

To get the required behaviour, the correct ECC must look like one in Figure 14-b. In this
case ei3 will be cleared if occurred at the state 1.

Event Input

event

event

map input

map input

sample
data

sample
data

clear

clear

invoke ECC

invoke ECC

TRUE

TRUE

Event Input

algorithms
completed

inputs
mapped

issue
output
events

schedule
algorithms

set EO

clear EI

clearance

compute
conditions

force
transitions

ECC idle

Execution Manager

invoke
ECC

set INITO INITO

set EXO EXO

set EO

schedule
algorithm(s)

algorithms
completed

clearance

force
transitions

INIT

EX

INIT

EX

Model of
Execution Control Chart

INIT

EX

set

set

event

event

sample
 data

sample
 data

issue
event

issue
event

invoke ECC
ECC
invocation
request

ECC idle

ECC invocation

MODELING OF A COMPOSITE BLOCK

MODEL OF RESOURCE

Resource is a functional unit contained within a device which has independent control of its
operation, and which provides various services to applications, including the scheduling and

execution of algorithms. The RESOURCE defined in IEC 1131-3 corresponds to the
resource defined above. A device contains one or more resources.
We model the following functions of resource: processing of invocation requests,
scheduling and execution of algorithms, synchronising the execution of blocks, and
E_RESTART block, which generates corresponding signals for the cold and warm restart
events.

We understand that in such a way that no requests should be lost in case if the
execution control is unable to process the request immediately.

Sketch model of resource containing two function blocks is given in Figure 15. Processing
of invocation requests is modelled by the SNS module which sets a Boolean flag (token in
the place p2) after at least one ECC invocation request was generated by models of event
input variables of the blocks contained in the resource. When the execution control becomes
idle, it uses this condition to start work again. Once processing of the event is started by the
execution control (Figure 13), it issues the signal "Input mapped" to the models of event
inputs, as well as to the model of invocation processing which fires transition t2 and returns
token from p2 to p1.

invoke
ECC

ECC
invocation

request

ECSM
started

invoke ECC invoke ECC

Block’s inputs
and outputs

Block’s inputs
and outputs

... ...

synchro

warm

cold

synchroinputs mapped inputs mapped

invoke ECC invoke ECC

p1

p2

t1

t1

t2

t1

t2

ECC invocation

Model of E_RESTART
Synchro generator

Model of block A

Model of resource

Model of block B

Figure 15. Sketch model of resource containing two function blocks

Scheduling function of the resource is described in the standard as a function which selects
algorithms or operations for execution, and initiates and terminates such execution, based
on the following:
1. the occurrence of events;
2. function block interconnections; and
3. scheduling information such as task scheduling periods and priorities;
4. possible interactions with scheduling functions of other resources.

The working draft of the standard does not specify at the moment the two latter means
of providing of the scheduling requirements. That is the reason why in the current models
we made the following limitation assumptions:
1. Algorithms have no priorities or task scheduling periods;
2. Resource is capable to execute simultaneously as many algorithms as required;
3. Several copies of the same algorithm can be executed independently;

Synchronisation of the blocks within the resource is required 1) to reflect the
synchronous nature of the computing device; and 2) to model possible sequencing of events
caused by the fact that some blocks of the application reside in one resource, and some in
the other resources. For the latter purpose we introduce the synchroniser, which is a
synchronous transition, forcing all the transitions in the model of the blocks, which
correspond to the commands executed by the resource.

EXAMPLES

When the interconnected plant/controller system is modelled one has to take in
account the following considerations:
1. Model of plant has to reflect asynchronous nature of the real plant. Thus if two units co-

exist in the plant, one of which generates event 1 and the other event 2, then the model
has to provide all possible combinations of the events: {none}, {only event 1}, {event 1
before event 2}, {only event 2}, {event 2 before event 1}, {event 1 and event 2
simultaneously}.

2. Model of the event-driven controller has to provide the ability to generate finite
(processing) sequences of states, initiated by either of the event combinations. These
sequences sometimes have to be not interrupted by new events of the plant, while
sometimes a certain parts of the controller register new events, while the other execute
the processing sequences. Implementation of such a behaviour requires either to except
the earliest firing rule of the transitions (all the transitions fire as soon as they become
enabled), or force them by an external clock transition.

3. If the controller contains several modules, which are distributed among different devices
(or resources, as they defined in IEC1131 or IEC61499), various combinations of clock
transition firing has to be modelled. Consider the sketch example given in Figure 16.
The “controller” part of the system consists of three components: Controller 1 which
registers the event 1 executing the sequence S11,S12,S13, and generating the output event
3; similarly functioning Controller 2, which registers event 2; and the View component,
which displays the number of occurred events based on the data (events) generated by
the controllers 1 and 2. In the reality the parts may be executed by different
combinations of devices. Thus, we can imagine the state when even simultaneously
occurred events 1 and 2 are followed by the incorrect display “1” due to the different
speed of Controllers 1 and 2. Correspondingly the state space of the model must include
the state (or states), reflecting such a situation.

4. When the (discretely) timed models are concerned, it must be noted that controller and
plant have different time scales. Implementation of controllers’ clock generator often

requires to include the “synchroniser” transition of each controller in every state
transition.

Model
of plant

event 1

event 2
event 4

event 3
S11 A1

B1

C1

S21

S0

S12 A2

B2

C2

S22

S13 A3

B3

C3

S23

Controller 1

Controller 2

View

0 events

1 event

2 events

Figure 16. Sketch example of an interconnected system

Certainly this behaviour can be somehow modelled within currently existing formalisms,
either asynchronous such as pure Petri nets, or synchronous, such as Grafcet. In both cases,
however, the model loses its clarity due to the various complications.

REFERENCES

[1] H.-M. Hanisch, J. Thieme, A. Luder, O. Wienhold.
Modelling of PLC Behaviour by Means of Timed Net Condition/Event
Systems International conference on Emerging Technologies and Factory
Automation (ETFA'97), September 1997, Los Angeles, USA

[2] Function Blocks for Industrial Process Measurement and Control Systems
International Electro technical Commission, Tech.Comm. 65, Working group 6,
Committee draft

[3] International Standard IEC 1131-3, Programmable Controllers - Part 3,
Bureau Central de la Commission Electrotechnique Internationale, 1993,
Geneva, Suisse

[4] P.Starke, S.Roch, K.Smidt
Analysing signal-event systems
Humboldt Universitat zu Berlin, Institut fur Informatik

[5] R.S.Sreenivas and B.H.Krogh
On condition/event systems with discrete state realisations

Discrete Event Dynamic Systems: Theory and Applications, 2(1):209-236,1991

[6] V. Vyatkin, H.-M. Hanisch
A modelling approach for verification of IEC1499 function blocks using net
condition/event systems
ETFA-99,pp.

[7] V. Vyatkin, H.-M. Hanisch, P. Starke, S. Roch,
Systematic modelling of discrete event systems with signal/event nets and its
application to verification of iec1499 function blocks,
Submitted to the special issue "Discrete Event Systems" of IEEE Trans. on Man,
Machine and Cybernetics.

