Execution Semantic of Function Blocks based on the Model of Net
Condition/Event Systems

Valeriy Vyatkin

Abstract— This paper aims at the development of an execu-
tion model of function block networks following the IEC 61499
standard architecture for industrial measurement and control
systems. Implementation of the standard requires an execution
environment that is deterministic, provides real-time reactivity,
and is compact to fit embedded platforms. In particular, this
paper discusses the problem of function block scheduling
that would be the core of such exection environment. The
function blocks are modeling by Net Condition/Event Systems
(NCES). It is shown that the NCES implementation provides
a natural scheduling policy for function blocks that preserves
concurrency and enables evaluation of the reactivity by model-
checking.

Keywords: industrial informatics, reactive embedded con-
trol systems, function blocks, IEC 61499, net condition/event
systems, scheduling

I. INTRODUCTION

The IEC 61499 standard [2] establishes a distributed com-
ponent architecture for industrial measurement and control
systems. The architecture is based upon the concept of
Junction block. Function blocks, allocated across devices and
connected via event and data arcs form distributed system
configurations. Thus, the function block concept of IEC
61499 offers a higher level system description language for
distributed embedded systems. Implementation of the stan-
dard requires an execution environment that is deterministic,
provides real-time reactivity, and is compact to fit embedded
platforms.

There are a few trial execution environments of function
blocks, e.g. [7], [3], the most established of which is the Java-
based Function Block Run-Time (FBRT) [1]. FBRT bears all
the benefits and drawbacks of a Java-based execution, among
the latter are non-determinism and non real-time response.
Also, the computational overheads seem to be too high. This
was illustrated in [8] by comparing experimentally several
scheduling policies combined with several event propagation
mechanisms.

In this paper we outline some challenges for building
an efficient exection environment for function blocks. We
discuss some potential solutions that would not necessarily
be using Java as an underlying technology, i.e. can be
implemented by direct code generation or even in hardware.

The paper is structured as follows. In Section II the
challenges of reactive function block-based system imple-
mentation are discussed. Then, in Section III we briefly
outline the formalism of Net Condition/Event Systems that

Auckland,
Auckland,

V. Vyatkin is with the University of
of Electrical and Computer Engineering,
Zealand,v.vyatkin@auckland.ac.nz

Dept.
New

will be used in Section V for modeling the function blocks.
Section IV provides some considerations on the function
block semantic. In Section VI we discuss an idea of function
block scheduling that directly follows from the NCES eval-
uation rules. Finally, in Section VII we briefly discuss the
opportunities of a hardware implementation of the proposed
NCES model. The paper is concluded with an outline of
future work.

IT. REACTIVE CHALLENGES OF FUNCTION BLOCKS

The function blocks are intended for modelling and im-
plementation of distributed measurement and control systems
which by their nature are reactive. The response character-
istic of a device implementing the function blocks is a very
important criteria. A response to an external stimuli must be
guaranteed, in addition it must be deterministic and timely.
In simple words, the response is said to be deterministic if
any two executions of the same function block application
produce same results (including sequence and timing of
output events) given same inputs.

Without going deep into the function block internals let us
consider an example of the function block invocation order.
We will refer to the execution environment that determines
the order of function blocks’ invocation as interpreter.

An example of a reactive device represented in terms of
function blocks is shown in Figure 1. Here a reactive device
is populated with a network of four function blocks. The
function blocks FB1 and FB2 perform some computations
over the input data that arrive from the environment via the
service interface function block SIFB1. The DO output of
SIFB1 is connected to the DI input of the function block
FB1. Thus, when a new value of the input arrives, SIFB1
issues output event EO notifying FB1. FB1 gets activated by
the event, then it updates the value of its input parameter
DI from DO of SIFB1 and perfoms some computations.
The result of the computations is provided then to FB2 and
the corresponding event is passed along to FB2. FB2 also
performs some computations and, finally, passes the result
and an event to SIFB2. The latter block sends the response
to the environment.

The described sequence is illustrated by the time diagram
in Figure 2.

To avoid the loss of the event the function block interpreter
has to interrupt the function block execution and store the
fact of the event arrival. In the reactive systems jargon such
action is called pre-emption. In example in Figure 2 one
sees that the execution of FB2 is interrupted by arrival of
another input event (that can be a value change of the same

REACTIVE DEVICE

SIFB1 FB1
EO}—1{El EO) El
EsiETHl poj—{b! DO DI2
Event
Fig. 1. Reactive device receives input events via service inteface function

block (SIFB1); and after processing sends the reaction via another service
interface function block SIFB2.

Second occurrence
of input event

First occurrence
of input event

INPUT EVENT A

Scheduler interrupted i
SCHEDULER FB2 to store the event—>|

SIFB1
FB1

FB2

SIFB2 ‘
OUTPUT EVENT i o A

Response on the
first occurrence
of the input event

Fig. 2. Time - state diagram of the function block evaluation process as a
reaction to an input event.

input data). After the event is processed by the interpreter
(say, stored in a priority queue), the execution is resumed.
Once the output event is issued and there is no more function
blocks to execute, the interpreter starts SIFB1 again. Another
scheduling policy can lead to a different order of execution
with a potentially different result, as illustrated in Figure 3.

Pre-emption and several other features of function blocks
imply the need of handling concurrency when implementing
a function block execution environment. The issues poten-
tially leading to concurrency are listed as follows:

1) Sequence of FB invocations is determined by event
connections. Event arcs can be branching, imple-
mented either explicitly by the standard function block
"E_SPLIT’ or implicitly done within any basic function
block as shown in the example in Figure 4 where two
function blocks need to be invoked as a result of the
FBO execution. This can be implemented in several
different ways (first FB1, then FB2; or vice versa; or
both are executed concurrently in two threads). The
order is to be decided by the interpreter based on the
Sfunction block execution semantic.

2) Event loops can occur either explicitly by a backward
event connection within a resource, or implicitly by a
circular direction of messages between resources. Due
to the noted in the previous item, the function block can
be invoked again even before its previous execution is
completed. It should be noted that the static circularity
of event arcs does not necessarily mean that the cycles
will ever occur, but the opposite is true: cycling can
never happen if there is no looping event arcs.

3) Concurrency of resources. According to the IEC61499
model a device can accomodate several independent
resources. The resources are containers for function

Second occurrence
of the input event

First occurrence
of the input event

INPUT EVENT A
Scheduler interrupted
FB2 to store the event D

1

SCHEDULER

SIFBY i) j
FB1
FB2 1

SIFB2 |

OUTPUT EVENT ; A
Response on the Response on the
first occurrence first occurrence
of the input event of the input event

Fig. 3. Example of another scheduling policy: upon the second occurrence
of the input event the SIFBI is scheduled immediately, and the output
issuance is postponed.

ECC (fragment)

CONDL

e oo
| [leoz]

COND2

Fig. 4. Implicit event splitting by ECC issuing 2 output events in one state.

block applications. The standard says that “a resource
is a functional unit, contained in a device which has
independent control of its operation. It may be created,
configured, parameterized, started up, deleted, etc.,
without affecting other resources within a device.” An
example of a device with three resources is shown in
Figure 5.

There is no priority or order defined between the
resources. To fulfil the requirement of resource inde-
pendence, a resource needs its own scheduling function
deciding on the order of function block invocations.
When such model is to be implemented on a sin-
gle processor platform, it will lead to two levels of
scheduling: scheduling of resources within a device,
and scheduling of function blocks within each re-
source. In [3] it was proposed to use in such cases
a single scheduling function for the whole device. In
Figure 6 we illustrate this approach as applied to the
example in Figure 5. Again, one can see that different
scheduling strategies implemented within a device can
lead to different sequence and timing of the output
event occurence.

4) Sequence of communications within a device. Func-
tion block networks allocated to multiple resources of
a device can communicate by means of a message
passing mechanism. Thus, in Figure 5, the function
block application in the first resource gets activated
from the external input event that is delivered by
the function block SIFB1. After some data processing
some intermediate results are broadcasted to two other
resources by the function block CIFB3 of type PUBL
(PUBLISH local).

5) Time pulse generator. The model of function block is

INPUT EVENT

Resource 1 siFB1[FB2[CIFB3

Resource 2

V2
ciFs1|FB2[cIFBS|FB3| SIFB4

Resource 3

CII:,B1|FBB|FB4|SIFBS CIF\BZ|FBSIFB4|SIFBS

OUTPUT EVENT1

a) OUTPUT EVENT2 A A
INPUT EVENT A
Resource 1 [srei[Fezciragy \
Resource 2 i CIFB1 Hlﬁi
Resource 3 @ﬁl [FB3[Fe4] SiFes| IXFB1|FB3IFB4ISIFBS[
OUTPUT EVENT1 A A
A \ I

b) OUTPUT EVENT2

Fig. 6. Two different scheduling policies leading to different timing and sequencing of output signals.

REACTIVE DEVICE

RESOURGE 2

RESOURCE 1

CIFB3

Output
> Event 2

Fig. 5. Reactive device with 3 communicating resources

purely even-driven and does not include time explicitly.
However, timing can be easily introduced with the help
of E.CYCLE and E_DELAY standard function blocks.
E_CYCLE generates periodic events with time interval
between them given as a parameter. E_DELAY, as the
name suggests, delays event propagation by a certain
time. These blocks provide sufficient functionality to
implement the time-dependent execution but imple-
mentation of properly synchronized clock generators
is a challenging task.

Summarizing the challenges listed above, one sees that the
reactive properties of an embedded (function-block compli-
ant) device partially depend on the efficiency of the execution
environment that includes:

o scheduling function;

¢ event propagation mechanism within a resource;

« communication mechanism within a device;

« inter-device communication mechanism;

IIT. NET CONDITION/EVENT SYSTEMS

Net Condition/Event Systems (NCES) is a finite state
formalism which preserves the graphical notation and the
non-interleaving semantics of Petri nets [6], and extends
them with a clear and concise notion of signal inputs and
outputs. The formalism was introduced in [13] and has

condition input

condition input arc

A module condition output arc

' condition output

¢
event input ——~ | event output

module boundary—| event oultput arc

obliged transition

flow arc

event input arc token

place

Fig. 7. Graphical notation of a NCES module.

been used in dozens of applications during the last decade,
especially in the area of embedded industrial automation
systems.

Given a place/transition net N = (P, T, F, mg), the Net
Condition/Event System (NCES) is defined as a tuple N =
(N, 0n,¥ N, Gr), where 0y is an internal structure of signal
arcs, Uy is an input/output structure, and Gr C T is a
set of so called “obliged” transitions (Introduced in [17].
An obliged transition fires as soon as it is enabled). Figure
7 shows an example of an NCES module. The structure
WUy consists of condition and event inputs and outputs
(ci, ei, eo, co). The structure 0 is formed from two types of
signal arcs. Condition arcs lead from places and condition
inputs to transitions and condition outputs. They provide
additional enableness conditions of the recipient transitions.
Event arcs from transitions and event inputs to transitions
and event outputs provide one-sided synchronization of the
recipient transitions: firing of the source transition forces
firing of the recipient, if the latter is enabled by the marking
and conditions. The NCES modules can be interconnected
by the condition and event arcs, forming thus distributed and
hierarchical models. NCES having no inputs can be analyzed
without any additional information about its external envi-
ronment. The semantics of NCES cover both asynchronous

and synchronous behavior (required to model plants and
controllers respectively). NCES are supported by a family
of model-developing and model-checking tools, such as a
graphic editor, SESA and iMATCh ([9], [12]).

The state of a NCES module is completely determined
by the current marking m : P — Ny of places and values
of inputs. A state transition is determined by the subset
7 C T of simultaneously fired transitions, called step.
The transitions having no incoming event arcs are called
spontaneous, otherwise forced. The step fully determines the
values of event-outputs of the module. In the original NCES
version the step is formed by choosing some! of the enabled
spontaneous transitions, and all the enabled transitions forced
by the transitions already included in the step.

A state of NCES is fully described by the marking of all its
places (in the timed version also by clocks). A transition step
specifies a state transition. When used for system analysis,
a set of all reachable states (complete or partial) of NCES
model is generated and then analyzed.

For describing the execution model of function blocks
we use a deterministic dialect of NCES and the modeling
approach that guarantee certain properties of the models as
follows:

1) In the chosen dialect a step is formed from all enabled
spontaneous transitions and all forced transitions;

2) The models are designed so that there is no conflicts
(i.e. deficient marking in some places) leading to non-
deterministic choice of some of the enabled transitions;

3) The models also guarantee bounded marking in all
places.

IV. FUNCTION BLOCK EXECUTION SEMANTIC

As pointed in several publications, for example [3], [14],
[5], the execution semantics of function block systems is not
completely defined in the IEC 61499 standard. As a result,
there are three classes of semantic descriptions:

A. Well defined FB semantic properties;

B. Elements of the semantic that are present in the standard
explicitly, but scattered around the text;

C. Semantic-relevant definitions that are present either
implicitly or completely left at the discretion of the
implementer. In some cases conclusions can be made
by analogy.

The development of function block execution environment
requires making decisions on all semantic issues, explicitly
or implicitly. Thus, our strategy in covering the semantic
loopholes is:

o Collect and collate cases (B);
o Suggest interpretation of the issues (C) not contradicting
with the cases (A) and (B);

We define a single run of a function block as its execution
activated by an event occurred at its input and ended when
no more ECC transition can be evaluated to TRUE. During
the run a function block can request execution of several

IThis means the step in NCES is non-deterministic.

other function blocks by issuing the output events. Clause
2.2.2.2 of the standard defines the run to be executed as a
critical region, i.e. it cannot be interrupted and pre-empted
by any other function block. In our opinion, however, it can
be pre-empted by the execution environment.

Let us consider for example the event splitting issue from
Chapter II. The event fork E_SPLIT as well as the situation
in Figure 4 imply that the function blocks FB1 and FB2 will
be schedulled and executed sequentially. This interpretation
is based on the following reasoning:

1) The Standard explicitly says that several actions as-
sociated with a single ECC state are executed sequentially
(2.2.2.2, Table 1, footnote ’d’);

2) The Standard leaves unanswered the issue when the
output events of a basic FB are issued. Three options are
possible:

a) Immediately after the action is completed;
b) After all actions of a state are completed;
¢) After the run of the basic FB is completed.

Since the interpretation ¢) was present in previous drafts
of the standard but was withdrawn, the remaining choice
is between a) and b), which are not different in the order of
generated events and can only differ in their timestamps.

Regarding of what happens after that the Clause 3 in 2.3.2
says:

3. If an event output of a component
function block is connected to an event
input of a second component function block,
occurrence of an event at the event output
of the first block shall cause the scheduling
of an invocation of the execution control
function of the second block, with an
occurrence of an event at the associated
event input of the second block.

From this paragraph one can conclude that the function
block issuing the output event shall ask the scheduler about
starting the event recipient function block and then con-
tinue the execution. The requests arrive to the scheduler
sequentially, and the scheduler has no reason to schedule
several blocks simultaneously, as each function block run is
exclusively done in a critical section.

From the said above it is obvious that the standard does not
assume concurrent execution of function blocks as result of
*event forking’. The sequential interpretation of the situations
like in Figure 4 adds to the determinism of the execution.
However, the question is how intuitive for the developer such
sequential implementation is? Perhaps, the true concurrency
of the splitted event arcs will be more adequate in most
situations. In the next section we will show that NCES can
provide implicit scheduling mechanism naturally supporting
concurrency.

V. MODELING FUNCTION BLOCK NETWORKS WITH NET
CONDITION/EVENT SYSTEMS

Modeling of basic function blocks with NCES was studied
in [16] in very fine details. Although, the execution semantic
of a basic function block has undergone some changes since

FB
Dy °

! e Input data
1 —) |— — 1p
sampling code
1 E

ei
Py .
- Core function
17 block code

- E Qutput data
K ling code
=3 f[,F sampling
EO‘\—/

Fig. 8. Model of a basic function block with one event input and one event
output.

then, the main modelling ideas remain valid. In this section
we will address the modeling of function block networks and
distributed devices. As the model of a single basic block is
concerned, we will be interested in modeling of its single
run. The model shown in Figure 8§ is very much simplified
compared to the full model introduced in [16] and is similar
to the one suggested in [11]. The abstraction model simplifies
the understanding of the FB network handling semantic, but
needs to be eventually substituted by the full model for the
code generation.

For the sake of simplicity we assume that a block has one
event input and one event output issued as the reaction on
the input. The model has three ’states’, modeled by the net
places: FB idle (p;), input data sampled (p3), algorithm is
completed (p3). Execution of the code encapsulated in func-
tion blocks is modeled by the net transitions. This literally
means that the code execution is instantaneous, as NCES
transition firing does not take time. In reactive systems such
model is quite common, it is used, for example, in Esterel [4].
The code snippets being activated and executed on external
events are assumed to be short and not containing loops?.
The ’obliged’ (or ’greedy’) transitions (2 and t3) are used to
avoid the non-determinism of spontaneous transitions (gray
shaded in the Figure) thus providing obligatory execution of
the associated code fragments.

VI. EXECUTION SCHEDULING BASED ON THE NCES
MODEL

The NCES transition rules offer a simple yet correct
and efficient scheduling algorithm that enables the use of
the NCES model not only for modeling of function block
systems, but also for organizing their execution environment.

The scheduling of output events can be modeled by
NCES module ’Scheduler’ as shown in Figure 9,a. The
Scheduler can start the FB1 and FB2 concurrently (since
this interpretation is more intuitive in this particular case), or
sequentially, for which the implementation of the Scheduler
may contain the FIFO queue.

A state transition of NCES may include several net
transitions (which form a transition step). The transitions

20r, even if loops exist, it is assumed that the execution environment
takes care of their interruption

included in a step fire simultaneously. As each of these can
be associated with a code segment, the only difficulty in
code generation is to order the code segments for sequential
execution. However, if basic blocks are modelled as in Figure
8 the sequence is not essential provided that the blocks have
the internal data encapsulated, thus the code snippets would
be: a) executing only one at time in each FB model; b)
operating over different data.

The results of such scheduling are illustrated in Figure
9 b) and c). In Figure 9 b), the scheduling is shown for
the NCES model from Figure 9,a) assuming the concurrent
scheduling. One sees that the data sampling and operations of
the blocks FB2 and FB3 in the model are modelled as being
concurrent. The corresponding code, as shown in Figure 9,
¢), would execute first the data sampling for FB2, then the
data sampling for FB3, then the core code of FB2, and
the core code of FB3. This kind of scheduling guarantees
that both FB2 and FB3 will start execution with the same
input data, that was purported in the original function block
network.

The event connections between function blocks can pro-
vide enough information to determinine the required number
of concurrent computational resources and to allocate the
function blocks to them for execution (static scheduling).
For that, a spanning tree of the graph describing the event
connections between function blocks shall be used. There
are a number of algorithms for scheduling tasks with depen-
dencies described by directed acyclic graph (DAG) available,
e.g. the ones described in [10].

The NCES model of function block networks can be
directly used in the formal proof of reactive properties. This
can be done by the model-checking as described in [15],
where NCES were used to model function blocks and to
verify formally the properties of distributed control systems.
The model-checking is based on the model’s state-space
exploration. The reachability graph (full or constrained) is
generated and temporal logic properties are proved on it.
The reactive properties to check can include:

1) Guaranteed reactivity (eventual occurrence of an out-
put event) for every input event and for their combi-
nations;

2) Finding the maximum reaction time for every input
event and for their combinations;

Similar check can be done even at the compilation stage,
where a verifying compiler of function blocks, would auto-
matically predict, highlight and even correct the constructs
leading to a behavior breaking the real-time reactivity prop-
erties.

VII. HARDWARE IMPLEMENTATION

Function blocks can describe distributed reactive systems
in an abstract way that can be subsequently implemented
as software on standard hardware platforms, or in hybrid
hardware/software form, or even in pure hardware. One of
the ways to implement the proposed NCES model of function
blocks can be using ’reprogrammable hardware’ of Field

FB1 {

Scheduler FB2 {
gy staryy
starty
reqy
FB3
a) b)
Fig. 9.
model.
INPUT EVENT A
Resource 1 siFB1[FB2[CIFBIRN
W\
ciAg1[FB2[cIFBS
1
Resource 2 { \ FBgl SIFB4
V
ciFai[re3]Fe4[siAes| [FB3[FB4[sIFBS
Resource 3 { CIFB2l
OUTPUT EVENT1
OUTPUT EVENT2

Fig. 10. Scheduling based on hardware implementation of function blocks.

Programmable Gate Arrays (FPGA). FPGA combine the effi-
ciency of hardware implementations with re-programmability
and flexibility. Such implementation can be considerably
faster not only on account of faster operations of every single
function block, but also thanks to the parallel operation of
independent function blocks.

The benefits of hardware implementation are illustrated
in Figure 10. The Figure shows an example of scheduling
for the system from Figure 5. As seen from the Figure,
the response is considerably faster if compared with the
’software’ scheduling exemplified earlier in Figure 6.

The inherited boundedness of the NCES model allows to
predict in advance the required number of registers to be
used as pointers to the NCES marked places.

VIII. CONCLUSION AND FUTURE WORK

The NCES model of the function block execution environ-
ment proposed in this paper provides a natural and simple
scheduling solution for function block networks. It opens an
opportunity to improve the function block semantic, making
it more intuitive and paves the way to hybrid HW/SW
embedded implementation. We are considering the following
directions for future research and development:

« Software implementation of the proposed model. The
implemenmtation will consist of an interpreter of NCES
extended by the code associated with transitions, and the
model generator, translating the function blocks to the
NCES;

o Hybrid hardware/software implementation on FPGA.
The NCES part will be implemented by pure hard-
ware elements on a customized processor implemented
in FPGA. This will provide means for scheduling of
concurrent resources with minimum overheads.

COMPUTE&.
UPDATE OUT .

UPDATEIN |, ..
COMPUTE |...).
UPDATE OUT .l|...l..

UPDATE IN
COMPUTE |, ...
UPDATE OUT . {.uufurespasnsfrrdsans: C)

(11
[2

—

[3]

[41
[5]

[6]
[7

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

COMPUTE
UPDATE OUT .

FB1 {

FB2 {
FB3 {

UPDATE IN [...
COMPUTE |...
UPDATE OUT .{...|...

UPDATE IN
COMPUTE |
UPDATE OUT |uufuesdee

a) NCES model of the event-splitting network from Figure 4; b) Scheduling of blocks in the model; c¢) Scheduling in the code generated for the

REFERENCES

Function block development kit (FBDK), http://www.holobloc.org,
September 2005.

Function Blocks for Industrial Process Measurement and Control Sys-
tems, IEC 61499 Standard. International Electrotechnical Commission,
Tech.Comm. 65, Working group 6, Geneva, 2005.

Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing real-time
constrained control applications modelled in iec 61499 with respect
to dynamic reconfiguration. In IIT IEEE Conference on Industrial
Informatics, Perth, Australia, August 2005.

F. Boussinot and R. de Simone. The ESTEREL language. Proceedingds
of the IEEE, 79(9):1293-1304, 1991.

Siinder C., Zoitl A., Christensen J., Vyatkin V., Brennan R., Valentini
A., Ferrarini L., Thramboulidis K., Strasser T., Martinez-Lastra J. L.,
and F. Auinger. Usability and interoperability of IEC 61499 based
distributed automation systems. In IV IEEE Conference on Industrial
Informatics, Singapore, August 2006.

Petri C.A. Kommunikation mit Automaten. Schriften des IIM Nr. 2.
Institut fur Instrumentelle Mathematik, Bonn, 1962.

G. Doukas and K. Thramboulidis. = A real-time linux execution
environment for function-block based distributed control applications.
In 11l IEEE Conference on Industrial Informatics, Perth, Australia,
August 2005.

Luca Ferrarini and Carlo Veber. Implementation approaches for the
execution model of IEC 61499 applications. In II IEEE Conference
on Industrial Informatics, Berlin, June 2004.

H.-M. Hanisch, A. Lobov, J. L. Martinez Lastra, R. Tuokko, and
V. Vyatkin. Formal validation of intelligent automated production
systems towards industrial applications. International Journal of
Manufacturing Technology and Management, 8(1/2/3), 2006.

Y. Kwok and I. Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. Journal of Parallel and Distributed
Computing, 59(3):381-422, 1999.

A. Liider, C. Schwab, M. Tangermann, and J. Peschke. Formal
models for the verification of TEC 61499 function block based control
applications. In IEEE Conference on Emerging Technologies and
Factory Automation, Catania, Italy, September 2005.

P.Starke, S.Roch, K.Schmidt, H.-M. Hanisch, and A.Liider. Analysing
signal-event systems. Humboldt Universitit zu Berlin, Institut fiir
Informatik, July 2002. Internal report, http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/tools/#sesa.

M. Rausch and H.-M. Hanisch. Net condition/event systems with
multiple condition outputs. In Symposium on Emerging Technologies
and Factory Automation, volume 1, pages 592-600, Paris, France,
October 1995. INRIA/IEEE.

Dubinin V. and Vyatkin V. Towards a formal semantics of iec 61499
function blocks. In IV IEEE Conference on Industrial Informatics,
Singapore, August 2006.

Vyatkin V. and Hanisch H.-M. Verification of distributed control
systems in intelligent manufacturing. Journal of Intelligent Manu-
Sacturing, 14(1):123-136, 2003.

V. Vyatkin and H.-M. Hanisch. A modeling approach for verification
of IEC1499 function blocks using net condition/event systems. In
Proceedings of the ETFA’99 Workshop, pages 261-270, Barcelona,
Spain, 1999.

V. Vyatkin and H.-M. Hanisch. Practice of modeling and verification
of distributed controllers using signal-net systems. In Workshop on
Concurrency, Specification and Programming’ 2000, Berlin, Germany,
October 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

