
Practice of Modeling and Veri�cation of Distributed Controllers
using Signal Net Systems

V.Vyatkin, H.-M. Hanisch

Martin Luther University of Halle-Wittenberg

Dept. of Engineering Science

D-06099 Halle, Germany

Valeriy.Vyatkin@iw.uni-halle.de

Hans-Michael.Hanisch@iw.uni-halle.de

1 Introduction

Modeling is a cornerstone of formal analysis and synthesis of industrial control systems. Keeping up with the

current practice of discrete control system design requires to make corresponding adjustments of the modeling

formalisms. In this paper we discuss basic ideas and a development progress of the formalism of Signal Net

Systems motivated by our activities in simulation and veri�cation of certain industrial discrete control systems.

Formal methods for modeling and veri�cation should support the design and implementation process, but

dealing with the theory of formal modeling and veri�cation cannot be the central part of daily business of an

engineer. Hence, the formalisms of models and methods have to be adapted smoothly to the practical needs,

and, more than this, they should be encapsulated and hidden as far as possible. That means that these methods

should establish an optional support in improving the quality of a design but not a must in the design which

requires detailed background knowledge of formalmethods and eventually delays the design process signi�cantly.

Otherwise, an engineer would not accept the methods in his daily business.

A model is not the system itself but always an abstraction re
ecting some properties of the system which

are of interest for a particular question. It must be ensured that the model really copes with the aspects which

are of interest. This means that a proper modeling formalism should be chosen to meet the requirements of the

application, and that a formal or semi-formal methodology of model building should be provided.

Formal methods give answers to formal questions in terms of the formal model. Questions and answers have

to be mapped from/to properties of the real system. According to our experience it is extremely useful that

the modeling formalism is as close as possible to the real system for this purpose. Each transformation causes

a need for establishing a re-transformation and therefore more formal overhead and possibly loss of relevant

information.

Validation of real industrial control systems often requires to deal not only with control logic, but with details

of hardware and software architectures. For this reason we pay special attention to modeling of controllers,

including relevant features of corresponding operating systems, programming languages, etc. This is partly

possible regardless of particular controller details due to existence of widely accepted standards on programming

of measurement and control systems, such as IEC-61131 [1], the standard which sets programming languages

for programmable logic controllers (PLC).

The latest trends of the control system design development have been re
ected in the new standard IEC-

61499 [2]. In general these trends combine the distributed architecture of control systems (like those based

on the Fieldbus devices), and requirements to outstanding
exibility of production equipment, which ask for

easily recon�gurable and reusable software components. The IEC-61499 o�ers a new concept of function blocks,

which is a basically independent software component, connected to other blocks via data and event signals. An

1

application in terms of IEC-61499 is a net of such function blocks, and a system is formed by mapping the

(hardware independent) application to a particular (maybe distributed) architecture.

In our modeling we try to extract from the standard those parts which re
ect the most essential features

of programming for distributed control systems, namely: event connections between components, scheduling

of algorithms within a device, communication between devices and resources, and asynchronous execution of

algorithms in di�erent devices.

The paper is structured as follows: In Section 2 we describe basics of Signal Net System (abbr.:SNS)

formalism and show its application to modular modeling. The basic semantics of SNS is presented in Section 3,

and further described in Section 4 with examples of modeling which explain the motivation of the formalism's

development. Section 5 introduces our views on the structure of SNS-based veri�cation tools intended to support

design of industrial control systems. The paper is concluded by an outline of further research plans.

2 Modular Modeling of Discrete Event Systems

Inspired by the idea of Condition/Event systems as de�ned by Sreenivas and Krogh in 1991 [7] the prior work

of some of the authors dealt with providing a modeling formalism which preserves the graphical notation and

the non-interleaving semantics of Petri nets and extends them with a clear and concise notion of signal inputs

and outputs.

These models were called Net Condition Event Systems (abbr. NCES), and were further developed to more

general Signal Net Systems (SNS). Such models have been applied to a few discrete event system problems,

including controller synthesis, veri�cation, and performance analysis and evaluation. A bunch of speci�c SNS

"dialects" have been developed to cover this wide range of problems.

A module

event input

event output

event output arc

transition

flow arc

token

place

module boundary

event input arc

condition input
condition input arc

condition output

condition output arc

Figure 1: Graphical notation of the module.

From today's point of view, the general idea which is common to each particular "dialect" is quite simple,

namely the way of thinking of and modeling a system as a set of modules with a particular dynamic behavior

and their interconnection via signals. This way of modeling is a very intuitive one, and the modules can be

pre-tailored and used over and over again. Roughly spoken, the behavior of a module can be described by a

Petri net in the classical sense or even by a SNS.

Each module is equipped with inputs and outputs which are of two types:

1. Condition inputs/outputs carrying state information, and

2. Event inputs/outputs carrying state transition information.

This way the extension of the system with inputs and outputs clearly re
ects the duality of Petri nets, namely

2

the clear distinction between states and states transitions with their own graphical representation, semantics,

and formal properties. An illustrative example of the graphical notation of a module is provided in Figure 1.

Condition input signals as well as event input signals are connected with transitions inside the module.

Whether a transition of a module �res does not only depend on the current marking (as it is the case in classical

Petri nets) but also on the incoming condition and event signals. Incoming condition signals enable/disable

a transition by their values in addition to the current marking. Incoming event signals force transitions to

�re if they are enabled by marking and by condition signals. Hence, we get a modeling concept that can

represent enabling/disabling of transitions by signals as well as enforcing transitions by signals. More than this,

the concept provides a basis for a compositional approach to build larger models from smaller components.

"Composition" is performed by "glueing" inputs of one module with outputs of another module as depicted in

Figure 2.

composition arc ()condition

condition arc

composition arc event()

event arc

A module Another module

Result of the composition

Figure 2: Example of modular composition

This "glueing" is graphically represented by composition arcs. The semantics of these arcs is obvious to any

engineer who has ever modeled a system in a block-diagram oriented way. The low part of Figure 2 shows the

result of the composition. One sees that we get two kinds of new arcs, namely condition arcs and event arcs.

If such a new module is equipped with inputs and outputs, it can also be interconnected over and over again.

If the module is autonomous (it has no inputs), then and it can be analyzed without any additional information

about its external environment. Some aspects are worth mentioning before we proceed with the de�nition of

the model for an interconnected, autonomous system. These aspects are:

1. We have an intuitive way to model a system which closely corresponds to the design and engineering

practice and trends.

2. The modeling technique supports a bottom-up modeling as well as top-down strategy. One could start

with a set of modules and create a larger model by composing them. On the other hand, one could start

with a larger system and could decompose it to a set of subsystems (expressed by modules) and a set of

interconnections (expressed by composition arcs).

3. Even after composition, the state of the system is distributed, and the original structure of the modules

is preserved. Even removing a module and replacing it by another module with the same input/output

3

interface would be a local operation over the structure of the model. Hence, composition is far less

complicated as building the cross product of automata or the interleaving language. This allows us to

build models of realistic scale e�ciently.

4. On the other hand, local changes in the behavior of a single module may lead to global changes in the

behavior of the interconnected system. Hence, one needs a formal model for expressing and analyzing

the global behavior of an interconnected system. Such a model is the model of autonomous Signal/Net

system as described in the next section.

3 Dynamics of Signal/Net systems

In this section we describe the semantics of (autonomous) Signal/Net Systems rather informally. Mathematically

rigorous de�nitions can be found in [6].

In fact the SNS is a family of formalisms, having some common features on the one hand, and re
ecting

the wide spectrum of options developed in the Petri net theory, on the other. Among those are concepts of

weighted arcs (both
ow and condition), colored tokens, timing, etc. which in most cases do not contradict

to each other. It would not make sense to describe in this paper all the variety of the options provided by

SNS, they can be easily drawn and used if necessary. Instead we present the cornerstone concepts of the SNS

�rst, and then discuss their application and the use of the add-ons as they logically follow from the examples'

context. We hope that the reader is familiar with the usual terminology of Petri nets, so we outline here only

the features being characteristic to SNS.

3.1 Marking-related �ring rules

Semantics of Signal/Event nets is de�ned by the �ring rules of transitions. There are several conditions to be

ful�lled to enable a transition to �re. First, as it is in ordinary Petri nets, an enabled transition has to have a

token concession. That means that all pre-places have to be marked with at least one token1 , as it is shown in

Figure 3.

...

Figure 3: Token concession of transition.

In addition to the
ow arcs from places, a transition in SNS may have incoming condition arcs from places

and event arcs from other transitions. A transition is enabled by condition signals if all source places of the

condition signals are marked by at least one token2. Speaking more precisely, the in
uence of condition signals

to �ring is de�ned by the "condition acceptance function", which can be a logical AND or a logical OR. Default

value is AND which is interpreted as shown in the Figure 4: value of condition arc is TRUE i� the corresponding

source place is marked.

A transition is enabled by conditions i� its condition acceptance function is TRUE at the current marking.

1In case of weighted arcs, as many as the weight of the corresponding arc from the pre-place to the transition.
2Or as many as the weight of the arc.

4

&

......

Figure 4: By default a transition has "AND" condition acceptance function.

V

......

Figure 5: Default event acceptance function of forced transition is "OR".

Presence of incoming event signals essentially changes the �ring rule of a transition. Transitions having no

incoming event arcs are called spontaneous, otherwise forced. The default event sensitivity mode of a forced

transition is OR: presence of at least one non-zero event signal is required to enable transitions by event signals.

A forced transition is enabled if it has token concession, it is enabled by conditions, and its event sensitivity

function evaluates to TRUE.

SNS are executed in steps, which are the sets of simultaneously �ring transitions. An executable step is

formed by �rst picking up a nonempty subset of enabled spontaneous transitions, and then adding as many as

possible of enabled transitions which are forced to �re by signal-events produced by other transitions included

in the step. Such step is called maximal with respect to its forced transitions.

3.2 Timing �ring rule

A concept of discrete timing is applied to the SNS as follows: to every pre-arc [p; t] of the transition p we attach

an interval [l; h] of natural numbers with 0 � l � h � 1. The interval is also referred to as permeability interval.

If a pre-arc has no explicitly designated permeability interval, it is assumed to be [0;1]. The interpretation is

as follows. Every place p bears a clock u(p) which is running i� the place is marked (m(p) > 0) and switched

o� otherwise. All running clocks run at the same speed measuring the time the token status of its place has not

been changed, i.e. the clock on a marked place p shows the age of the youngest token on p. If a �ring transition

t removes a token from the place p or adds a token to p, the clock of p is turned back to 0. A (marking-enabled)

transition t is time-enabled only if for any pre-place p of t the clock at place p shows a time u(p) such that

l(p; t) � u(p) � h(p; t).

A state is called dead if no transition is time-enabled and no transition would become able to �re after any

increments of the clocks. At a given state all (time-)enabled steps have to be computed and placed into the list

of enabled steps. Firing of each step brings one more state successor to the current state. Repetitive application

of this procedure to every subsequent state forms the reachability space of the model.

Time-enableness is a required but not su�cient condition to include transition to the �ring step. The

interpretation of the timing intervals is de�ned by timing �ring rule. Several such rules have been studied:

1. Strong vs. weak �ring: with the strong rule all marking enabled (spontaneous) transitions which have

pre-places with clock position equal to the low or high time limit are obligatorily inserted into the step

5

(can be speci�ed to make e.g. either strong earliest �ring rule, or strong latest �ring rule, etc.). If the

weak rule is chosen then at least one of the enabled spontaneous transitions has to be included in step.

2. Earliest vs. interval �ring: In case of the interval �ring a transition is time-enabled at every clock

position within the interval [l; h]. In the earliest �ring rule a transition is time-enabled if it a has a

pre-place with clock value equal to the low bound l of the time interval.

3. Ultimo �ring: is a certain combination of interval and strong rules: a transition is time-enabled every

time tick within the interval and must �re at the latest at clock position equal to h.

Processes in discrete modeling are represented as states which can be modeled in SNS as places with safe

(0/1) marking. Each stable state can be also explicitly associated with duration. Figure 6,a shows an example

of such a model. The time consuming state, represented by p1, models the action in progress. Transition t0 has

incoming condition arc which starts the process. The process is in progress while the p1 is marked.

a)

p1

p2

time-consuming
state

next state

process

ended

process

in progress

process enabling

condition

t1

t0

[,]l h

Process

…

…
b)

p1

p2

previous
state

next state

process

ended

enabling

condition
t1

[0,oo]

Instant process
…

…

Figure 6: a)Model of plain time consuming process; b)Model of instant process.

Among all possible combinations of time constants and time-�ring rules, some were found of interest in some

industrial applications. These combinations are presented in Table 1.

Time constants Firing rule Interpretation

1. l > 0; h � l Interval, weak Event is expected with minimum delay l, maximum delay h,

and may not occur at all.

2. l > 0; h � l Ultimo Process must get terminated within the interval [l; h].

3. l > 0; h =1 Earliest, strong Process has duration l, and all simultaneously started

processes with the same duration �nish simultaneously.

4. l > 0; h =1 Earliest, weak Process has duration l, but termination of all processes with the

same duration may be not synchronized.

Table 1: Combinations of time-�ring rule and time intervals commonly used for modeling.

The lower or higher time limits may or may not (depending on the corresponding rule) force transition

to �re. The "interval" �ring rule accepts presence of empty transition steps, when time elapses even in the

absence of any enabled transitions. This option may be useful if aimed at �nding of all possible combinations

of overlapping processes and, correspondingly, simultaneous events. On the other hand it obviously blows up

6

the complexity of the reachability space. We understand that the variety of choices may be confusing, however,

on the other hand, it extends modeling horizons and allows to describe models more concisely.

There are some processes which have no duration, or it can be neglected in comparison to other ones. Such

processes are called "instant". An example of a model of such a process is given in Figure 6,b. The process is

started by "enabling condition", but no place marking corresponds to the state "process in progress".

More realistic modeling of processes may include exceptional states in which the system comes in case of

abnormal process termination. The place p1 (modeling the time-consuming state as in the previous example) is

connected with two transitions: t1 stands for normal operation mode with duration as described in the previous

case, while the t2 models the exception state, which may occur anytime within the normal operation time. This

model is most adequate with the "ultimo" �ring rule and h <1. The reached upper time limit forces only one

of the transitions: either ending the action normally, or exceptionally.

p1
p3

p2

time-consuming
state

exception
state

process

in progress

process

ended

normally

process

ended

abnormally

next state

t1

t2
[,]l h

[0,]h

…

…

Process with exception

Figure 7: Model of process with possible exception

4 Applications of the SNS modeling

4.1 Models of closed-loop controller-plant system

An industrial automation system can be seen as built from two conceptually di�erent parts: controller and

uncontrolled plant. The controller performs data processing, communication and decision making, the plant

contains the material-processing part of equipment. Depending on the required accuracy of modeling, the

model of plant may include components for each drive, motor, valve, electric relay, sensor, actuator, and other

elementary pieces of equipment. These component models may be integrated to composite models of equipment

units, such as machine tools, or other material processing and storage units.

While following the general modeling principles layed yet in [4], in this paper we especially emphasize on its

application for veri�cation of controllers. To be really useful for veri�cation purposes, the model of the plant

must have its own dynamics, i.e. generate events, and respond to interaction from the controller as the real

plant would.

The SNS as a direct derivative of Petri nets allows to combine state machine- like modeling of processes (in

modules with safe marking) along with e�cient concurrency and quantitative modeling of capacities, material

ows, etc., in modules with numerical marking.

Spontaneous transitions in the model of plant may represent various non-determined or multi-choice actions,

providing the check of controller's behavior on the variety of input combinations which may occur due to

dynamic nature of concurrency in the plant, variable duration of operations, and resource con
icts. If several

such transitions are enabled it re
ects the situation when several simultaneous processes take part. When these

are combined with the model of a controller, each of the processes may ask for the corresponding reaction.

7

Both non-timed and timed models can be used to ful�ll di�erent aspects of veri�cation. The non-timed

discrete event models usually better cope with complexity constrains, though they are obviously limited in

accuracy and provide little information for estimations. However, for the veri�cation purposes these may be

quite enough since they generate all feasible trajectories of the plant's behavior. The timed models are expected

to be more representative though this inevitably connected with state explosion, since every time tick produces

a separate state in the state space of the model. Discrete formalisms with discrete time are limited in precision

of the given results (for obvious reasons) if compared with description of the system using hybrid formalisms.

The challenge is to squeeze as much as possible from the discrete formalisms, while enjoying their favorable

complexity estimations.

Modeling of logic controllers using Petri-net like formalisms also has some background (works [3, 5] can

be mentioned as examples). Use of SNS simpli�es assembling the model from the components. Besides such

key features of SNS as event/data connections closely correspond to the latest trends in controller design

methodology presented in the IEC-61499.

Connection between controller and plant in most cases is implemented via logic level signals. Once value of a

sensor is set, a certain time passes until the value is polled by the controller. So the value has clearly prolonged

nature. The same is true for the output values connected to the actuators - usually they held for certain time.

Such a connection is modeled in SNS as by means of condition arcs. Event signals are used for in both models

of plant and controller but not between them. In the model of plant the events may be used for example, to

model the causal behavior of sensors in
uenced from the observed processes. In controllers the event signals

model the actions explicitly de�ned as event-driven (say, event-connected function blocks in IEC-61499), as well

as a lot of other operations: procedure calls, setting/resetting variables, etc.

Modeling can be performed in either open-loop or closed loop way. The open-loop modeling usually is a

more economical solution which bases on the partial model of controller inputs which help to generate the

outputs and then verify their correctness. The closed-loop model requires a comprehensive model of the plant

which models its partial or full dynamics. It not only generates the inputs but also receives the outputs and

correspondingly modi�es its internal state. In both cases inputs and outputs of plant and controller are modeled

as condition signal inputs and outputs of the corresponding SNS modules.

4.2 Two time scales: ticks in controller and time-elapsing in the plant

Timing is used in controller and plant to achieve adequate behavior of the model. In return it allows to make

quantitative time estimations, or solve optimization problems such as �nding a control strategy with minimal

duration of the technological cycle, etc.

Once all the SNS modules have been interconnected into Signal/Event Net, the resulting net has a common

time unit. That is why for modeling of objects with di�erent time scales the minimum basic time unit over all

components has to be selected.

Every time increment brings the model to a new state, which obviously means state explosion if we try to

decrease the basic time unit. This is especially sensitive in the closed-loop models. The common sense suggests

to accept the time scale of the most relevant processes in the plant, and assume that processes in controller

(or some 'fast' (electric) units of the plant, such as sensors, or relais) as having zero duration. However, some

estimations in controller still can be done by measuring the number of executed commands (or number of

transitions in SNS).

Modeling of a program unit which takes 100 commands for execution can be modeled as shown in Figure 8:

initial place p1 is loaded with 100 tokens, and with every transition t1 one token
ows from p1 to p2 through

the
ow arcs with multiplicity 1 until all the tokens come to p2. Then all the tokens come back to p1 in one

8

p1

p2

t1 t2

1

1

100

100

100

Figure 8: Program delay - model of the controller module which requires 100 commands for execution.

transition t2 through the arcs with multiplicity 100.

4.3 Interaction between process and sensor

Event arcs are able to express the variety of instantaneous actions, one of which is operation of a sensor which

detects the changes of the plant's state (see Figure 9). Once transition t1 in the model of the process �res, it

also switches the sensor ON by means of the event arc. Model of sensor comes �rst to the transitional state

(marking in p2) and after the delay D - to the state with p3 = 1. Reading of the sensor usually comes to

controller as a logic value modeled in our formalism as a condition signal.

Note that in the Figure 9 we model the "malfunction free" sensor which always produces the required value

upon elapsing the speci�ed time D. Model of sensor can be either simpler (just a bi-stable) or much more

complicated, depending on the required accuracy of modeling.

p1

p2

p3

...

t1

t2

t2

p2
[D,oo]

[D,oo]

t1

p1

t3

p3

t4

p4

to controller

previous state

the state being
detected

next state

Sensor

“0”

“1”

Process

Figure 9: Model of sensing: sensor detects when the process comes to the observed state and with delay produces the required

logic value (places p1,p4 of the module "Sensor").

4.4 Modeling of controller and its interaction with plant

Controller's data are modeled by marking of places, each data element is represented by a module. For logic

data the marking is safe. The executed control algorithms (both system and user-de�ned) are modeled by nets

in which places represent the current point of execution and transitions model actions such as basic or macro

commands. Such "execution logic" modules interact with the data modules using event arcs to change the data

values and using the condition arcs to read them.

Plants and controllers cannot be modeled uniformly. Transitions in the plant represent usually start or

9

�nish of some time consuming actions, while transitions in the controller part of the module represent almost

instantaneously executed commands. Hence, when two transitions are enabled, one in the plant, and the

other in the controller, �rst the latter has to be executed. On the other hand we try to make the component

model as much independent from each other as it is possible to provide better reusability of both. To avoid

further complications in the description of the required behavior two mechanisms were introduced. All these

modi�cations apply only to spontaneous transitions. More precisely, they reduce the number of executable steps

as compared to the previously explained �ring rule eliminating some unfeasible ones from the total list of steps.

The �rst, "greedy" transition approach is aimed at non-timed models. All spontaneous transitions in the

controller (like those in the "execution logic" part) are marked as greedy. According to the greedy �ring rule,

if a greedy transition is enabled, then each executable step must include at least one greedy transition. This

guarantees that all enabled transitions (commands) in the controller model will be executed until the next action

occurs in the model of plant.

The other option, intended for timed models, is to de�ne synchronization sets of non-empty, pairwise disjoint

sets of spontaneous transitions, such that di�erent sets have no pre-places in common. All enabled transitions

in the same synchronization set should �re simultaneously (except for those in con
ict to each other): if at least

one member of the synchronization set is included into a step, that means that all other enabled transitions

from the same synchronization set have to be also included in the step (as far as they do not make con
icts to

each other). In a particular case when all the spontaneous transitions form one synchronization set, we get the

"strong" �ring rule. Use of the synchronization sets will be illustrated in the next section.

Consider a simple example of process/controller communication as shown in Figure 10.

p3

p4

p5

p1

p2

t2t1
t4

t5

t3

tg

[1,oo]

[1,oo]

[1,oo]

[1,oo]

[1,oo]

Plant

Observer

001: WAIT STATE=ON

002: COMPUTATION

003: WAIT STATE=OFF

STATE=OFF

STATE=ON

RELEASE

DETECT

004: JMP 001

Figure 10: Simple example of plant/controller interaction

The process is represented by the basic unit of plant which has two
ip-
op states (as up{down, left{right,

on{o�) modeled by places p1 and p2. Transitions between the states are spontaneous. First assume that the

model is not timed (omit the time intervals attached to the arcs).

The block "Observer" makes a "moment photo" of the process, i.e. reads the value of state in the loop

(input DETECT), and when it is "ON" (i.e. p2 = 1), performs some computations and stores the value in the

memory. When the state becomes "OFF" (input "RELEASE"), the observer clears the memory and returns to

the initial state.

If the case of timed model at the clock value u(p2) = 0 (i.e. right after the place p2 gets marked) the process

in the plant is delayed, and only transition t3, corresponding to the information reading command, is enabled.

The only possible sequence of �ring is: t3 ! t4 ! (after 1 time unit) t2 ! t5.

If the non-timed model is used, and transitions in the observer are also spontaneous, then in the state,

10

shown in Figure 10, there would be the following enabled steps of transitions: s1 = ft2g,s2 = ft3g,s3 = ft2; t3g.

However, the �rst step is not feasible: it re
ects the situation when the state is changed (marking in the p2),

but controller does not start the corresponding action, although it was able to do so (was not busy), and

information about the action is lost. Figure 11,a shows the state diagram re
ecting the correct modeling of the

interconnected system, while Figure 11,b presents the diagram of the modeling scenario which can never occur

in the reality. Due to the simultaneous enableness of the transitions t2; t3 this scenario re
ects the situation

when state of the plant changes as fast as the �rst command in the controller gets executed (initiated by the

previous change of the plant's state).

a)

OFF

ON

P3

P4

P5
b)

OFF

ON

P3

P4

P5

Figure 11: Desirable and incorrect sequence of plant/controller states. The sequence presented in the part b) can never occur in

the reality but is generated by the model.

S1

{2}

{2,3}

{3}

S2

{1}

S3
{1}

{1,4}

{

{

4

4

}

}

S4

{2}

{2,4}

{

{

4

4

}

}

S5
{2}

S6

{1}

{1,5}

{5}

Figure 12: Reachability graph of the interconnected system. Trajectories eliminated by the "greedy" tick generator are dotted.

Greedy transitions help to cope with this problem. We add (an always enabled) greedy transition tg,

connected to t3; t4; t5 via (dotted) event arcs. It �res always (i.e. it is included to every executable step)

sending forcing "ticks" to the transitions corresponding to the commands in the controller no matter what is

going on in the plant. As a result some trajectories are eliminated from the reachability graph of the model, as

it is illustrated in Figure 12.

Remark: we could mark transitions t3; t4; t5 as greedy, and that would bring us in this example the equivalent

11

behavior. However the structure with the "tick" generator is more
exible: we can easier synchronize (or model

as asynchronous) distributed components of controllers, as this will be illustrated in the next section.

4.5 Distributed controllers

More realistic architectures of distributed control systems may include several autonomous controllers, some of

which work asynchronously with data exchange via a (distributed) network, while the others co-exist within one

device, thus being synchronized. The architecture may also in
uence the occurrence of new trajectories in the

system's state space which are not feasible in local centralized architectures. Consider the system built from

two concurrently working earlier considered subsystems.

tg12

p3

p4

p5

p1

p2

t2t1
t4

t5

t3

tg1

[1,oo]

[1,oo]

Plant-1

Observer-1

STATE=OFF

STATE=ON

p8

p9

p1 0

p6

p7

t7t6 t9

t10

t8

tg2

[1,oo]

[1,oo]

Plant-2

Observer-2

STATE=OFF

STATE=ON

Figure 13: Two concurrent processes in the plant being observed by two independent controllers.

In the non-timed model the greedy transitions ensure that the model generates all possible sequencing of com-

mands. In the state presented in the Figure 13, there are 12 enabled steps: fftg1; t3g; ftg2; t8g; ftg1; t3; tg2; t8gg�

ffg; ft2g; ft7g; ft2; t7gg. For example: ftg1; t3; t2g; ftg2; t8; t2; t7g; ftg1; t3; tg2; t8g, etc. For instance, the step

ftg1; t3g models the situation when observer 1 has started processing, while the other observer still has not.

The proposed solution allows easy change of the architectures. Thus, if the two observers would be placed

within the same controller device (becoming thus syncronized), it is enough to substitute the two tick generating

transitions tg1 and tg2 by tg12 as shown in the Figure 13. Then, only 4 steps would be possible in the given

state: ftg12; t3; t8g � fft2g; ft4g; ft2; t4g; fgg.

Behavior similar to the "greedy" transitions is modeled in timed models by means of synchronization sets.

All transitions in the controller part of the model, which are driven by the "greedy" transitions in the non-timed

model, are marked as members of a particular synchronization set, associated with the controller. Membership

in a particular synchronization set has the only consequence on the �ring of transitions: all enabled transitions

belonging to the same set are included in the �ring step only all together. It has no consequences in the

simplest case when a module has the safe marking and one �ring spontaneous transition at once. But in case of

several simultaneous actions taking place in controller, there is a need to separate them out from other groups

of actions taking place in other controllers. In the example in Figure 13 we de�ne two synchronization sets

: S1 = ft3; t4; t5g and S2 = ft8; t9; t10g to model the allocation of the observers to separate devices. The

reachability graph for this model is presented in Figure 14 with initial state S1 equivalent to that shown in

Figure13 and with clock values equal to 0 in all places.

12

S1

S3

S11

S7

S15

S6

S14

S2

S18 S20 S22

S10

S5

S13

S4

S19 S21 S23

S12

S9

S17

S8

S16

{3,8}
{8}

{8}

{3}

{3}

{3,9}
{9}

{4,9}

{9}
{4,8}

{4
}

{8}{9}
{4}

{2,7} {7}
{2}

{5,10}

{10}

{5}
{2,10}

{10}

{7}

{5,7}

{5}

{6}

{1}

{1,6} {5}
{10}

{2}

{7}

{1}

{8}

{1,8}

{9}

{1}

{1,8}

{1}

{3}
{4}

{4,6}

{6}

{6}

Figure 14: Reachability graph for the timed model with two synchro-sets (The "observers" reside in independent devices). The

bold arcs have duration 1.

A path in the reachability graph corresponds to a particular scenario of the system's operation. Consider,

for example, the path outlined in Figure 14. The state/timing diagram of the model propagating along this

path is shown in Figure 15.

The �rst observer starts computation in response to the occurrence of the marking in p2. It makes two

computation steps before the second observer starts its execution in response to another event (marking in p7).

Note that results of the computation may be used by other controllers (not present in this example), so that

their sequence is important.

OFF

Process 1

Observer 1

Observer 2

Process 2

OFF

ON

ON

P3

P8

P4

P9

P5

P10

Figure 15: State/timingdiagramof the outlinedpath in the reachabilitygraph. Short intervals represent states with zero-duration,

larger intervals represent states with duration 1.

13

5 Conclusion

We presented in the paper some ideas for discrete-event modeling of closed-loop control systems which may

serve as a basis for developing of a practically applicable tool for testing and veri�cation of discrete control

systems.

Such a tool, called VEDA - Veri�cation Environment for Distributed Applications, - is being developed by

the authors in cooperation with the group of Prof. P.Starke at Humboldt University, Berlin. The tool has the

following characteristic features:

� It deals with source code of controllers following IEC-61131 and IEC-61499, and it automatically generates

the formal model of the controller given the controller source code.

� It provides facilities to develop SNS models of plants: a graphic editor for Petri net-like models plus a

means to specify visualization of the model.

� It allows simulation and model-checking of the controller/plant closed-loop system. It therefore o�ers a

number of visual tools to analyze the behavior of the models (tracing trajectories with timing diagrams

of all the parameters);

� It facilitates formulation of speci�cations using a visual editor of speci�cations presented in a sort of

state/timing diagram;

For more details on VEDA see [8]. We applied the presented methods of modeling to automatic model gen-

eration of IEC-61499 function blocks, including such their features, as event-driven data and execution control,

distribution of blocks over several devices, scheduling and execution of algorithms, and data communication

between devices. The modeling also helped to reveal some incorrectness in the descriptions of function block

internal behavior as they were presented in the draft of the standard. Veri�cation of distributed controllers

using SNS modeling is discussed in more details in [10, 9].

Plans for future work in this direction include further development of VEDA, along with its testing on

real-scale examples of control applications. This work includes also continuation of the theoretical studies, in

particular those related to formulation of speci�cations, their consistency check and transformation to equivalent

SNS models, as well as development of more adequate speci�cation language, and model-checking methods,

allowing to deal with both condition and event formula.

References

[1] International Standard IEC 1131-3, Programmable Controllers - Part 3. International Electrotechnical

Commission, Geneva, Suisse, 1993.

[2] Function Blocks for Industrial Process Measurement and Control Systems. International Electrotechnical

Commission, Tech.Comm. 65, Working group 6, Geneva, 1998.

[3] P. J.Zaytoon De Loor and G.Villerman-Lecolier. Abstraction and heuristics for the validation Grafcet

controlled systems. European Journal of Automation, 31:561{580, 1997.

[4] H.-M.Hanisch. Petri Netze in der Verfahrenstechnik. Oldenburg, M�unchen, 1992.

[5] H.-M. Hanisch, J. Thieme, A. L�uder, and O. Wienhold. Modeling of PLC behavior by means of timed net

condition/event systems. In International conference on Emerging Technologies and Factory Automation

(ETFA'97), Los Angeles, USA, September 1997.

14

[6] P.Starke, S.Roch, K.Schmidt, H.-M. Hanisch, and A.L�uder. Analysing signal-event systems. Humboldt

Universit�at zu Berlin, Institut f�ur Informatik, July 1999. Internal report.

[7] R.S.Sreenivas and B.H.Krogh. On condition/event systems with discrete state realizations. Discrete Event

Dynamic Systems: Theory and Applications, 2(1):209{236, 1991.

[8] Vyatkin V. and Hanisch H.-M. VEDA - a prototype tool for deep debugging of distributed applications.

Information lea
et, June 2000. http://www.et.uni-magdeburg.de/�vyatkin/refs/veda.pdf.

[9] V.Vyatkin, H.-M. Hanisch, P. Starke, and S. Roch. Modelling and veri�cation of execution con-

trol of the function blocks following the standard IEC 1499 by means of net condition/event sys-

tems (NCES). Technical report, Uni-Magdeburg, IFAT, Magdeburg, March 2000. http://www.et.uni-

magdeburg.de/�vyatkin/refs/report.pdf.

[10] V. Vyatkin and H.-M. Hanisch. Modeling of IEC 61499 function blocks as a clue to their veri�cation. In

XI Workshop on Supervising and Diagnostics of Machining Systems, Karpacz, Poland, March 2000.

15

