
Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

APPLICATION OF VISUAL SPECIFICATIONS
FOR VERIFICATION OF DISTRIBUTED CONTROLLERS

VALERIY VYATKIN and HANS-MICHAEL HANISCH

Automation Technology Group, Department of Engineering Science,
Martin Luther University Halle-Wittenberg, Dept. of Engineering Sciences, D-06099 Halle, GERMANY

Abstract

In a search of an appropriate visual specification
language to be applied in control engineering the
timing diagram specification language is suggested. It
is applied to the verification of distributed controllers
following the standard IEC 61499. Specification of
inputs and outputs of the controller are given in the
graphical form of signal diagrams. The inputs are then
converted into finite-state models, while the diagram of
outputs is used to build equivalent analytic expressions
in extended CTL. These two parts are used in formal
verification of the control system.
Keywords

Timing diagrams, IEC 61499, discrete-event
modeling, verification

1 Introduction

Controllers in industrial automation interact in a
closed-loop way with the system under control, called
plant. A major issue in the controller design is to
guarantee that the plant shows some desired behavior
and/or does not realize some kind of forbidden
(dangerous) behavior.

Formal verification of control systems, introduced
in [2], [3] extends the borders of common testing. It
can be done automatically using formal models of
plant, controller, and formal specifications of desired
(or undesired) behavior. Currently verification of
controllers is a quite popular topic of research in
academia. However, despite of its numerous
advantages, it is still a rare bird in the practice of
control engineering. One of the reasons of that is that
the languages commonly used for specification of
properties, such as temporal logic, are not familiar to
the potential users of such systems, i.e. control
engineers. On the other hand the variety of possible
patterns of specifications in control engineering is
quite limited. The following patterns of specification
are the most commonly used in verification of control
systems:
1. Safety properties, describing presence or absence of
dangerous states in the reachability space of the
model;
2. Freedom from deadlocks, i.e. absence of the states
having no successor states in the reachability space.

3. Reactivity, which ensures that a certain input
combination always causes the corresponding
reaction.
4. Compliance with linear specification (such as
scenario, recipe, etc.). This type of specification is
usually presented as a linear or cyclic state chart.

In this work we study applicability of timing
diagrams to be used in the role of specification
language. Timing diagrams of signals are widely used
in the technical literature and documentation on digital
devices as a convenient and rigorous form of data
presentation.

Recently a special interest has been shown to the
application of timing diagrams as means of
specification of input/output behavior for further
application in formal verification of hardware [4,5,6].

Despite of many similarities with the hardware
design, the verification in automation has essential
particular features. The necessary part of the
verification of control systems are models of plants
providing the adequate asynchronous dynamics.
Semantics of controllers is also quite different from
that of digital devices.

In this paper we focus on the issues specific for
application of timing diagrams for specification and
verification purposes of some classes of industrial
automation systems.

The paper is structured as follows. In Section 2 we
briefly introduce modeling of distributed control
systems using Net Condition/Event systems. Then, in
Section 3, based on the constraints of the modeling
framework and requirements of the application
domain, we define the timing diagrams specification
language. In Section 4 the implementation issues are
presented, and in Section 5 an example of application
is given. The paper is concluded by a summary of
advantages and disadvantages of the proposed
approach.

2 Modeling using Net Condition/Event Systems

Formal verification seems to be especially
beneficial when applied to distributed control systems.
For formal verification of such systems we are
developing an integrated software package VEDA -
Verification Environment for Distributed Applications
[11]. VEDA is destined for direct application by
control engineers, in order to extend their testing
capabilities. The input for VEDA is a source code of

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

distributed control application, represented according
to IEC61499, that is a new international standard-
under-development [1]. In IEC61499 an application is
a net of function blocks, having event and data inputs
and outputs. Each function block implements a
particular controller, or a control function. Its
functionality is programmed by state charts and
languages of IEC61131. Further, in Section 5 an
example of such an application is presented.

As the underlying modeling formalism, VEDA
uses the Net Condition/Event Systems (NCES) [7] – a
Place/Transition net with modularity support. VEDA
automatically generates the NCES model of
controllers presented as IEC61499 function blocks,
and performs model-checking in closed-loop with
manually developed NCES models of plants. VEDA
performs the model-checking of specifications given
in eCTL [13], an extension of CTL designed to refer
to both state and state-transitions in formulae. The
Timing Diagram Specification Language (TDSL),
described in this paper, provides a way of visual
specifications complementary to eCTL.

Net Condition/Event systems is a finite state
formalism which preserves the graphical notation and
the non-interleaving semantics of Petri nets, and
extends them with a clear and concise notion of signal
inputs and outputs.

Figure 1. Two NCES modules interconnected by condition and
event arcs.

Given a place/transition net)0(P,T,F,mN ? with
set of places P, set of net transitions T, flow relation F,
and initial marking of places m0, the Net
Condition/Event system is defined as a tuple

, Gr),(N,N NN ?? ? , where N? is an internal
structure of signal arcs, N? is an input/output
structure, and TGr ? is a set of so called "obliged"
transitions. The structure N? consists of condition
and event inputs and outputs ci,ei,eo,co. The structure

N? is formed from two types of signal arcs. Condition
arcs lead from places and condition inputs to
transitions and condition outputs, providing additional
enableness conditions of the recipient transitions.
Event arcs from transitions and event inputs to
transitions and event outputs provide one-sided
synchronization of the recipient transitions: firing of
the source transition forces firing of the recipient, if
the latter is enabled by the marking and conditions.

The NCES modules can be interconnected by
condition and event arcs, forming thus distributed and
hierarchical models. Figure 1 shows an example of
NCES which consists of two interconnected modules.
NCES having no inputs are called Signal-Net Systems
(SNS) [8,12]. The model in Figure 1 is a SNS. The
SNS can be analyzed without any additional
information about its external environment. Semantics
of SNS covers both asynchronous and synchronous
behavior that is necessary when modeling of
interconnected plants/controller system is concerned.

A state of the NCES module is completely
determined by the current marking 0Nm: P ? of
places and values of inputs. A state transition is
determined by the subset T?? of simultaneously
fired transitions, called step. The transitions having no
incoming event arcs are called spontaneous, otherwise
forced. A step fully determines the values of event-
outputs of the module. A step is formed by selection
of some of the enabled spontaneous transitions, and all
the enabled transitions forced by the transitions
already included in the step. Thus both states and
transitions of NCES models are distributed, that
allows more efficient modeling of distributed systems.

A tuple ?,S,R,sM 1? denotes the reachability
graph of a SNS N, where S is a finite set of reachable
states, SSR ?? is a finite set of transitions
between states, and S s ?1 is an initial state. The
state transitions are marked by the corresponding steps

TR 2?:? . A state trajectory is a (possibly infinite)
sequence of states ,,s,s,s(s) ii 11 ?? in a path of
the reachability graph, starting in the root 1s .
Scenarios of model’s behavior correspond to the
trajectories. The states of the model along a trajectory
can be represented by means of symbol sequences, i.e.
words, or graphically, by diagrams.

Figure 2. Reachability graph of the interconnected NCES model
with outlined path and state diagram of input/output signals of the
modules.

In timed NCES arcs from places to transitions are
marked with time intervals, defining low and high
limits of the transition’s enableness. All places bear
the clocks counting the age of the marking. Then, a
transition is enabled not only when its pre-places are
sufficiently marked, but also when values of their

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

clocks are within the time intervals of the incoming
arcs of the transition. Clocks of marked places
increase their values by discrete units when there are
no enabled transitions in the state, but some of the
transition might become enabled after such an
increment of clocks. As a direct consequence, the
states have attribute “delay”, that specifies time
increment of the clocks of this state with respect to the
clocks of its predecessors. It can be said also that state
transition ji SS ?:? has duration ? , if the state Sj

has such a delay.
The following features specify modeling of control

systems, composed of IEC61499 function blocks and
model of plant, by NCES:

1. Every Boolean variable of the original block (or in
the plant model, e.g. Boolean sensors) is modeled
by an NCES module with two places, similar to
Module 2 in Figure 1. Thus for each Boolean
variable a, there exists a place in the model marked
iff the original variable has value 1, and there exist
exactly two transitions, one of which corresponds
to the event a+ (when a changes its value from 0 to
1), and the other to event a- (from 1 to 0).

2. Event variables of function blocks acquire non-
zero values only instantaneously. These are
modeled by firing of net transitions.
Figure 2 shows the reachability graph of the model

from Figure 1. A trajectory is outlined in the graph
and some parameters of the model are shown along
the trajectory in the graphical form of state/time
diagram.

To present concise relation between the finite
specification and infinite behavior of the model we
use the notation of input/output event languages,
adopted from [9,10]. Some necessary definitions
follow.

The state of the model can be also determined by a
sequence of events, related to each parameter. Let us
denote relevant parameters of the model in Figure 1 as
a=M1.eo1, b=M1.co1, c=M2.co1. Then, event a+ occurs
iff transition t2 fires, denoted as 2ta ?? .

Similarly 21 ttb ??? , 3tb ?? , 4tc ?? , 5tc ?? .
Taking symbols {a+,b+,b-,c+,c-} as basic event
alphabet M of the model, a state transition step can be
represented as a non-ordered subset of M, called
parallel symbol. For example, the step corresponding
to the state transition 31 SS ? is defined as

),,(??? cba , and step 43 SS ? as)(?b . Set 2M forms
the alphabet of parallel symbols, that describe changes
of relevant parameters of the NCES model. For
simplicity we denote 2M as event alphabet of the
model. A finite part of any trajectory can be
represented then as string of the event alphabet, and

the behavior of the model can be represented by
language LM, comprising all such strings.

VEDA deals with both timed and non-timed
models. Operations in the controllers defined
according with IEC61499 are driven by events coming
from plant. Correspondingly, in the NCES model of
controllers unit operations in the controller are
modeled by state transitions having zero time
duration. Quantitative measurement of such durations
can be realized by counting their number. Some time-
consuming processes in the plant are modeled by state
transitions having non-zero duration. This durations
are ignored by VEDA if the non-timed model option is
selected.

3 Timing Diagram Specification Language

The works [4,5,6], where timing diagrams were
used for specification and verification of hardware
devices, show some approaches to formalization of
diagram’s syntax and semantics. These are quite
similar to each other, though have certain variations.
Thus, in [4] the timing diagrams are defined as a
collection of waveforms that determine a finite
sequence of events (i.e. value changes) of a particular
variable of the modeled system. For simplicity we
constrain ourselves with two types of the parameters:
impulse (or event) parameters, and Boolean
parameters.

Figure 3. Sample timing diagram specification.

Collection of waveforms defines in general an

asynchronous product of the corresponding event
sequences. Thus a timing diagram may define a
number of possible behaviors of the model. To restrict
some of the behaviors, so called sequential
dependencies between any two events (possibly
belonging to different waveforms) can be used. Each
dependency (e.g. between events e1 and e2) is
specified by a timing interval [lo,hi] (where

}{0?? Nlo , }{}{ ???? 0Nhi), meaning that e2
occurs after e1 within the [lo,hi] time bounds.

Along with the time interval constrains we
introduce the following qualitative constraints used to
specify the sequential dependencies:
> event e2 occurs later than e1.
? event e2 occurs not earlier than e1.
? event e2 does not occur simultaneously with e1;
? event e2 occurs exactly in the next state to e1;

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

= events e2 and e1 occur simultaneously;
Figure 3 shows an example of a timing diagram

with such qualitative constrains imposed. In the rest of
this paper, for simplicity we deal with specifications
having only qualitative constrains. Default constraint
between consequent events is ? .

A timing diagram specifies only a finite behavior
of the model, i.e. that can be represented as a finite set
of finite strings in alphabet 2M. Let us call this set
finite language of the diagram and denote it by LD.

We define that a string a admits string b (denoted
ba) iff the projected string ba | , obtained from a

by removing all symbols not present in b, includes b
as a substring. For example strings ‘mnnk’, ‘mnkk’
admit string ‘mk’, while string ‘kmnn’ does not admit
‘mk’. An infinite string MLs ? is said to admit
specification diagram D (denoted Ds) if it admits
at least one of the strings in LD.

We explicitly divide our specification diagrams to
the input and output parts. Input and output
projections Inps | , Outs | of a specification string

DLs ? denote correspondingly projections of s to the
basic alphabets of input and output events.
Inp(D),Out(D) denote correspondingly sets of input
and output projections of strings from D.

Two following approaches to verification with
TDSL have been studied:
Closed-loop. When the model consists of plant and
controller interconnected in closed loop, the TDSL is
used to specify visually a collection of finite scenarios
which then have to be checked with respect to the
(infinite) behavior of the model.

The specification is automatically translated either
to eCTL, or to the corresponding NCES model, which
then serves as a supervisor of the original model. The
following semantic interpretations can be used:

Existence of the specified behavior: At least one of
the finite scenarios, specified by the timing diagram
occurs in the infinite behavior of the model, that means

DsLs M :?? .
Existence of all specified scenarios. All finite
scenarios occur in the infinite behavior of the model

csLsDc M :???? .
Generality of the specified behavior: All trajectories
in the infinite behavior of the model satisfy to the
specification, i.e. each infinite trajectory satisfies to one
of the finite scenarios: csDcLs M :???? .
Conditional existence: For all trajectories, where the
specified input behavior holds, the output behavior also
holds: DsDInpss Inp ??)(|: .

These properties can be expressed in eCTL and
proved with respect to the original model and model
of specifications using the model-checker of VEDA.

Open-loop. Sometimes the closed-loop pattern cannot
be applied. For instance, a model of plant could be not
available, or verification of only some parts of the
control system is required. In this case the part of
TDSL specification corresponding to the input is used
to generate the NCES model of input behavior, while
the other, output part is translated to the corresponding
eCTL specification. The interconnected model,
obtained after connecting the NCES model of inputs
with an automatically generated model of SNS
controller, is used then in model-checking.

In the open-loop pattern the input part of
specification is guaranteed to hold for all possible
behaviors of the model. Then verification inquiries
should refer only to the output behavior of the model.

4 Implementation of TDSL

Basic principles of NCES model generation for
timing diagrams refer to both closed-loop and open-
loop verification patterns.

Figure 4. NCES model of the timing diagram specification from
Figure 3.

The model is composed from the following
modules:

Generators of the event sequence for each waveform
of the diagram. It implements generation of events in
the order described in the diagram, taking into account
the sequential constraints.
Data implementation module for every input signal of
the diagram. Those data modules which model input
parameters have to be directly connected to the inputs
of the verified model, while the outputs can be used to
check admissibility of the specification.

Transitions of the event generators are connected
to the data implementation modules by event arcs.
Assuming that both parameters A and B in Figure 3
belong to the input of the model, an example of the
corresponding generator is presented Figure 4. Each
event contained in the diagram is mapped into a
transition of the event generator, which sets the
corresponding values of the signals by means of the
event arcs attached to the corresponding inputs of the
model modules. It is obvious, that the specification as
given in Figure 3 is more transparent for a potential
user than its NCES implementation.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

5 Example of application

Distributed control systems (DCS) represent state
of the art in the industrial automation technology
bringing a lot of benefits to control engineers:
flexibility, easy reconfiguration and reduction of costs.
However, the logic of execution of the system
obtained by interconnection of many local controllers
often becomes non-tractable. Therefore benefits of
formal verification are even more convincing for the
DCS.
For illustration consider a sample part of a
manufacturing system as shown in Figure 5, that
consists of a transporter (TS) moving workpieces
between input and output trays. The buttons "LOAD"
and "UNLOAD" serve to initiate the corresponding
actions. Instead of the trays other similar transporters
can be present in the input/output positions. The
transporter itself consists of the STATION with
conveyor, where the workpiece rests, and turning
mechanism that moves the station between the
positions.

Figure 5. Transfer system.

The controller of the transporter uses values of the

following sensors: HOME - station is in the loading
position, END- station in the unloading position, WF -
workpiece is on the station. Actions of the device are
driven by the following signals: LD - loading of the
station; UNLD - unloading of the station; ADV -
move the station from HOME to END; RET - move
the station from END to HOME. The input and output
trays are also equipped with conveyors, controlled in
the manner similar to the control of the stage: signal
LD moves transporter inward, and the signal UNLD -
in the opposite direction. Sensor WI reports presence
of the workpiece on the tray.

The distributed control system of the plant is
shown in Figure 6 as a block diagram composed from
the function blocks following the IEC 61499. The
blocks colored in gray represent parts of the plant:
buttons "LOAD" and "UNLOAD", the transfer stage
and the trays. The blocks of white color represent
parts of the distributed controller: controller of the
transfer stage, two instances of the block TRAY,
controlling input and output trays, and two instances
of the block FILTER which convert pressing of the
buttons into corresponding event impulses.

Figure 6. Block diagram of the control system, that includes
distributed controller (blocks TS_CONTROL, INTRAY.CTL,
OUTTRAY.CTL), and models or interfaces to the plant (blocks
Transporter, IN.TRAY, OUT.TRAY, BT”LOAD”, BT”UNLOAD”)

Figure 7. Execution control chart of the controller of transporter.

According to IEC 61499, function blocks interact

via event signals connected to the block's "head" and
data signals connected to the block's "body". The head
is responsible for the execution logic, while the body
contains algorithms of data processing. The execution
logic is defined by state machine called execution
control chart. A ECC state may have associated
algorithms' calls and output event signal assignments.

The execution control chart of the controller of
transporter is presented in Figure 7. Consider an
example of the open-loop verification of a property of
the controller of Transporter (FB "TS controller"). The
property is explained as follows. During the loading,
the sequence of triggering of the inductive sensors WI
and WF may depend on their sensitivity. If the sensors
detect presence of the workpiece in the close vicinity
then the sequence is WI off, then WF on. When the
sensors are of greater sensitivity, the behavior changes
– first WF goes on and then WI goes off. It is
important to ensure correctness of the controller
regardless of the exact parameters of the sensors, i.e.

Proceedings of the 2001 IEEE Systems, Man, and Cybernetics Conference
Copyright ? 2001

the test input required where the sequence of the
events is not specified exactly. The specification using
TDSL consists of two steps:

1. A timing diagram of one scenario of the behavior
is prepared as shown in Figure 8. Thus a linear
specification is obtained which can be used for
checking existence of such a scenario in the
model’s behavior.

2. Next step is to add some “non-determinism” to the
linear specification. For this purpose we assign the
“non-simultaneous” and “later” constrains to some
events, in particular to those corresponding to
events “WI off” and “WF on”.
The new specification ceased to be linear, as it is

shown in Figure 8. It corresponds to the branching
reachability graph, with two possible trajectories, in
one of which event “WI off” precedes “WF on”, and
in the other “WF on” precedes “WI off”. Timing
diagram representing one of the scenarios is also
shown in Figure 9. In both trajectories, however,
outputs LD and ADV behave in accordance with the
specification.

Conclusion

The suggested way of specification using timing
diagrams shows some features, which make its
application beneficial in verification of control
systems, namely:
? ? It is more visual and familiar to control engineers

than temporal logic;
? ? It allows easier extension of linear specifications

with some non-determinism, such as non-
determined sequence of some events, non-
determined values of some variables in certain
intervals, than for example state charts.
Certainly, semantics of timing diagrams is much

weaker in general, than that of both its counterparts.
On the other hand, it covers many cases of
specification taking place in control engineering. That
ensures its applicability in the practice as an
additional, problem-oriented means of specification.

Acknowledgement

The work is supported by the Deutsche
Forschungsgemeinschaft under reference Ha1886/10-1.

References
1. Function Blocks for Industrial Process Measurement and Control
Systems, International Electrotechnical Commission, Tech.Comm.
65, Working group 6, Geneva, 1998
2. E.Clarke, E.A. Emerson, and A.P. Sistla: Automatic verification
of finite state concurrent systems using temporal logic, ACM Trans.
on Programming Languages and Systems, (8):pp.244--263,1986
3. .S. Ostroff. Temporal Logic for real-time systems, Wiley,
London, 1989.
4.K.Fisler: Timing diagrams: Formalization and algorithmic
verification. Journal of Logic, Language, and Information, 8(7), July
1999.
5.N.Amla, E.Emerson, R.Kurshan, and K. Namjoshi: Model
checking of synchronous timing diagrams. Proc. of Conference on
Formal Methods in Computer Aided Design (FMCAD)}, November
2000
6.R.Schlor, A.Allara, and S.Comai. System Verification using User-
Friendly Interfaces. In Design, Automation and Test in Europe, pp.
167-172. IEEE Computer Society Press, 1999
7. Rausch, M., H.-M. Hanisch. Net condition/event systems with
multiple condition outputs. In: Symposium on Emerging
Technologies and Factory Automation, 1995. Vol.1., INRIA/IEEE.
Paris, France. pp.592--600.
8. P.Starke: Symmetries of signal-net systems. Workshop on
Concurrency, Specification and Programming, pages 285--297,
October 2000
9. Ramadge P.J. and Wonham W.M., Supervisory Control of a
Class of Discrete Event Processes, SIAM J Control Optimisation,
25(1), pp.206— 230, 1987
10. R.S.Sreenivas, B.H.Krogh: On condition/event systems with
discrete state realizations, Discrete Event Dynamic Systems: Theory
and Applications, 2(1):209--236, 1991.
11. Vyatkin V., Hanisch H.-M.: Software environment for
automated verification of distributed industrial controllers
following IEC61499, Proc. Of XII Workshop on Supervising and
Diagnosing of Machining Systems, Karpacz, 2001
12.V.Vyatkin, H.-M. Hanisch. Practice of modeling and verification
of distributed controllers using Signal/Net systems. Proc. of
Workshop on Concurrency, Specification and Programming, pp.
335--349, Berlin, 2000
13. S. Roch Extended computation tree logic, In Proc. of Workshop
on Concurrency, Specification and Programming, Berlin, 2000.

Figure8. Timing diagram specification , reachability graph of the open-loop model state/timing diagrams representing one of the scenarios of the
behavior.

