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Abstract 

In a search of an appropriate visual specification 
language to be applied in control engineering the 
timing diagram specification language is suggested. It 
is applied to the verification of distributed controllers 
following the standard IEC 61499. Specification of 
inputs and outputs of the controller are given in the 
graphical form of signal diagrams. The inputs are then 
converted into finite-state models, while the diagram of 
outputs is used to build equivalent analytic expressions 
in extended CTL. These two parts are used in formal 
verification of the control system. 
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1 Introduction 

Controllers in industrial automation interact in a 
closed-loop way with the system under control, called 
plant. A major issue in the controller design is to 
guarantee that the plant shows some desired behavior 
and/or does not realize some kind of forbidden 
(dangerous) behavior.  

Formal verification of control systems, introduced 
in [2], [3] extends the borders of common testing. It 
can be done automatically using formal models of 
plant, controller, and formal specifications of desired 
(or undesired) behavior. Currently verification of 
controllers is a quite popular topic of research in 
academia. However, despite of its numerous 
advantages, it is still a rare bird in the practice of 
control engineering. One of the reasons of that is that 
the languages commonly used for specification of 
properties, such as temporal logic, are not familiar to 
the potential users of such systems, i.e. control 
engineers. On the other hand the variety of possible 
patterns of specifications in control engineering is 
quite limited. The following patterns of specification 
are the most commonly used in verification of control 
systems: 
1. Safety properties, describing presence or absence of 
dangerous states in the reachability space of the 
model; 
2. Freedom from deadlocks, i.e. absence of the states 
having no successor states in the reachability space.  

3. Reactivity, which ensures that a certain input 
combination always causes the corresponding 
reaction. 
4. Compliance with linear specification (such as 
scenario, recipe, etc.). This type of specification is 
usually presented as a linear or cyclic state chart. 

In this work we study applicability of timing 
diagrams to be used in the role of specification 
language. Timing diagrams of signals are widely used 
in the technical literature and documentation on digital 
devices as a convenient and rigorous form of data 
presentation.  

Recently a special interest has been shown to the 
application of timing diagrams as means of 
specification of input/output behavior for further 
application in formal verification of hardware [4,5,6]. 

Despite of many similarities with the hardware 
design, the verification in automation has essential 
particular features. The necessary part of the 
verification of control systems are models of plants 
providing the adequate asynchronous dynamics. 
Semantics of controllers is also quite different from 
that of digital devices.  

In this paper we focus on the issues specific for 
application of timing diagrams for specification and 
verification purposes of some classes of industrial 
automation systems.  

The paper is structured as follows. In Section 2 we 
briefly introduce modeling of distributed control 
systems using Net Condition/Event systems. Then, in 
Section 3, based on the constraints of the modeling 
framework and requirements of the application 
domain, we define the timing diagrams specification 
language. In Section 4 the implementation issues are 
presented, and in Section 5 an example of application 
is given. The paper is concluded by a summary of 
advantages and disadvantages of the proposed 
approach.  

2   Modeling using Net Condition/Event Systems  

Formal verification seems to be especially 
beneficial when applied to distributed control systems. 
For formal verification of such systems we are 
developing an integrated software package VEDA - 
Verification Environment for Distributed Applications 
[11]. VEDA is destined for direct application by 
control engineers, in order to extend their testing 
capabilities. The input for VEDA is a source code of 
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distributed control application, represented according 
to IEC61499, that is a new international standard-
under-development [1]. In IEC61499 an application is 
a net of function blocks, having event and data inputs 
and outputs. Each function block implements a 
particular controller, or a control function. Its 
functionality is programmed by state charts and 
languages of IEC61131. Further, in Section 5 an 
example of such an application is presented. 

As the underlying modeling formalism, VEDA 
uses the Net Condition/Event Systems (NCES) [7] – a 
Place/Transition net with modularity support. VEDA 
automatically generates the NCES model of 
controllers presented as IEC61499 function blocks, 
and performs model-checking in closed-loop with 
manually developed NCES models of plants. VEDA 
performs the model-checking of specifications given 
in eCTL [13], an extension of CTL designed to refer 
to both state and state-transitions in formulae. The 
Timing Diagram Specification Language (TDSL), 
described in this paper, provides a way of visual 
specifications complementary to eCTL. 

Net Condition/Event systems is a finite state 
formalism which preserves the graphical notation and 
the non-interleaving semantics of Petri nets, and 
extends them with a clear and concise notion of signal 
inputs and outputs. 

 
Figure 1. Two NCES modules interconnected by condition and 
event arcs. 

Given a place/transition net )0(P,T,F,mN ?  with 
set of places P, set of net transitions T, flow relation F, 
and initial marking of places m0, the Net 
Condition/Event system is defined as a tuple 

, Gr),(N,N NN ?? ? , where N?  is an internal 
structure of signal arcs, N?  is an input/output 
structure, and TGr ? is a set of so called "obliged" 
transitions. The structure N?  consists of condition 
and event inputs and outputs ci,ei,eo,co. The structure 

N?  is formed from two types of signal arcs. Condition 
arcs lead from places and condition inputs to 
transitions and condition outputs, providing additional 
enableness conditions of the recipient transitions. 
Event arcs from transitions and event inputs to 
transitions and event outputs provide one-sided 
synchronization of the recipient transitions: firing of 
the source transition forces firing of the recipient, if 
the latter is enabled by the marking and conditions.  

The NCES modules can be interconnected by 
condition and event arcs, forming thus distributed and 
hierarchical models. Figure 1 shows an example of 
NCES which consists of two interconnected modules. 
NCES having no inputs are called Signal-Net Systems 
(SNS) [8,12]. The model in Figure 1 is a SNS. The 
SNS can be analyzed without any additional 
information about its external environment. Semantics 
of SNS covers both asynchronous and synchronous 
behavior that is necessary when modeling of 
interconnected plants/controller system is concerned.  

A state of the NCES module is completely 
determined by the current marking 0Nm: P ?  of 
places and values of inputs. A state transition is 
determined by the subset  T??  of simultaneously 
fired transitions, called step. The transitions having no 
incoming event arcs are called spontaneous, otherwise 
forced. A step fully determines the values of event-
outputs of the module. A step is formed by selection 
of some of the enabled spontaneous transitions, and all 
the enabled transitions forced by the transitions 
already included in the step. Thus both states and 
transitions of NCES models are distributed, that 
allows more efficient modeling of distributed systems.  

A tuple ?,S,R,sM 1?  denotes the reachability 
graph of a SNS N, where S is a finite set of reachable 
states, SSR ??  is a finite set of transitions 
between states, and  S s ?1  is an initial state. The 
state transitions are marked by the corresponding steps 

TR 2?:? . A state trajectory is a (possibly infinite) 
sequence of states ,,s,s,s(s) ii 11 ?? in a path of 
the reachability graph, starting in the root 1s . 
Scenarios of model’s behavior correspond to the 
trajectories. The states of the model along a trajectory 
can be represented by means of symbol sequences, i.e. 
words, or graphically, by diagrams.  

 
Figure 2.  Reachability graph of the interconnected NCES model 
with outlined path and state diagram of input/output signals of the 
modules. 

In timed NCES arcs from places to transitions are 
marked with time intervals, defining low and high 
limits of the transition’s enableness. All places bear 
the clocks counting the age of the marking. Then, a 
transition is enabled not only when its pre-places are 
sufficiently marked, but also when values of their 
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clocks are within the time intervals of the incoming 
arcs of the transition. Clocks of marked places 
increase their values by discrete units when there are 
no enabled transitions in the state, but some of the 
transition might become enabled after such an 
increment of clocks. As a direct consequence, the 
states have attribute “delay”, that specifies time 
increment of the clocks of this state with respect to the 
clocks of its predecessors. It can be said also that state 
transition ji SS ?:? has duration ? , if the state Sj 

has such a delay. 
The following features specify modeling of control 

systems, composed of IEC61499 function blocks and 
model of plant, by NCES: 

1. Every Boolean variable of the original block (or in 
the plant model, e.g. Boolean sensors) is modeled 
by an NCES module with two places, similar to 
Module 2 in Figure 1. Thus for each Boolean 
variable a, there exists a place in the model marked 
iff the original variable has value 1, and there exist 
exactly two transitions, one of which corresponds 
to the event a+ (when a changes its value from 0 to 
1), and the other to event a- (from 1 to 0).  

2. Event variables of function blocks acquire non-
zero values only instantaneously. These are 
modeled by firing of net transitions.  
Figure 2 shows the reachability graph of the model 

from Figure 1. A trajectory is outlined in the graph 
and some parameters of the model are shown along 
the trajectory in the graphical form of state/time 
diagram.  

To present concise relation between the finite 
specification and infinite behavior of the model we 
use the notation of input/output event languages, 
adopted from [9,10]. Some necessary definitions 
follow. 

The state of the model can be also determined by a 
sequence of events, related to each parameter. Let us 
denote relevant parameters of the model in Figure 1 as 
a=M1.eo1, b=M1.co1, c=M2.co1. Then, event a+ occurs 
iff transition t2 fires, denoted as 2ta ?? . 

Similarly 21 ttb ??? , 3tb ?? , 4tc ?? , 5tc ?? . 
Taking symbols {a+,b+,b-,c+,c-} as basic event 
alphabet M of the model, a state transition step can be 
represented as a non-ordered subset of M, called 
parallel symbol. For example, the step corresponding 
to the state transition 31 SS ? is defined as 

),,( ??? cba , and step 43 SS ? as )( ?b . Set 2M forms 
the alphabet of parallel symbols, that describe changes 
of relevant parameters of the NCES model. For 
simplicity we denote 2M as event alphabet of the 
model. A finite part of any trajectory can be 
represented then as string of the event alphabet, and 

the behavior of the model can be represented by 
language LM, comprising all such strings.  

VEDA deals with both timed and non-timed 
models. Operations in the controllers defined 
according with IEC61499 are driven by events coming 
from plant. Correspondingly, in the NCES model of 
controllers unit operations in the controller are 
modeled by state transitions having zero time 
duration. Quantitative measurement of such durations 
can be realized by counting their number. Some time-
consuming processes in the plant are modeled by state 
transitions having non-zero duration. This durations 
are ignored by VEDA if the non-timed model option is 
selected. 

3 Timing Diagram Specification Language 

The works [4,5,6], where timing diagrams were 
used for specification and verification of hardware 
devices, show some approaches to formalization of 
diagram’s syntax and semantics. These are quite 
similar to each other, though have certain variations. 
Thus, in [4] the timing diagrams are defined as a 
collection of waveforms that determine a finite 
sequence of events (i.e. value changes) of a particular 
variable of the modeled system. For simplicity we 
constrain ourselves with two types of the parameters: 
impulse (or event) parameters, and Boolean 
parameters. 

 
Figure 3. Sample timing diagram specification. 

 
Collection of waveforms defines in general an 

asynchronous product of the corresponding event 
sequences. Thus a timing diagram may define a 
number of possible behaviors of the model. To restrict 
some of the behaviors, so called sequential 
dependencies between any two events (possibly 
belonging to different waveforms) can be used. Each 
dependency (e.g. between events e1 and e2) is 
specified by a timing interval [lo,hi] (where 

}{0?? Nlo , }{}{ ???? 0Nhi  ), meaning that e2 
occurs after e1 within the [lo,hi] time bounds.  

Along with the time interval constrains we 
introduce the following qualitative constraints used to 
specify the sequential dependencies:  
>  event e2 occurs later than e1.  
?  event e2 occurs not earlier than e1. 
?  event e2 does not occur simultaneously with e1; 
?   event e2 occurs exactly in the next state to e1;  
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= events e2 and e1 occur simultaneously; 
Figure 3 shows an example of a timing diagram 

with such qualitative constrains imposed. In the rest of 
this paper, for simplicity we deal with specifications 
having only qualitative constrains. Default constraint 
between consequent events is ? .  

A timing diagram specifies only a finite behavior 
of the model, i.e. that can be represented as a finite set 
of finite strings in alphabet 2M. Let us call this set 
finite language of the diagram and denote it by LD.  

We define that a string a admits string b (denoted 
ba ) iff the projected string ba | , obtained from a 

by removing all symbols not present in b, includes b 
as a substring. For example strings ‘mnnk’, ‘mnkk’ 
admit string ‘mk’, while string ‘kmnn’ does not admit 
‘mk’. An infinite string MLs ?  is said to admit 
specification diagram D (denoted Ds ) if it admits 
at least one of the strings in LD.  

We explicitly divide our specification diagrams to 
the input and output parts. Input and output 
projections Inps | , Outs | of a specification string 

DLs ?  denote correspondingly projections of s to the 
basic alphabets of input and output events. 
Inp(D),Out(D) denote correspondingly  sets of input 
and output projections of strings from D.  

Two following approaches to verification with 
TDSL have been studied:  
Closed-loop. When the model consists of plant and 
controller interconnected in closed loop, the TDSL is 
used to specify visually a collection of finite scenarios 
which then have to be checked with respect to the 
(infinite) behavior of the model.  

The specification is automatically translated either 
to eCTL, or to the corresponding NCES model, which 
then serves as a supervisor of the original model. The 
following semantic interpretations can be used:  

Existence of the specified behavior: At least one of 
the finite scenarios, specified by the timing diagram 
occurs in the infinite behavior of the model, that means 

DsLs M :?? .  
Existence of all specified scenarios. All finite 
scenarios occur in the infinite behavior of the model 

csLsDc M :???? . 
Generality of the specified behavior: All trajectories 
in the infinite behavior of the model satisfy to the 
specification, i.e. each infinite trajectory satisfies to one 
of the finite scenarios: csDcLs M :???? . 
Conditional existence: For all trajectories, where the 
specified input behavior holds, the output behavior also 
holds: DsDInpss Inp ?? )(|: .  

These properties can be expressed in eCTL and 
proved with respect to the original model and model 
of specifications using the model-checker of VEDA.  

Open-loop. Sometimes the closed-loop pattern cannot 
be applied. For instance, a model of plant could be not 
available, or verification of only some parts of the 
control system is required. In this case the part of 
TDSL specification corresponding to the input is used 
to generate the NCES model of input behavior, while 
the other, output part is translated to the corresponding 
eCTL specification. The interconnected model, 
obtained after connecting the NCES model of inputs 
with an automatically generated model of SNS 
controller, is used then in model-checking. 

In the open-loop pattern the input part of 
specification is guaranteed to hold for all possible 
behaviors of the model. Then verification inquiries 
should refer only to the output  behavior of the model. 

4  Implementation of TDSL 

Basic principles of NCES model generation for 
timing diagrams refer to both closed-loop and  open-
loop verification patterns.  

 
Figure 4. NCES model of the timing diagram specification from 
Figure 3. 

The model is composed from the following 
modules: 

Generators of the event sequence for each waveform 
of the diagram. It implements generation of events in 
the order described in the diagram, taking into account 
the sequential constraints.  
Data implementation module for every input signal of 
the diagram. Those data modules which model input 
parameters have to be directly connected to the inputs 
of the verified model, while the outputs can be used to 
check admissibility of the specification. 

Transitions of the event generators are connected 
to the data implementation modules by event arcs. 
Assuming that both parameters A and B in Figure 3 
belong to the input of the model, an example of the 
corresponding generator is presented Figure 4. Each 
event contained in the diagram is mapped into a 
transition of the event generator, which sets the 
corresponding values of the signals by means of the 
event arcs attached to the corresponding inputs of the 
model modules. It is obvious, that the specification as 
given in Figure 3 is more transparent for a potential 
user than its NCES implementation. 
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5 Example of application  

Distributed control systems (DCS) represent state 
of the art in the industrial automation technology 
bringing a lot of benefits to control engineers: 
flexibility, easy reconfiguration and reduction of costs. 
However, the logic of execution of the system 
obtained by interconnection of many local controllers 
often becomes non-tractable. Therefore benefits of 
formal verification are even more convincing for the 
DCS.  
For illustration consider a sample part of a 
manufacturing system as shown in Figure 5, that 
consists of a transporter (TS) moving workpieces 
between input and output trays. The buttons "LOAD" 
and "UNLOAD" serve to initiate the corresponding 
actions. Instead of the trays other similar transporters 
can be present in the input/output positions. The 
transporter itself consists of the STATION with 
conveyor, where the workpiece rests, and turning 
mechanism that moves the station between the 
positions. 

 
Figure 5. Transfer system. 
 
The controller of the transporter uses values of the 

following sensors: HOME  - station is in the loading 
position, END- station in the unloading position, WF - 
workpiece is on the station.  Actions of the device are 
driven by the following signals: LD - loading of the 
station; UNLD - unloading of the station; ADV - 
move the station from HOME to END; RET - move 
the station from END to HOME.  The input and output 
trays are also equipped with conveyors, controlled in 
the manner similar to the control of the stage: signal 
LD moves transporter inward, and the signal UNLD - 
in the opposite direction. Sensor WI reports presence 
of the workpiece on the tray. 

The distributed control system of the plant is 
shown in Figure 6 as a block diagram composed from 
the function blocks following the IEC 61499. The 
blocks colored in gray represent parts of the plant: 
buttons "LOAD" and "UNLOAD", the transfer stage 
and the trays. The blocks of white color represent 
parts of the distributed controller: controller of the 
transfer stage, two instances of the block TRAY, 
controlling input and output trays, and two instances 
of the block FILTER which convert pressing of the 
buttons into corresponding event impulses. 

 

 
Figure 6. Block diagram of the control system, that includes 
distributed controller (blocks TS_CONTROL, INTRAY.CTL, 
OUTTRAY.CTL), and models or interfaces to the plant (blocks 
Transporter, IN.TRAY, OUT.TRAY, BT”LOAD”, BT”UNLOAD”) 

 
Figure 7. Execution control chart of the controller of transporter. 

 
According to IEC 61499, function blocks interact 

via event signals connected to the block's "head" and 
data signals connected to the block's "body". The head 
is responsible for the execution logic, while the body 
contains algorithms of data processing. The execution 
logic is defined by state machine called execution 
control chart. A ECC state may have associated 
algorithms' calls and output event signal assignments.   

The execution control chart of the controller of 
transporter is presented in Figure 7. Consider an 
example of the open-loop verification of a property of 
the controller of Transporter (FB "TS controller"). The 
property is explained as follows. During the loading, 
the sequence of triggering of the inductive sensors WI 
and WF may depend on their sensitivity. If the sensors 
detect presence of the workpiece in the close vicinity 
then the sequence is WI off, then WF on. When the 
sensors are of greater sensitivity, the behavior changes 
– first WF goes on and then WI goes off. It is 
important to ensure correctness of the controller 
regardless of the exact parameters of the sensors, i.e. 
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the test input required where the sequence of the 
events is not specified exactly. The specification using 
TDSL consists of two steps: 

1. A timing diagram of one scenario of the behavior 
is prepared as shown in Figure 8. Thus a linear 
specification is obtained which can be used for 
checking existence of such a scenario in the 
model’s behavior. 

2. Next step is to add some “non-determinism” to the 
linear specification. For this purpose we assign the 
“non-simultaneous” and “later” constrains to some 
events, in particular to those corresponding to 
events “WI off” and “WF on”. 
The new specification ceased to be linear, as it is 

shown in Figure 8. It corresponds to the branching 
reachability graph, with two possible trajectories, in 
one of which event “WI off” precedes “WF on”, and 
in the other “WF on” precedes “WI off”. Timing 
diagram representing one of the scenarios is also 
shown in Figure 9. In both trajectories, however, 
outputs LD and ADV behave in accordance with the 
specification. 

Conclusion 

The suggested way of specification using timing 
diagrams shows some features, which make its 
application beneficial in verification of control 
systems, namely: 
? ? It is more visual and familiar to control engineers 

than temporal logic; 
? ? It allows easier extension of linear specifications 

with some non-determinism, such as non-
determined sequence of some events, non-
determined values of some variables in certain 
intervals, than for example state charts. 
Certainly, semantics of timing diagrams is much 

weaker in general, than that of both its counterparts. 
On the other hand, it covers many cases of 
specification taking place in control engineering. That 
ensures its applicability in the practice as an 
additional, problem-oriented means of specification. 
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