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Abstract- This report provides a modeling framework for veri�cation of the event-driven func-

tion blocks for industrial process measurement and control systems following to the new international

standard IEC1499 . The modeling is based on the representation of the components of the modeled

system in the modular way as Net Condition Event Systems. The entire model is obtained connecting

the component modules by condition and event arcs into a Signal/Event net. The model retains the

original structure of the modeled block. The model in terms of the Signal/Event nets can be exposed

to various model checking procedures provided by the net analyzing tools which include analysis of the

reachability graph, proof of temporal logic speci�cations, etc. The modeling approach is illustrated in

the paper on two examples of the function blocks, which represent as general real-time applications as

well as discrete event controllers. In the latter case the modeling framework includes also the model

of the controlled plant. The paper re
ects the state-of-the-art in the current work on the veri�cation

of the IEC1499 applications and outlines its prospects.

1 Introduction

An inherent feature of present real-time systems development is their formal veri�cation. Theoretically it is

based on the works of E. Clarke [10], J. Ostro� [14, 15], Z. Manna and A. Pnueli [13], R. Alur et al. [7, 8]. In

particular, veri�cation of programs for Programmable Logic Controllers (PLC) was studied in [9, 19, 12].

A typical framework for the veri�cation includes some kind of formal model for the system that is studied.

Usually, �nite state machines, Petri nets, Timed transition systems, etc. are used for this purpose. The

properties which ensure validity or invalidity of the system are formally expressed as a predicate (static property)

or an expression in Temporal Logic (dynamic property). Once the properties have been expressed in the formal

language, they are checked by means of some "veri�cation engine", which usually attempts to build the whole

space of reachable states of the system and check the validity of required properties for all of them.

Although the theory is quite well developed, some additional aspects have to be taken into consideration if

one deals with practical control applications. The most signi�cant are:

1. Industrial control systems are usually designed and implemented by engineers. Their main task is to

come up with a control system which actually has to perform some speci�c tasks such as controlling a

manufacturing system, a process system, etc. Formalmethods for modeling and veri�cation should support

the design and implementation process, but dealing with the theory of formal modeling and veri�cation

cannot be the central part of daily business of an engineer. Hence, the formalisms of models and methods

have to be adapted smoothly to the practical needs, and, more than this, they should be encapsulated and

hidden as far as possible. That means that these methods should establish an optional support in improving

the quality of a design but not a must in the design which requires detailed background knowledge of formal

methods and eventually delays the design process signi�cantly. Otherwise, an engineer would not accept

the methods in his daily business.

2. A model is not the system itself but always an abstraction re
ecting some properties of the system

which are of interest for a particular question. It must be ensured that the model really copes with the

aspects which are of interest. This means that a proper modeling formalism should be chosen to meet the

requirements of the application, and that a formal or semi-formal methodology of model building should

be suggested.

3. Formal methods give answers to formal questions in terms of the formal model. Questions and answers

have to be mapped to properties of the real system. According to our experience it is extremely useful if

the modeling formalism is as close as possible to the real system for this purpose. Each transformation



causes a need for establishing a re-transformation and therefore more formal overhead and possibly loss

of relevant information.

4. The modeling formalism as well as the veri�cation engine should successfully cope with the state explo-

sion problem, which is unavoidable for the realistic-size applications. At least e�cient construction and

simulation of rather large models should be possible.

The latest trends in the development of discrete control systems are concentrated in the developing new

international standard on function blocks for measurement and control systems IEC 1499. In this paper we

are trying to come up with suitable models for the function blocks following IEC1499 keeping in mind the

requirements stated above. Since the standard is especially dedicated to the software reusability issue, stressing

on such means as modularity, encapsulation, and inheritance, there is an obvious need for a theoretical ground,

which would enable development and investigation of applications by formal methods.

The remainder of this paper is organized as follows. Section 2 refers to some basic notions of function blocks

as de�ned in IEC 1499. This motivates the modular modeling technique chosen to map function blocks into

formal or semi-formal models, which is introduced in Section 3. Section 4 presents a de�nition of the modeling

formalism of Signal/Event nets. In Section 5 we discuss the modeling components required to build a model

of a function block. Sections 6,7 provide some examples for modeling and veri�cation of execution control of

function blocks. An outlook of further work that needs to be done concludes the paper.

2 Description of IEC 1499

International standard IEC-1499 provides a new event-driven framework of software development for measure-

ment and control systems. It follows the way paved by the previous standard on programming languages for

programmable logic controllers IEC1131-3 [2] extending it according to the new requirements of distributed

control systems.

According to the draft of IEC 1499 [1], the generic structure of an application is a function block, which can

be either basic or composite. A general diagram of a function block is shown in Figure 1. Functionality of a

basic function block in IEC1499 is provided by means of algorithms, which process input and internal data and

generate output data. The block consists of head and body, where the head is connected to the event 
ow, and

the body to the data 
ow. The algorithms included in the block are programmed in terms of IEC1131.

An application which is de�ned as a collection of interacting function blocks connected by event and data


ows, can be distributed over multiple devices which is the signi�cant di�erence of this new approach in contrast

to IEC 1131.

For example, a control application may include a function block, implementing the controller itself, as well

as a block responsible for operator interface (displaying the current state of the system and processing human

interactions), and a block which would implement a locking controller or supervisor. All these may be supplied

by some standard or user de�ned blocks implementing a communication interface of devices where the blocks

reside. For instance, the controller may be placed in one device (e.g. a PLC), the operator interface in another

device (PC), and the supervisor in a third device (another PLC).

The standard o�ers an extensive framework to describe the system architecture on the logic level, which

includes the notions of system, device, resource, subapplication, composite and basic function blocks. This

logic architecture can be mapped onto various physical hardware structures to provide means of portability and

better software reusability.

The IEC1499 de�nes a framework for processing events, which includes the notion of execution control for a

single function block, as well as a collection of prede�ned blocks performing basic logic operations over events.



Those can be used in de�nition of composite function blocks along with other user de�ned blocks, implementing

thereby a quite complicated logic of the blocks activation.

Figure 1: Characteristics of function block.

Causal behavior of the block (i.e. sequencing of algorithms' calls) is organized in IEC1499 by means of

Execution Control (EC), which is a state machine, connecting event inputs with algorithms and event outputs.

Execution Control is de�ned by Execution Control Charts (ECCs), whose notation is simpli�ed from the Se-

quential Function Charts of IEC1131-3. Therefore, there is no more a sequential control function for interacting

function blocks as it would be the case in IEC 1131. The execution control of function blocks is distributed as

well and is established by event interconnections among several function blocks.

The draft of IEC1499 states that ECC consists of EC states, EC transitions, and EC actions, which shall

be represented and interpreted as follows:

1. The ECC shall be included in an execution control block section of the function block type declaration,

encapsulated by the control block construct.

2. The ECC shall contain exactly one EC initial state, represented graphically as a round or rectangular,

double-outlined shape with an associated identi�er. The EC initial state shall have no associated EC

actions. The ECC shall contain one or more EC states, represented graphically as round or rectangular,

single-outlined shapes, each with an associated identi�er.

3. The ECC can utilize (but not modify) event input (EI) variables, and utilize and/or modify event output

(EO) variables. Also, the ECC can utilize but not modify Boolean variables declared in the function block

type speci�cation.

4. An EC state can have zero or more associated EC actions. The association of the EC actions with the EC

state shall be expressed in graphical or textual form. The algorithm associated with an EC action, and

the event to be issued on completion of the algorithm, shall be expressed in graphical or textual form.

5. An EC transition shall be represented graphically or textually as a directed link from one EC state to

another (or to the same state). Each EC transition shall have an associated Boolean condition, equivalent

to a Boolean expression utilizing one or more event input variables, input variables, output variables, or

internal variables of the function block.



Farther in the paper we present a couple of examples of the function blocks, following IEC 1499. Thus,

Figure 9 shows an example of both the external interface of the block INTEGER-REAL, and its execution

control chart.

As far as the IEC1499 function blocks concerned, we are interested in veri�cation of temporal and qualitative

liveness and safety properties expressed in terms of timing and sequencing of input and output signals, resource

sharing, etc. Especially in composite function blocks, where total execution control is de�ned as a net of

component ECCs, veri�cation of the behavior is far from being trivial.

An inevitable precondition for verifying a controller design which follows the IEC 1499 is a way of modeling

which is closely related to the modular way the design is performed. We will outline a modular framework for

modeling discrete event systems in a block-diagram way in the following section.

3 Modular Modeling of Discrete Event Systems

Inspired by the idea of Condition/Event systems as de�ned by Sreenivas and Krogh in 1991 [4] the prior work of

some of the authors dealt with providing a modeling formalism which preserves the graphical notation and the

non-interleaving semantics of Petri nets and extends them with a clear and concise notion of signal inputs and

outputs. These models were called Net Condition Event Systems (abbr. NCES), and they have been applied to

a few discrete event system problems, including controller synthesis, veri�cation, and performance analysis and

evaluation. A bunch of speci�c NCES "dialects" have been developed to cover this wide range of problems.

From today's point of view, the general idea which is common to each particular "dialect" is quite simple,

namely the way of thinking of and modeling a system as a set of modules with a particular dynamic behavior

and their interconnection via signals. This way of modeling is a very intuitive one, and the modules can be

pre-tailored and used over and over again. Roughly spoken, the behavior of a module can be described by a

Petri net in the classical sense or even by a NCES.

Each module is equipped with inputs and outputs which are of two types:

1. Condition inputs/outputs carrying state information, and

2. Event inputs/outputs carrying state transition information.

This way the over extension clearly re
ects the duality of Petri nets, namely the clear distinction between

states and states transitions with their own graphical representation, semantics, and formal properties.

An illustrative example of the graphical notation of a module is provided in Figure 2.

Figure 2: Graphical notation of the module.



Condition input signals as well as event input signals are connected with transitions inside the module.

Whether a transition of a module �res does not only depend on the current marking (as it is the case in classical

Petri nets) but also on the incoming condition and event signals. Incoming condition signals enable/disable

a transition by their values in addition to the current marking. Incoming event signals force transitions to

�re if they are enabled by marking and by condition signals. Hence, we get a modeling concept that can

represent enabling/disabling of transitions by signals as well as enforcing transitions by signals. More than this,

the concept provides a basis for a compositional approach to build larger models from smaller components.

"Composition" is performed by "gluing" inputs of one module with outputs of another module as depicted in

Figure 3.

Figure 3: Example of modular composition

This "gluing" is graphically represented by composition arcs. The semantics of these arcs is obvious to any

engineer who has ever modeled a system in a block-diagram oriented way. It is further obvious that only inputs

and outputs of the same type (conditions or events respectively) can be interconnected. The low part of the

Figure 3 shows the result of the composition. One sees that we get two kinds of new arcs, namely condition

arcs and event arcs. Their in
uence on the dynamic behavior is formally described in Section 4. If such a new

module is equipped with inputs and outputs, it can also be interconnected over and over again.

If the module is autonomous (it has no inputs), such a system is called "Signal/Event net", and it can be

analyzed without any additional informationabout its external environment. Some aspects are worth mentioning

before we come to the formal de�nition of the model for an interconnected, autonomous system. These aspects

are:

1. We have an intuitive way to model a system. This way closely corresponds to the design techniques as



they provided by IEC 1499.

2. The modeling technique supports a bottom-up modeling as well as top-down strategy. One could start

with a set of modules and create a larger model by composing them. On the other hand, one could start

with a larger system and could decompose it to a set of subsystems (expressed by modules) and a set of

interconnections (expressed by composition arcs).

3. Even after composition, the state of the system is distributed, and the original structure of the modules

is preserved. Even removing a module and replacing it by another module with the same input/output

interface would be a local operation over the structure of the model. Hence, composition is far less

complicated as building the cross product of automata or the interleaving language. This allows us to

build models of realistic scale e�ciently.

On the other hand, local changes in the behavior of a single module may lead to global changes in the

behavior of the interconnected system. Hence, one needs a formal model for expressing and analyzing the global

behavior of an interconnected system. Such a formal model is the model of Signal/Event nets as described in

the next section.

4 Signal/Event nets

Signal/Event net is an autonomous NCES, i.e an NCES without input and output signals, which can be obtained

as a result of composition of several NCES modules.

4.1 Untimed Models

Let P be an arbitrary non-empty set. A mapping m : P ! N0 is called a marking of P (or a multiset over P ).

For p 2 P , the number m(p) 2 N0 often is referred to as the number of tokens on p or as the multiplicity of p

in m.

For markings m and m0 (of the same set) we de�ne the sum m+m0, the di�erence m�m0 and the relation

m � m0 pointwise. Moreover, reminding that markings are multisets, we de�ne the union m [ m0 and the

intersection m \m0 by

m [m0(p) := max(m(p);m0(p));

m \m0(p) := min(m(p);m0(p)):

N = [P; T; F;B; S;M;m0] is a signal-event net (SE -net for short) i�:

1. P is a non-empty �nite set (of places),

2. T is a non-empty �nite set (of transitions), disjoint with P ,

3. F is a subset of (P � T ) [ (T � P ) (the 
ow relation, the set of 
ow arcs),

4. B is a subset of P � T (the set of condition arcs),

5. S is a subset of T � T , the irre
exive signal (
ow) relation,

6. M is a mapping which attaches a (signal-processing) mode to every transition (M : T ! f ^ ; _ g), and,

�nally,

7. m0 is a marking of P called the initial marking.



The sets P , T and F , and the mapping m0 are interpreted in the usual way.

If [p; t] is an element of B then we say that p is a (or serves as) condition of t, i.e., in order to �re t it

is necessary that p is marked with at least 1 token. We consider condition arcs [p; t] as leading a piecewise

constant signal which informs about the token load of the place p, i.e. the state of p.

If a pair [t; t0] of transitions is an element of the signal relation S, then we say that a signal arc leads from t

to t0, which means that �ring t sends a signal-event to t0. We assume the signal relation to be irre
exive since

it is not meaningful for a transition to send to itself a signal-event.

Signal-events re
ect the second type of signals needed to connect the modules of a control device, the impulse

type. They are described by time functions which have non-zero values only for isolated time points.

For any transition t the mode M (t) determines the processing of the incoming signal-events. The de-

fault mode is _ . Consider a transition t which is the target of signal arcs coming from t1; : : : ; tn, i.e.

[t1; t]; : : : ; [tn; t] 2 S. If M (t) = _ then to �re t it is necessary that at least one signal arc [ti; t] leads a

signal-event, i.e. ti is just �ring. If, otherwise, M (t) = ^ then to �re t it is necessary that all signal arcs

leading to t lead a signal-event.

If a transition t has no incoming signal arcs, i.e., the set

St := ft0
�� [t0; t] 2 Sg

is empty, then t is called spontaneous, otherwise forced. By Spont we denote the set of all spontaneous transitions

of N , by Forc the set of all forced transitions.

For any t we de�ne the markings t�; t+; t̂ as follows:

t�(p) :=

(
1; if [p; t] 2 F

0; else
;

t+(p) :=

(
1; if [t; p] 2 F

0; else.

and

t̂(p) :=

(
1; if [p; t] 2 B

0; else.

For any subset s � T the markings s� resp. s+ are the sum of the markings t� resp. t+ for t 2 s, and, ŝ is the

union of the markings t̂ for t 2 s.

Given a marking m, we say that t has token-concession at m i� every (pre-)place p such that [p; t] is in F

holds at m at least one token, i.e. t� � m.

A transition t is said to be enabled at the marking m i� t has token-concession, its conditions are satis�ed,

i.e. t̂ � m, and, (if St is not empty) the necessary signal-events are present.

SE -systems are executed in steps, i.e. sets of transitions �re simultaneously. The �ring rule says, roughly

speaking, that executable steps are formed by �rst picking up a nonempty set of enabled spontaneous transitions

and then adding as many as possible of those transitions that are forced to �re by signal-events produced by

transitions in the step. This implies that in every non-dead SE -net there exists a spontaneous transition. To

make this more precise we de�ne the signal-completeness of transition sets inductively:

Basis: Every subset s � Spont is signal-complete.

Step: If s � T is signal-complete, t 2 Forc and ( M (t) = _ , and St \ s 6= ; ) or ( M (t) = ^ , and St � s )

then s [ ftg is signal-complete.



Obviously, the empty set is signal-complete and ; is the only signal-complete set containing no spontaneous

transition. A signal-complete set of transitions may �re simultaneously as far as signal-events are concerned.

A subset s � T is said to be a step of N i�

1. s \ Spont 6= ;

(i.e. there is at least one spontaneous transition in s), and

2. s is signal-complete

(i.e. all necessary signal-events will occur).

A step s of N is called enabled at the marking m i�

3. ŝ � m

(i.e. the conditions of all t 2 s are satis�ed), and

4. s� � m

(i.e. the transitions in s are concurrently enabled w.r.t. tokens).

A step s of N is said to be executable at the marking m i� s is enabled at m and there is no forced transition

t 2 Forc such that s [ ftg also satis�es 1-4 (i.e. s is maximal with respect to inclusion of forced transitions.)

A forced transition t withM (t) = ^ appears in an enabled step only if it receives signals from all its signal

sources. Otherwise, a forced transition t withM (t) = _ appears in an enabled step if it receives a signal from

at least one of its signal sources.

If s is an executable step at m, then s may �re, which leads to the new marking m0 := m� s� + s+. This is

abbreviated as m[sim0. The reachability relation is de�ned as usual: let RN (m) denote the set of all markings

m0 such that a �nite sequence of executable steps leads from m to m0.

4.2 Timed Models

In this section we consider SE-nets under time constraints applied to the input arcs of transitions: to every

pre-arc [p; t] 2 F we attach an interval [eft; lft] of natural numbers with 0 � eft � lft � !. Th interval is also

refered to as permeability interval.

The interpretation is as follows. Every place p bears a clock which is running i� the place is marked and

switched o� otherwise. All running clocks run at the same speed measuring the time the token status of its

place has not been changed, i.e. the clock on a marked place p shows the age of the youngest token on p. If a

�ring transition t removes a token from the place p or adds a token to p then the clock of p is turned back to 0.

A transition t is able to remove tokens from its pre-places (i.e. to �re) only if for any pre-place p of t the clock

at place p shows a time u(p) such that eft(p; t) � u(p) � lft(p; t). Hence, the �ring of transitions is restricted

by the clock positions.

Let N = [P; T; F;B; S;M ] be a SE-net, eft a mapping from F \ (P � T ) to N0 and, lft a mapping from

F \ (P � T ) to N0 [ f!g such that always eft(p; t) � lft(p; t) holds. Then TN = [N; eft; lft] is an arc-timed

signal-event net.

A state of TN is given by a pair [m;u] where m is a marking of P , and u is the P -vector of the clock

positions. We assume that a clock which is switched o� shows the time 0, and, that the time-scale used is

integer. Therefore u is a marking too, and for any (realizable) state it holds:

If u(p) > 0 then m(p) > 0 .

The initial state [m0; u0] of TN in general (but not necessarily) consists of the initial marking of N and the

zero time vector.



Arc-timed signal-event nets are executed in steps too. The execution of a step does not take time. Let [m;u]

be a state.

A step s of N is said to be enabled at the state [m;u] of TN i�

3. ŝ � m

4. s� � m and for every pre-place p of t 2 s it holds eft(p; t) � u(p) � lft(p; t).

Obviously, a step s may be enabled at the marking m in N , but not enabled at the state [m;u] of TN

because some clocks have not reached the earliest �ring time eft or have passed already the latest �ring time

lft.

The state [m;u] of an arc-timed signal-event net may change not only by execution of a step but also by

elapsing of one time unit to [m;u0] where

u0(p) :=

(
u(p) + 1; if m(p) > 0;

0; else.

If a state [m;u] of TN is such that no step is enabled or can become enabled by elapsing of time then this

state is called dead. Otherwise, the minimal number of time units after which at least one step becomes enabled

is called the delay D(m;u) of the state [m;u]. Hence, the delay is de�ned only for non-dead states.

Let [m;u] be a non-dead state. Following the earliest �ring rule we call a step s to be executable at the state

[m;u] i� s is enabled after elapsing of D(m;u) time units and s is not contained properly in a step s0 which is

enabled after elapsing of D(m;u) time units.

The execution of an executable step s at the state [m;u] then is done by �rst elapsing D(m;u) time units

and then �ring s. The state [m0; u0] reached by the execution of s is determined by

m0 = m � s� + s+;

u0(p) :=

(
u(p) +D(m;u); if m(p) > 0 ^m0(p) > 0 ^ p =2 (Fs [ sF );

0; else.

For any place p we de�ne the clock stop position of p as

csp(p) :=

8>>>><
>>>>:

1 +maxflft(p; t) j t 2 pF ^ lft(p; t) 6= !g; if this set is

not empty,

maxfeft(p; t) j t 2 pFg; else.

Consider two (reachable) states [m;u]; [m;u0] which di�er only in the clock positions u, u0 in the following

way: If u(p) 6= u0(p) then u(p), u0(p) � csp(p). Then both states are indistinguishable in the sense that the

same sequences of steps can be �red. Therefore, in our implementation, we stop every clock at their clock stop

time, i.e. the clock position will not be increased by elapsing a time unit, although the clock is "running". In

this way states of the above described kind will be identi�ed.

The following is worth mentioning as the timed models concerned:

1. In a timed NCES if a pre-arc has no explicitly designated permeability interval, it is assumed to be [0; !].

2. As follows from the de�nitions above, a spontaneous transition enabled by marking must �re as soon as

it becomes enabled by time.



4.3 Timed Computation Tree Logic

In their paper [5] Emerson, Mok, Sistla and Srinivasan propose an extension of the Computation Tree Logic CTL

that allows the melding of qualitative temporal assertions together with real-time constraints. They call their

logic Real-Time Computation Tree Logic and they show that several practically useful correctness properties

can be expressed in RTCTL.

The extension essentially consists in attaching a number k to the modalities which serves as a time bound,

e.g. EFk' is satis�ed by the state s0 i� there is fullpath starting at s0 such that the �rst state which sati�es

the formula ' is reached after at most k units of time.

We here go one step further and use intervals [l; h] with 0 � l � h � ! as time constraints, but attach

them only to the modalities X, F and U . Hence, a formula from Timed Computation Tree Logic TCTL is

obtained from a CTL-formula by attaching intervals to some of these modalities. If EX' is a formula of CTL

then EX[l; h]' is a formula of TCTL which is satis�ed by a state z if this state has a successor z0 satisfying the

formula ' and such that the transition from z to z0 takes at least l and at most h time units.

The interpretation of formulas from TCTL is done on a structure (or model) � = [Z;); D] where

1. Z is a non-empty �nite set of states z,

2. )� Z � Z is the state transition relation such that

3. 8z(z 2 Z ! 9z0(z0 2 Z ^ z ) z0)), i.e. no state is dead,

4. D : Z ! N0 is the state delay.

In our application here, � always will be the reachability graph of an arc-timed signal-event system. For

any state z = [m;u] the number D(z) is the number of time units which have to elaps at z before a step can be

executed.

A fullpath � in � is an in�nite sequence (zi); i 2 N0 of states such that zi ) zi+1 holds for all i 2 N0. For

any fullpath � and every state z 2 Z we put

1. D(�; z) = 0, if z = z0 (i.e. if � starts at z0),

2. D(�; z) = D(z0) +D(z1) + : : :+D(zk�1), if z = zk and z0; : : : ; zk�1 6= z.

With other words, D(�; z) is the number of time units after which the state z on the fullpath � is reached

the �rst time, i.e. the minimal time distance from z0.

Let ' and  be arbitrary formulas of TCTL and z be a state. Then we put:

z j= EX[l; h]' i� 9z0(z ) z0 ^ l � D(z0) � h),

z j= AX[l; h]' i� 8z0(z ) z0 ! l � D(z0) � h),

z j= EF [l; h]' i� there exists a fullpath � starting at z0 = z and a number

j 2 N0 such that zj j= ' and l � D(�; zj) � h;

z j= AF [l; h]' i� for all fullpathes � starting at z0 = z there exists a number

j 2 N0 such that zj j= ' and l � D(�; zj) � h;

z j= E['U [l; h] ] i� there exists a fullpath � starting at z0 = z and a number

j 2 N0 such that zj j=  , l � D(�; zj) � h, and,

8k(k < j ! zk j= ');

z j= A['U [l; h] ] i� for all fullpathes � starting at z0 = z there exists a

number j 2 N0 such that zj j=  , l � D(�; zj) � h, and,

8k(k < j ! zk j= ').



Some examples:

1. A state z is called a time-deadlock i� all states z0 which are reachable from z have the delay D(z0) = 0.

This is expressed by

z j= AGEX[0; 0]> or z j= :EF [1; !]>:

2. Let ' be a formula which is satis�ed exactly by the state z. From the state z0 in any case the state z is

reached after at most d units of time: z0 j= AF [0; d]'.

3. Let ' be a formula which is sati�ed exactly for states z = [m;u] with m(p1) = 3 and let  be satis�ed i�

m(p2) = 4. Then

z j= :EF (' ^ :AF [0; d] )

holds from any state z where p1 has three tokens within at most d units of time a state is reached where

p2 has four tokens.

We will not use all the features of Signal/Event nets here (for example arc weights and multiple tokens on

places), but the interested reader will see the essential new ingredients, namely the event arcs that synchronize

transitions, are part of the formalism of Signal/Event nets. Therefore, Signal/Event nets and appropriate

analysis and model checking techniques provide a formal basis to formally verify models which have been built

by using the NCES methodology.

The following section presents application of the Signal/Event nets to the modeling of basic components of

the function blocks following IEC1499. The following restrictions to the Signal/Event nets have been applied.

1. The nets are timed, though in the most components of the models (except for the model of uncontrolled

plant behavior in Section 7) the timing is not shown explicitly, so that the permeability intervals are

assumed to be [0; !]. This also refers to the speci�cation language, which at the current stage of the work

is mostly restricted to the CTL rather than RTCTL.

2. All the transitions have the signal processing mode M (t) = ^ ;

5 Modeling and veri�cation of control systems following IEC 1499

5.1 General considerations

Two questions are important when a discrete control system is modeled:

1. How to build a model more or less adequate to the behavior of the system under consideration?

2. How to utilize the model to analyze the behavior of the object and answer the questions of interest?

Description of a discrete control system includes a controller, presented in some formalism, and a speci�cation

of the controlled plant. As IEC 1499 presents new formalisms for the controller speci�cation, the following

veri�cation issues can be of interest as applied to the discrete control systems:

� Veri�cation of the formalisms de�ned by the IEC 1499 itself;

� Veri�cation of arbitrary function blocks and applications following IEC1499, in particular controllers and

their parts;

� Veri�cation of models of uncontrolled plant behavior;



� Veri�cation of the control systems consisting of both controller and plant models;

In the case when a standalone application is veri�ed, its inputs are modeled using spontaneous transitions

of Petri nets. Evolution of the model is determined by all possible combinations of the spontaneous transi-

tions �ring. In other words, each path in the reachability graph corresponds to a certain combination of the

spontaneous transitions �ring. Thus, the analysis of the application behavior is based on the analysis of the

reachability graph which contains all possible states where changes of inputs may lead to. Dimension of the

space of reachable states, which may exponentially depend on the number of spontaneous transitions in the

model, may become so large that analysis would be impossible. However when controller is modeled together

with plant, models of plants usually restrict the space of reachable states.

A possible modeling framework might include not only the model of a function block (say a controller), but

also a model of uncontrolled plant behavior. In this case, use of timing in the net brings a certain duality:

on one hand it allows to make a more precise model, which would provide better check of some quantitative

properties, but on the other hand would hamper the check of some qualitative properties because of elimination

of spontaneous transitions. This problem, however can be overcome using event generator module, as we will

show further.

As for the formal veri�cation engine, the models are supported by the tool SESA developed at Humboldt

University of Berlin [11], and by the simulator, developed in Magdeburg University. SESA allows to perform

quite sophisticated analysis of models, which in particular includes:

1. Analysis of the integrity, liveness and boundness of the net (in terms of Petri nets);

2. Building the reachability graph of the model and its processing, such as �nding fullpaths which satisfy a

predicate over states of the net, �nding the shortest path, and the path with minimal time duration;

3. Checking the temporal logic properties of the model's evolution, expressed in the Timed Computation

Tree Logic. Atoms of the TCTL formulas are predicates over the marking of the net which have the

following general form low � m(pi) � high, being TRUE i� marking of the place pi is within the low and

high bounds. In this paper we deal only with the nets having 0/1 marking, so for simplicity we use the

notation pi equivalent to m(pi) = 1.

Using SESA it is possible, for example, to �nd fragments of dead code (which is never activated), answer

whether the modeled system passes through a certain state or a sequence of states, measure shortest or longest

time between speci�ed events (say response of the controller).

5.2 Modeling of IEC 1499 components

The hierarchy of structures provided in the standard implies the corresponding way of modeling - we start from

the simplest basic functional blocks, gradually extending the modeling framework to the whole applications and

systems. We mostly concentrate on the execution control issues described by the Execution Control Charts

and by the structure of event interconnections. Thus we pay little attention to the modeling of the internal

algorithms as long as they do not strongly concern the execution logic of the block. Calls of the algorithms can

be modeled by the corresponding time delays when such a timing is essential. This agrees with the practical

view on modeling - to get more or less valuable results we need to concentrate only on the important issues

sacri�cing the neglectable ones.

As for the variety of data types admitted by the standard, we divide them on the four categories: event

signals, which are modeled mainly by event arcs of NCES; Boolean variables which can be modeled by marking

of a place in the NCES model and by condition signals, which convey the value of variable without a�ecting



tokens 
ow of the net; time parameters, which are mapped onto corresponding permeability intervals of some

NCES arcs, and other numerical data which are not precisely modeled as far as it does not concern the logic of

execution.

Based on the analysis of the IEC1499 draft we conclude that a model of a basic function block should include

the following components:

1. Event input state machine (EI-SM) implementation module (one for each event input).

2. Event input variables storage (EIVS) models (one for each event input).

3. Model of EC operation state machine (ECO-SM).

4. Module implementingECC (ECC model), including the sub-modules implementing actions and algorithms

(optional).

5. Event output variables (EOV) models (one for each event output).

5.3 Modeling of Input and Output

According to the standard, information about events is transmitted between function blocks by means of event

variables. For each event input (EI) shall be maintained an EI variable plus a storage element which exhibits

the behavior de�ned by the state machine in Figure 4,a. Its transition arcs are marked both with conditions of

transitions and with operations, executed upon the transitions as listed in the following table:

Transition Condition Operation

t0 map input none

t1 event arrives ECC invocation request

t2 event arrives implementation dependent

t3 map input set EI variable

Though it is not directly stated in the draft of the standard, we assume that the state machine de�nes a

Mealey automaton with input and output symbols associated with arcs.

The NCES model of event input is shown in Fig.4,b. It includes model of the storage element (places p1�p2,

transitions t1 � t4), and model of the variable (places p3 � p4, transitions t5 � t6).

Places in the model have the following meaning:

p1 - "Ready" - is ready to detect new event;

p2 - "Locked" - event occured, but its processing by Execution Control has not started yet;

p3 - Value of the event input variable is FALSE;

p4 - Value of the event input variable is TRUE;
The operations consist of the issuance of event signals "ECC invocation request" at t1 and "Set Event Input

variable" (t2; t5). The storage element ensures the correct detection of events and the correct sequence of their

processing, which is achieved in cooperation with the further described execution control state machine. Initial

state of the model is de�ned by the marking fp1; p3g. Event input forces t1 which changes the state to fp2; p3g

and causes the event signal "ECC invocation request".

As the standard sets, processing of the invocation requests is performed by resource. We understand that

in such a way that no requests should be lost in case if the execution control is unable to process the request

immediately. This behavior is modeled by the NCES shown in Figure 4,c, which sets a Boolean 
ag (token in

the place p2) after at least one ECC invocation request occured when the execution control is busy processing

another event. When the execution control becomes idle, t2 �res and invokes the execution control again. Once

processing of the event is started by the execution control (as will be shown later in Figure 6,b), it issues the



a) b) c)

Figure 4: a)Event input storage element state machine; b) NCES model of event input including EI variable; c) Model of the

ECC invocation processing by resource.

a) b) c)

Figure 5: a)Event output variable model; b)Boolean variable model; c)NCES implementation of the Boolean expression: LOAD^

WI.

signal "Input mapped" to the models of event input, which forces t2, returns a token from p2 to p1, and then

forces t5.

It implies that only those event inputs are set to TRUE which have been mapped by the execution control.

This happens when the execution control starts to process these events. According to the standard, once event

input variable is set to TRUE it can be reset only by the execution control, and only in case if a transition in

the execution control chart clears. Until a transition clears all the event input variable remain to be in their

state.

Event output is also implemented as an NCES module, containing two states and two transitions forced by

event signals "Set event output" and "Issue output events" as shown in Figure 5,a.

5.4 Execution Control Operation State Machine (ECO SM)

Operation of the Execution Control Chart is described in the IEC1499 by means of the state machine (ECC

SM) shown in Figure 6,a with transitions and actions de�ned as in the table:

Transition Condition Operation

t1 invoke ECC con�rm input mapping

evaluate transitions

t2 no transition clears issue events

t3 a transition clears schedule algorithms

t4 algorithms complete clear EI variables

set EO variables

evaluate transitions



a) b)

Figure 6: a)State machine of execution control operation and b) its NCES model.

Behavior of the ECO SM requires some comments since there are multiple operations associated with some

transition arcs. Sequence of the operations and their timing seem to be important. Thus t1 is driven by the

event "Invoke ECC" and has the following associated operations:

1. Con�rm input(s) mapped;

2. Evaluate transitions;

First operation sends an event signal to the model of corresponding state machine implementing the storage

element of the event input, and the second sends an activation signal to the NCES model of the Execution

Control Chart. It is essential to ensure that the latter signal is issued after the �rst operation has been

completed, because value of the event input variable might be required for evaluation of transitions in the

model of ECC.

Basic structure of ECO-SM model is similar to the original ECO SM (places p1,p3,p4 correspond to the

states S0,S1,S2). Marking in the place p1 (state S0) means that the state machine is ready to process event,

which we call "ECC idle". We introduce also an additional "transitional" place p2 in the ECO-SM model, which

ensures that variable setting is completed before the transition evaluation. Since the transition from p2 to p3 is

not forced by any event and the net is assumed to be timed, it �res as soon as p2 becomes marked. The same

role plays the place p5 - it ensures that new transition evaluation is done after the event variables used in the

previously cleared transition have been reset.

5.5 Model of Execution Control Chart

The draft of IEC1499 states that "the operation of the ECC shall be functionally equivalent to the rules of

evolution for Sequential Function Charts (SFCs) given in subclause 2.6.5 of IEC 1131-3".

Language of ECC description is a simpli�ed sequential function chart (SFC), where the only initial state is

present, and each transition has exactly one source and target state. As a consequence, in ECC only one active

state can be present at every time instance.

The execution control chart is transformed into NCES model which re
ects the structure of the initial ECC,

where each state of the ECC is mapped in to a place in the model, each transition of the ECC transformed into

a correspondingly connected NCES transition. Besides additional modules are provided to model actions and

output signal issuance of each state, as well as the modules modeling Boolean conditions of the transition. The



place in the model of ECC which corresponds to the initial state has initally one token, while the other places

are empty. Thus, the model exhibits a non-deterministic behavior in case if a state in ECC has more than one

successor. This allows to analyze all possible scenarios of the ECC evaluation, though the standard states that

the latter might be implementation dependent. In this case our model should be properly adjusted according

to the particular evaluation discipline.

Evaluation of the ECC transitions is controlled by the execution control state machine which however requires

either of the signals "A transition clears" or "No transitions clear" upon the evaluation. The latter are provided

by the module named Transition Evaluation Monitor (further abbr. TEM).

5.5.1 Transitions

The standard sets the following rules concerning transitions between states of EC:

1. Each EC transition shall have an associated Boolean condition, equivalent to a Boolean expression utilizing

one or more event input variables, input variables, output variables, or internal variables of the function

block.

2. Evaluation of an EC transition condition is disabled until ALL the algorithms associated with its prede-

cessor EC state have completed their execution.

3. "Evaluation of transitions" consists of evaluating the conditions at all the EC transitions following the

active EC state and clearing the �rst EC transition (if any) for which a TRUE condition is found. "Clearing

the EC transition" consists of deactivating its predecessor EC state and activating its successor EC state.

The order in which the EC transitions following an active EC state are to be evaluated may be provided

by software tools.

Modeling of the ECC transitions includes modeling of Boolean condition computation, and modeling of

the explained above evaluation discipline. Computation of Boolean expressions can be modeled to the various

extent of detail, dependent on how precise modeling is required. For example, NCES implementation of Boolean

expressions up to the level of machine commands (IEC1131-3 Instruction List) was in detail considered in [3].

If less precise implementation would be enough, then each non-trivial Boolean condition can be modeled by

a single NCES module, having two places, corresponding to the FALSE and TRUE values of the condition.

Initially the value is assumed to be FALSE. Transition from FALSE to TRUE is driven by the event signal

"Evaluate conditions". Thus, computation of all conditions takes only one (multi-) transition. The place,

corresponding to the TRUE value of the condition is connected to its corresponding transitions by a condition

arc. It is essential, therefore, to attempt to �re transitions only after the computation of conditions has been

completed. Example of a Boolean condition implementation is shown in Figure 5,c.

A transition has one forcing event input "Force transitions", which is issued by TEM, and an event output,

which is connected to the "Clearance" input of the TEM.

5.6 Transition evaluation monitor

The main purpose of TEM is to detect a situation when no ECC transition clears in response to the forcing

signal "Evaluate transitions" and to issue the corresponding signal. Structure of the TEM is shown in detail in

Figure 7,a. Places in the TEM have the following meaning:



a) b)

Figure 7: NCES implementation of the Transition Evaluation Monitor a) and Execution manager b)

p1 - ECC is ready to "Evaluate transitions"

p2 - Boolean conditions of transitions have been evaluated;

p3 - Transitions attempted to be �red;

p4 - A transition cleared;

p5 - No transition cleared so far;
Transitions in the TEM have the following notation:

t1 - TEM turns into evaluation mode, compute conditions;

t2 - Transitions are forced to �re;

t3 - Transition clears, return to the initial state;

t4 - Clearance is detected;

t5 - No clearance of transition is proved;

TEM starts its operation driven by the "Evaluate transitions" event, issued by the EC SM. This event �res

the transition t1 which moves token from p1 to p2 and issues the signal "Evaluate conditions". In the next state

transition t2 becomes enabled and �res issuing the event signal "Force transitions", which is connected to every

ECC transition.

Every such a transition has a single output event link, all of which are merged at the input "Clearance" of

TEM (transition t4). In case if any of the ECC transitions clears, it forces t4 to �re and moves a token from p5

to p4. It occurs simultaneously with the token moving from p2 to p3.

Thus, in the next state places p3 and p4 is marked and t3 becomes enabled and is forced to �re since it

is a spontaneous one. Therefore, it �res issuing event TransitionClears and returning tokens to the initially

marked places p1 and p5.

Otherwise, if the signal "Force transitions" causes no subsequent �ring of ECC transitions, a token moves

from p2 to p3, but another token remains in p4. It will cause t4 to �re and issue the signal "No transitions

clear".

Since the TEM and ECO SM together provide the execution control of the ECC we combine them in the

single module denoted as "Execution Manager" as shown in Figure 7,b.
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Figure 8: Example of ECC state with n actions (a), its NCES implementation (b), and model of an algorithm.

5.6.1 States

An EC state can have zero or more associated EC actions. Each action can have an associated algorithm and

an associated output event which is issued upon completion of the algorithm.

If more than one action is associated with a state, then their execution follows the evaluation rules for SFC

given by IEC1131-3. Since the notion of action quali�er is not mentioned in IEC1499, we assume that each

action has the null quali�er (N ) which means that all the actions have to be started simultaneously.

A model of such a state is shown in Figure 8-a,b. Models of each action can be further detailed using

de�nition of its particular algorithm. In the NCES in Figure 8-b it is assumed, that conditions "ACTION-i

completed" are issued by the corresponding NCES models of algorithms. If a state has no associated actions

then just no incoming condition arcs would be attached to the transition t2. If detailed models of algorithms are

not available, they can be substituted by a simple "one-transition" models as in Figure 8,c, having the states:

"Algorithm idle", "Algorithm active" and "Algorithm completed", de�ned by the marking of places p1; p2; p3

respectively. Transitions (t1) from the "idle" to "active" is forced by event signal "start" which is connected

to the "Schedule algorithm-i" of the state model. Transition from the active to the completed state is modeled

by the spontaneous transition t2, so the active state lasts no longer than one state of the model. Otherwise,

a permeability interval with the delay, to model the execution of algorithm can be assigned to the arc (p2; t2).

Transition t3 returns the model to the "idle" state, driven by the "recharge" signal which can be connected to

the "Algorithms completed" output of the state model.

6 Modeling and veri�cation of IEC 1499 application

6.1 Building the model

First we illustrate the modeling of IEC1499 applications using a simple example of function block INTEGRAL-

REAL which is borrowed from the draft of IEC 1499 (Table 2.2.1 and Annex H). Type declaration of the block

is given in Figure 9,a, and Figure 9,b shows its Execution Control Chart and internal algorithms. Functionality

of the block is quite simple - it integrates the function given by the value of the input XIN (of type REAL)

driven by the event input EX, and provides the result as an output XOUT. Initial value 0 is set to XOUT by

the algorithm INIT, which is called driven by the signal INIT, and then every occurrence of EX event adds to

XOUT value of XIN integrated over the time interval DT.

Thanks to the simple functionality, we use this example to illustrate the rules of transformation of function
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Figure 9: Type declaration of INTEGER-REAL function block (a), its execution control chart (b).

Figure 10: Modular NCES model of the INTEGRAL-REAL function block.

blocks to the model and check the general correctness of our modeling approaches, especially an adequate

understanding of the execution rules, provided by the standard as well as correctness of the latter.

Again, we would like to point out that our modeling is quite limited. Thus we do not pursue the goal of

checking how correct is the computed result (XOUT). The only thing we would be able to do is to make sure

that execution logic of the block is correct.

The model is built from the modules described above, which are interconnected by means of event and

condition arcs as shown in Figure 10. Connection of several function blocks in a composite function block is

also realized in the similar way.

Model of the execution control chart is composed of the ECC model itself, models of states and models of

algorithms INIT and MAIN. In detail it is presented in Figure 11. The module consisting of places p1� p3 and

transitions t1� t4 corresponds to the ECC itself. Fragment p4�p5,t5� t6 models the state INIT with the call of

INIT algorithm. Module p8; t9 is responsible for the issuance of INITO output event. Correspondingly, module

p6 � p7,t7 � t8 models state MAIN, and module p9; t10 issues output event EXO. In the case if no action is

associated with a state (like in case of the START state), the corresponding "Algorithm completed" condition



Figure 11: NCES model of the Execution Control Chart of the INTEGRAL-REAL function block.

is always true. This is modeled by the module p11�p13; t12� t14 which issues the signal "Algorithms complete"

provided the signal "Schedule algorithms". The algorithms INIT and MAIN are modeled as the "one transition"

automata in modules p13 � p15, and p16 � p19 correspondingly. The resulting model of the INTEGRAL-REAL

function block in detail is shown in Figure 12.

Execution control state machine is sensitive to the event inputs when it is in the "idle" state S0 which in

the model we determine by predicate PECC
idle = p14. If an event occurs when the execution control is sensitive,

its processing begins immediately, otherwise it is postponed until the state S0 is reached again.

Due to the "cooperative work" of event input and execution control state machines the model can be either

in "Signal-ready" or in "Signal-locked" state. We denote this as predicates P signal
ready and P signal

locked . In our model

of INTEGRAL-REAL P INIT
ready = p1, P

EX
ready = p5, P

INIT
locked = p2, and P

EX
locked = p6. If the execution control state

machine comes to the idle state when some signals are locked, they will be mapped into the corresponding EI

variables and processing of the locked event inputs will start.

6.2 Analysis

Veri�cation of IEC1499 real-time applications is a broad issue to be covered in the limited space of this paper.

Besides, the work on the veri�cation is still underway, so we illustrate just a few opportunities provided by the

NCES modeling and supporting tools.

When an event-driven function block is veri�ed, the following questions related to its execution logic might

be of interest for the developer of the block:

1. Make sure that execution of the block terminates correctly on all possible combinations of driving inputs;

2. Estimate the response time of the block, measured either in number of transitions required to get the



Figure 12: Detailed NCES model of the INTEGRAL-REAL function block.



output given the input, or in time units, when more detailed information on timing is both required and

provided;

In context of this work we call this as a veri�cation of "computational" properties as opposite to the veri�cation

of technological properties, i.e. those in control applications which directly related to the behavior of the

controlled plant.

For the purposes of the computational veri�cation we dip the model into the "veri�cation framework", which

consists of the generator of events and bi-stables for each input and output as shown in Figure 13. The bi-stables

for events are required to express the fact of event also by a predicate, i.e. via marking of the places. Thus

event input INIT is denoted by predicate P INIT = pi1�2, event input EX is by predicate PEX = pi2�2, event

output INITO by predicate P INITO = po1�2, and event output EXO by predicate PEXO = po2�2.

The generator provides "testing" of the model on all possible combinations of the input signals. The model

extended in such a way is exposed then to the NCES analyzing tools, �rst of all to SESA. Using SESA it is

possible to built up the reachability graph of the model. Using the reachability graph we can, for example, �nd

and analyse dead states (if any), and check the validity of properties, such as "Prove that for all trajectories

input signal 1 is followed by the output signal 1", etc. For the model of the INTEGRAL-REAL function block

we found that its reachability graph consists of about 600 states and there are no terminal (or dead) states.

However many loops in the reachability graph require more thorough check of the behaviour, which is possible

by means of proving temporal logic properties.

The following properties in our opinion would help to ensure the correct behavior of a function block:

6.2.1 Guaranteed response

Each event input eventually is followed by the corresponding event output. Such a sequence of states is called

the correct event processing sequence. For example, consider the event input INIT. We are going to check

whether every occurrence of the INIT is eventually followed by the event output INITO. We are checking the

following temporal statement:

AG(P INIT ! EFP INITO);

which means: in every state occurence of INIT is eventually followed by the INITO output.

This formula however is proved in general to be FALSE. The subsequent analysis of the counter examples

revealed that this is due to the situation when the event INIT occurs simultaneously with the other event input

EX. In this case the model might call either INIT or MAIN algorithm, which is followed by the corresponding

event output (either INITO or EXO). The other event input gets lost in such circumstances.

6.2.2 Return to the sensitive state

This property is formulated as follows: from every reachable state every fullpath eventually comes to the state

characterized by the predicate PECC
idle . We proved this statement checking the temporal formula AGAFPECC

idle .

6.2.3 Event processing always terminates by an event output

If the ECC is not idle that means it is processing some event. We prove that when the event processing is ended

(i.e. next time PECC
idle becomes true again), one of either event outputs is already occurred:

AG(:PECC
idle ! E[(P INITO _ PEXO)BPECC

idle ]):

This formula is also proved to be TRUE.



Figure 13: Framework for veri�cation includes generator of events and bi-stables for each input and output.

6.2.4 Correct processing of simultaneous event inputs

A simultaneous occurrence of two or more event inputs might require the usage of several algorithms which

in turn would ask several transitions to be evaluated using the values of corresponding event input variables.

Behavior of the block in such cases must be explicitly de�ned. The standard, however, does not say much

about the issue. To clarify, how a function block would behave in such a case, we have studied consequences

of the simultaneous occurrence of two event inputs INIT and EXO. The analysis revealed that such an input is

never followed by the simultaneous output of INITO and EXO. As applied to the INTEGRAL-REAL, this is

obviously correct behavior.

In general, regardless of how many inputs triggered simultaneously, only one transition of ECC with non-

constant condition would �re. As a matter of fact, simultaneously means during the time when execution control

is busy processing prior events. This behavior is due to the fact that processing of an event is ended by the

corresponding "Clear EI variables" signal which also erases traces of all other events.

6.2.5 Measurements

Rough estimation of the block timing, for example in terms of number of transitions, required to get the output

for a corresponding input is also possible using analysis with SESA. It allows, for example, to �nd shortest or

longest path between event-input and corresponding event-output states in the reachability graph.

More precise estimation of the timing is possible if we assign realistic values of delays for the operations in

all parts of the model by means of the timed arcs.

7 Modeling and veri�cation of a simple control system

Consider more sophisticated example of IEC1499 application: controller of a simpli�ed transfer stage. This

example originally is borrowed from the web site of the Allen-Bradley Company dedicated to the IEC 1499,

where it serves as an illustration of programming within IEC1499 framework. The original example consists of

controller, model of the object and human-machine interface components.

Here we use a slightly modi�ed controller part of the example. We verify the correctness of the controller

function block using an TNCES model of the plant which has behavior similar to the speci�ed in the original.

Using our modeling and veri�cation technique, we spotted some faults in the original controller which could

lead to an incorrect behavior of the object.



7.1 Description of the object and speci�cation of the desired behavior

The transfer stage (TS) is meant for transferring workpieces between two positions, denoted as HOME and

END. TS consists of STATION, where the workpiece rests, and turning mechanism which moves the station

between the positions. The transfer stage is connected to the INPUT TRAY, which is the source of workpieces,

and to the "OUTPUT TRAY", i.e. the place where workpieces have to be delivered.

a) b)

Figure 14: Transfer stage

7.1.1 Sensors (condition and events)

HOME - station is in the loading position;

END - station is in the unloading position;

WI - workpiece is in the input position (HOME). Sensor is ON from the position when the workpiece is ready

to be loaded until the workpiece is completely loaded on the station of TS;

WF - workpiece is on the station of TS. Is TRUE when the workpiece is completely loaded on the station.

WI and WF are not overlapped, i.e. while a workpiece moves from the input tray to the station of the

transfer stage, the following sequence of states unfolds:

1. WI = 1 and WF = 0 - the workpiece is on the input tray;

2. WI = 0 and WF = 0 - the workpiece moves from the input tray to the stage;

3. WI = 0 and WF = 1 - the workpiece is on the stage;

OCCUPIED - occupancy status of the output tray;

7.1.2 Actors

Actions of the device are driven by the following impulse (event) signals:

LD - loading of the station. On this signal mini-transporter of the station starts moving to the right, pulling

the workpiece, if it is present. Time of the loading if the workpiece was initially present at the tray is

denoted as TLD.

UNLD - unloading the station. On this signal mini-transporter moves the workpiece out of the station. If

applied when not in the extreme positions may cause the lost of the workpiece. Time of the loading is

denoted as TUNLD .



ADV - moves the station from HOME to END, takes TADV time;

RET - moves the station from END to HOME, takes TRET time; When an extreme position is reached, the

corresponding moving terminates.

In the closed loop control structure presented in Figure 15 the sensors become inputs of the controller and

the actors - its outputs. Besides the controller has "external commands" LOAD and UNLOAD which can be

interpreted as coming from buttons or from other machines which interact with the transfer stage. Note that

some outputs of the controller are not connected to the plant but reserved for the information exchange with

other controllers.

Figure 15: Controller and plant structure

The desired behavior of the system is explained as follows. Initially the transfer stage is in the HOME

position. When the station does not contain a workpiece and the LOAD command occurs when a workpiece

is available for loading at the input tray, the transfer stage must load the workpiece and move it to unloading

position. There workpiece must be unloaded to the output tray upon the UNLOAD command comes. Then

the transfer stage returns to the HOME position.

7.2 De�nition of the controller as IEC1499 function block

Controller of the transfer stage, whose external interface is presented in Figure 15, is implemented as a state

machine, which is shown in Figure 16.

As it is clear from the Figure 15 some inputs and outputs of the controller directly correspond to those of

the plant, while some other outputs require additional explanation:

LOADED - this output event signal is issued when the workpiece is loaded on the stage and advancing is

started;

ADVANCED - this output event signal is issued when the stage arrives to the unloading position;

WO - workpiece is available for unloading, set TRUE when the stage with workpiece comes to the unloading

position;

Since all the actors require impulses rather than Boolean conditions, controller can be implemented by the

same structures which are normally used to de�ne ECC as shown in Figure 16. Assigning of non-event output

variables is not allowed in ECC, so external algorithms are used for this purpose. In the controller of transfer

stage this is used to set/release the WO variable.



Figure 16: Execution control chart of the controller.

7.3 NCES model of the controller function block

The NCES model of the controller (Figure 18) is built according to the same rules as in the previously considered

case of INTEGRAL-REAL. The only major di�erence is that conditions of transitions are more complicated

which requires models for Boolean expressions.

Model of the ECC (Figure 17) is obviously also more complicated since the ECC itself has more states.

Besides the model of ECC incorporates also models of algorithms ADVANCED and UNLOADED, which set

and reset the output variable WO. Inputs TC1 � TC7 represent the conditions of the ECC transitions.

7.4 Model of uncontrolled plant behavior

Now consider discrete modeling con�guration which is presented in Figure 19, where controller is connected to

the discrete event model of the plant. All parts of the modeling con�guration are TNCES modules connected

by event and condition arcs.

The developed model of the transfer stage bases on the following assumptions about the object's behavior:

1. Loading is possible only in HOME and unloading only in END position.

2. Loading and unloading both activated by impulse for the designated time period (TLD and TUNLD re-

spectively). No termination signal is required. Repeated signal while the previous is active does not lead

to any action.

3. Both advancing and retracting automatically stop when the extreme position is reached.

4. An attempt to perform the unloading while moving (advance or retract), as well as to start moving while

loading or unloading, leads to the fault situation. However ongoing signals LD or UNLD which arrive

while the station is empty (even on the move) do not lead to any trouble.

The model presented in Figure 20 is built as a timed NCES which consists of two modules: one models

position of the stage and the other - its loaded/unloaded state.

The former consists of 4 states p1-p4, where p1(stage in the HOME position) and p3(stage in the END

position) are stable, and p2, p4 - are transient ones, corresponding to the moving HOME to END and vice

versa.



Figure 17: Model of the controller's ECC including algorithms.



Figure 18: Modular NCES model of the transfer stage controller



Figure 19: Discrete modeling con�guration

The latter has the similar structure. Station becomes loaded only if a workpiece was provided and it passed

through the loading in HOME position. Loading takes time TLD upon which the sensor WO becomes showing

"ON". It goes o� immediately after the unloading starts.

States of the transfer stage can be speci�ed by predicates in terms of marking of the model as follows. For

example unloading in the end position is speci�ed by the predicate

Punl:end = p8 ^ p3:

Figure 20: Model of uncontrolled plant behavior (transfer stage only).

7.5 Veri�cation using the controller/plant model

The whole controller/plant model was exposed to the discrete event analysis: liveness, absence of dead transi-

tions, analysis of the reachability graph, etc.

The most common technique of veri�cation of controllers is checking various safety properties that express

freedom from the fault states of the plant among the all reachable states of the plant/controller joint model. In

our case we check the following fault states:



Figure 21: New con�guration using the controller modi�ed according to the veri�cation results (input OUT TR) is added and

connected to the OCCUPIED output of the output tray model.

1. Stage starts to move (advance) before loading is completed. This property is checked by the following

temporal formula:

EF (Ploading ^ Padvancing):

The formula is proved to be FALSE.

2. Unloading is attempted while another workpiece is on the output tray. This fact is equivalent to the

formula:

EF (Pout:tr ^ Punloading);

which is proved to be TRUE.

This situation can be eliminated if we use additional information about the state of the output tray. For

this purpose we add additional input OUT TR to the controller function block, and connect this input to

the OCCUPIED output of the plant, as shown in Figure 21.

The transition condition UNLOAD from ADVANCING to UNLOADING is correspondingly substituted

with the forti�ed condition UNLOAD_:OUT TR to ensure that UNLOADING never starts if the output

tray is still occupied.

3. Stage attempts to retract before unloading is completed. This fact is equivalent to the formula

EF (Pretracting ^ Punloading):

The formula is proved to be TRUE. This is due to the weak transition condition from UNLOADING to

RETRACTING. To eliminate the dangerous state we also use the new input OUT TR. The condition is

transformed from :WF to :WF ^OUT TR which ensures that the transfer stage never starts to move

back until reception of the workpiece is con�rmed by the output tray.

7.6 Veri�cation of controllers for composite plant

One of the declared key features of the IEC1499 is support of so called "no master controller" principle of

building controller of a composite system having the controllers of components. The controllers of parts are

just connected to each other to get the controller of the whole thing.



Figure 22: Modi�ed controller of the transfer stage (condition of transition ADVANCED ! UNLOADING is forti�ed with

:OUT TR, and condition of transition UNLOADING ! RETRACTING is forti�ed with OUT TR).

We illustrate this principle building the composite plant from two transfer stages, where the �rst stage takes

the workpiece from the input tray, then moves it to the unloading position, where passes it to the second transfer

stage. The latter moves the workpiece to its unloading position on the output tray.

Controller of this object is obtained as a net of two single transfer stage controllers as shown in Figure 23.

Output signal ADVANCED of the �rst controller is used to initiate the loading of the second by connecting it to

the LOAD input. And output signal LOADED of the second controller is used to initiate the unloading of the

�rst controller by connecting it to its input UNLOAD. Output WO of the �rst controller is used as input WI-

"Workpiece available" of the second controller. Output WO "Workpiece available" of the second controller is

used as input OUT TR of the �rst.

We veri�ed this con�guration on compliance with the above stated properties. Also, we checked combined

properties, which ensure the correct loading/unloading from one stage to another. For example, we checked the

property, expressed by the formula:

EF (P 1
unloading ^ P

2
advancing);

which reads "there is no state where second stage starts advancing before unloading of the �rst has been

completed". We proved that this formula is FALSE.

Another question which concerns the interaction of the two stages at the unloading/loading point is to ensure

that loading of the workpiece from one stage to another nds up, i.e. �rst stage returns to the initial position,

while the second - advances to its unloading position. It can be checked by the temporal formulas

AG((P 1
unloading ! AF (P 1

retracting) ^ (P 2
loading ! AF (P 2

advancing)):

Surprisingly, this formula turned to be FALSE, and as it was then revealed due to the condition of transition

from the UNLOADING to RETRACTING state of the controller. Instead of the WO of the second controller,

which is not set immediately after the workpiece is on the transfer stage 2, we need to use its WF as the

OUT TR input of the �rst controller. To provide the correct style of data access, we do not attach the WF2

directly to OUT TR1, but add an additional output WFO = WF - "actual presence of the workpiece on the

stage" to each controller. The resulting con�guration looks as shown in Figure 24. Verifying the former formula

on this con�guration gives the positive answer.

8 Conclusion and outlook



Figure 23: Composite controller of two transfer stages obtained as connection of two controllers.

Implementing the preliminary results presented in this paper into the practice would require as making them

more understandable by the engineers, as well as extending the modeling framework.

To our opinion the following goals have to be ful�lled �rst:

� Implementation of event operations. The standard provides a set of prede�ned function blocks for

operation with events. Implementation of the event blocks by NCES is required to model an arbitrary

IEC1499 application.

� Automatic model generation. Develop formal rules of transformation of IEC1499 function blocks into

NCES. This would allow to build a tool for converting IEC1499 applications into NCES models.

� Extending the modeling framework. So far we have studied only modeling of IEC1499 function

blocks. The standard however provides the variety of hierarchical structures for building applications.

Figure 25 shows the hierarchy of IEC1499 structures along with modeling components and properties

which is possible to verify on the corresponding levels of the hierarchy.

Thus, the level of function block and subapplication (composite function block distributed over several

devices) allows to perform a "rough" veri�cation of the control strategy neglecting the dynamics and

delays of the controller and communication networks. Taking these properties into an account would

require modeling of the resource and device components as well.

� Translation of practical speci�cations. Probably the most di�cult goal is to make a bridge between

the practical speci�cations and requirements and the formal form of their presentation appropriate for

the veri�cation tools. This partly includes formulation of the speci�cations which is infamous for being a

rather tricky informal art than a discipline.



Figure 24: Corrected composite controller of two transfer stages (outputWFO is added to each component controller, andWFO

of the second controller is connected to OUT TR input of the �rst one.)
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