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Abstract: In this paper we present the software tool VEDA for modelling and verifica-
tion of distributed control systems. The tool provides an integrated environment for
formal, model-based verification of the execution control of function blocks following
the new international standard IEC61499. The modelling is performed in closed-loop
way using manually developed models of plants and automatically generated models

of controllers.
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1. INTRODUCTION

Current practice of testing industrial control sys-
tems is far from being satisfactory. Validation
which relies on a finite number of tests guarantees
only that the developed software correctly works
for this finite number of input tests. In reality the
software may encounter with input combinations
not covered by the tests, thus generating unpre-
dictable outputs. This may lead to the erroneous
behavior of the production equipment with the
corresponding consequences. Methods of formal
model-based verification of control systems devel-
oped during the last decade target a solution of
this problem. Representative description of the
latter can be found in (Clarke et al., 1986; Os-
troff, 1989; Kowalewski et al., 2001). However the
verification is still far away from the everyday
practice due to a number of reasons such as fol-
lows:

(1) The control design companies do not want
to cast doubt on their practice of software
development, insisting on that the settled
routine (based on certain norms, rules, and
software engineering concepts) ensures the
quality of the final product.

(2) Verification requires essential changes to the
software engineering practice. In particular,
formal modelling of the plants to be con-
trolled is different from the modelling used
for simulation and testing.

(3) The variety of developed formalisms makes
standardization of modelling difficult.

(4) The verification trials conducted in academia
deal with very much simplified examples of
control systems. Comprehensive verification
of control applications, taking into account
not only control logic, but also system issues,
is computationally complex and therefore
unfeasible.

(5) Despite the number of theoretical and prac-
tical works in this direction, there are very
few software packages available for smooth
integration of verification into the control
engineering practice.

Meantime, modern trends in control engineering
make problems of testing and validation substan-
tially harder than earlier. State-of-the-art in the
control technology is realized by wide application
of distributed architectures. If compared with lo-
cal control systems, the distributed ones consist
of controllers interconnected to the environment
and to each other by means of networks. Such



design provides an exceptional flexibility of the
production equipment, and higher cost-efficiency
than provided by traditional methodologies.

The standard TEC61499 (Function Blocks for In-
dustrial Process Measurement and Control Sys-
tems, 1998) is an attempt to provide a com-
prehensive software engineering concept for dis-
tributed measurement and control applications.
In particular it aims at providing a uniform pro-
gramming paradigm of Programmable Logic Con-
trollers (PLC) and Distributed Control Systems
(DCS).

According to the standard an application is built
as a net of function blocks interconnected via
event and data signals. Control and data flows
are clearly separated. Execution control of a single
function block is implemented as a state machine
called the Execution Control Chart (ECC). It
deals only with event and logic inputs and out-
puts and performs only basic tasks: based on the
input events it changes an active state, invokes
the algorithms associated to that state, and sets
corresponding output events. A block may include
a number of algorithms implementing more com-
plex data processing, e.g. functions of continuous
control, etc.

In this paper a software tool VEDA (Verification
Environment for Distributed Applications) is pre-
sented, which is destined to support the verifi-
cation as a natural part of control engineering.
VEDA and some other tools were developed in the
framework of research project ”Modeling and Ver-
ification of Function Blocks following IEC61499”.
The tool is based on the methodologies of model-
based formal verification, developed during the
last decade. A short discussion of the latter fore-
stalls the description of VEDA’s functionality.

2. AN EXAMPLE OF THE DISTRIBUTED
CONTROL APPLICATION FOLLOWING
IEC61499

Let us illustrate the impact of the distributed
design with the help of a simple plant ”BORING
STATION” as presented in Figure 1. It consists
of a boring machine (drill) and a transfer stage,
which delivers workpieces to the home position of
the drill. The loading/unloading of the transfer
stage is performed in the position detected by
sensor load.pos., opposite to the home position.
The drill has to start drilling when the workpiece
comes to the home position. When drilling is over,
the workpiece is moved away. The presence of the
workpiece on the tray is reported by the sensor
loaded.

Control of the plant is performed by two indepen-
dent controllers, one for the drill, and the other for
the transfer stage. Sensors and actuators are con-
nected to their respective controllers by segments
of networks. The controllers also communicate to
each other via network. Access to the data is

CONTROLLER
of
DRILL LIFT

Z

]

7 DRILL

Z

MOVE IN MOVE OUT
. 1
CONTROLLER
of

Transfer Stage

Fig. 1. Structure of the distributed control system.

limited for each controller by the data available in
its own network segments, plus the data explicitly
provided by the other controller. According to
TEC61499, a function block consists of head (the
upper part) and body (the lower part). The head
is connected to the event inputs and outputs and
is responsible for the execution logic. The body is
connected to the data input/outputs and contains
the data processing algorithms, which are called
by the execution control. A block diagram (follow-
ing TEC61499) of the distributed control system
of the plant is presented in Figure 2. Function
block T'S_.C'T'L implements the control logic of
the transfer stage, block DR_CTL controls the
drill. In our diagram block M OD represents either
plant or its model, and the block INIT models
initialization of the controllers (for example in
case of a start-up of the control device).
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Fig. 2. Block diagram of the control system following
TEC61499.

The internal control logic of the blocks T'S_CTL
and DR_CTL is implemented by means of Ex-
ecution Control Charts (ECC) presented in Fig-
ure 4. The ECCs are state-machines whose syn-
tax is a simplified version of the Sequential
Function Chart (SFC), which is a programming
language defined by the standard IEC61131-3
(International Standard IEC 1131-3, Programmable
Controllers - Part 3, 1993). For simplicity we
extended syntax of ECC, allowing simple algo-
rithms, such as an assignment of a variable, to
be presented directly at the places, reserved for
the algorithm calls. The control logic of drill and



transfer stage is quite simple: once loaded with
a workpiece the transfer stage delivers it to the
working position, and then reports to the con-
troller of the drill about that. The latter blocks
moving of the transfer stage during the drilling,
by issuing the corresponding signal LOCK. As a
result of the design step, the source code of the
application (network of interconnected function
blocks) is obtained. In general it includes the com-
ponent algorithms, and is presented in Extended
Structured Text format.

3. MODELLING ESSENTIALS

For the formal model-checking the interconnected
system has to be substituted by its finite-state
model. We use for this purpose A signal-Net
Systems (SNS) that is a formalism, proposed in
(Rausch and Hanisch., 1995) (originally called
Net Condition/Event Systems) as a derivative
of Petri nets (Petri, 1980), and Condition/Event
systems (R.S.Sreenivas and B.H.Krogh, 1991¢;
R.S.Sreenivas and B.H.Krogh, 19915). It has been
developed and successfully applied for modelling,
verification and synthesis of controllers and con-
trol systems of various types (Hanisch and Liider,
1999; Hanisch et al., 1997; Vyatkin and Hanisch,
1999; H.-M.Hanisch et al., 2000).

Signal-Net system is a marked place transition
net, having in addition to the token-flow arcs,
two additional types of signal arcs. Condition
arcs from places to transitions provide additional
enableness condition. Event arcs from transitions
to transitions provide one-sided synchronization:
firing of the source transition forces firing of the
recipient, if the latter is enabled by marking and
conditions.

Thanks to the signal arcs the nets can be orga-
nized into modules with condition and event in-
puts/outputs, and the modules also can be inter-
connected by condition and event arcs. The inter-
connected modular model can be transformed into
autonomous net without inputs and outputs. The
original structure of the plant/controller system is
preserved in the SNS model.

An example of the SNS model for the drilling
station is given in Figure 3. Every component
of the system is modeled by an SNS module.
Interconnections between component blocks of the
system are mapped to condition and event arcs
connecting modules of the model.

Modelling by means of SNS proves to be beneficial
as opposed to other similar means of modelling
(e.g. finite automata) particularly in the following
aspects:

(1) Modularity. SNS includes means of orga-
nizing modular models: event and condi-
tion arcs. These new types of arcs help to
combine strong features of Petri nets with
structural clarity of Condition/Event sys-
tems (R.S.Sreenivas and B.H.Krogh, 1991a).

Model of Plant
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Fig. 3. Modular SNS model of the plant.

(2) Clarity. The semantics extension induced by
the signal arcs is simpler and has less impact
on the complexity of the model-checking than
that of other modular formalisms, such as
Input/Output automata.

(3) Brevity. State of the SNS model, defined by
marking of places, as well as state transition,
defined by a combination of net transitions
are distributed. This allows to build more
compact models than by using other sim-
ilar implementations of C/E systems, such
as Condition/Event Automata (H.Chen and
H.M.Hanisch, 2000). It is especially sensible
when modelling of controller’s internals is
concerned.

(4) Adequacy. Modelling is always a trade-off
between the complexity and adequacy of
representation the dynamics of the modeled
system. In this sense the SNS demonstrate
quite satisfactory performance. In particu-
lar it well copes with representation of both
synchronous (controller) and asynchronous
(plant) components in the same model.

(5) Implementability. Discrete state formalisms
obviously have limited expressive power than
the hybrid ones, such as presented in (H.-
M.Hanisch et al., 2001; Kowalewski et al.,
2001). This is true also for SNS. How-
ever, currently existing implementations of
SNS model-checking, such as SESA (SESA
- Signal-Net System Analyzer, n.d.), allow
the model-checking of realistic-scale appli-
cations, having millions of reachable states,
that is hardly to expect from the hybrid
formalisms.

The models of the control function blocks are
generated automatically by VEDA given their
source code. The methodology of the modelling
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Fig. 4. Execution Control Charts of function blocks T'S_.CTL and DR_CTL.

is discussed in our prior works (Vyatkin and
Hanisch, 2000b; Vyatkin and Hanisch, 2000a).
Taking into account the distributed nature of
the systems being studied we assume that an
application may consist of several components
interconnected by data and event signals. Each
component can be responsible for control of a
particular unit of the plant.

4. VERIFICATION TOOLS

The overall correctness of control applications fol-
lowing IEC61499 depends not only on the control
logic and data processing within the algorithms,
but also on the scheduling of the algorithms, com-
munication between devices, particular architec-
ture of the system and mapping components of
the application to particular architecture.

Full verification of an TEC61499 application re-
quires application of hybrid modelling formalisms,
and nevertheless (as it is shown, for example, in
(Enste and U.Epple, 2001)) it seems to be un-
feasible for the realistic size designs. It does not
mean, however, that the verification is unable to
contribute to the improvement of the testing of
function blocks.

Due to the complexity-related reasons we are not
able at this stage of the work to perform the
complete verification of industrial-scale function
blocks. For this reason we constrain ourselves to
verification of the execution control only. We rely
on the following argumentation:

(1) Verification of the execution control sets a
corner stone, which can be further upgraded
to the full-scale verification.

Even the (quite limited) verification of the
execution control is able to extend the bor-
ders of testing and debugging, and contribute
essentially to the improvement of the reliabil-
ity of controllers.

(2)

Below we present the integrated software tool
VEDA - Verification Environment for Distributed
Applications. Given a controller, coded according
to IEC61499 the following steps are assumed as
the preceding to VEDA application:

¥ Vi T el ONRREE RAER
S dvr Show S Bee

aimtn

oo 3

ooy 4
]

A
SR Rem R

Fig. 5. Graphical editor of SNS models.

(1) Develop the SNS model of plant and inte-
grate it with the control application, pre-
pared following the IEC61499. The model
design is supported by means of the graphical
editor as presented in Figure 5. The formal
model can be appended by a visualization
model, which assigns visualization actions to
certain markings of the formal model. For
this purpose we developed an object-oriented
description language SML (Simple Modelling
Language). The resulting composite model
can be presented as a function block with
interface following IEC61499. Taking into ac-
count the distributive nature of the plant,
the model can be also a net of component
function blocks. Thus, the block MOD in
Figure 2 can be substituted by the model
from Figure 3. The arcs linking the block
MOD to other function blocks are substi-
tuted by condition and event arcs connect-
ing the model of MOD with the models of
respective blocks.

Present the to-be-verified control application
in the closed-loop manner, where the func-
tion blocks containing controllers are inter-
connected with the function blocks contain-
ing the models of plant’s components (as in
Figure 2).

Formalize the specifications of correct or in-
correct behavior of the control system. These



Fig. 6. VEDA’s display.

can be done using second order predicates
or temporal logic formulae over the variables
declared in the controllers or over parameters
of the model of plant.

The main VEDA screen is shown in Figure 6. Its
structure is as follows:

(1) Application/model source view. Dis-
plays the application being verified in one
of the available graphical or textual formats.
For example, the IEC61499 overall structure
can be presented as a net of interconnected
component function blocks, as well as equiv-
alent ASCII text presentation. The same ap-
plies to every component function block. Syn-
tax of function blocks is extended to allow a
block to contain a formal SNS model (such
blocks are gray shaded on the screen).

(2) Modelling/model-checking controls im-
plement the following functions: create the
reachability space of the model, search for
the states satisfying certain logic conditions,
or more sophisticated navigation functions in
the reachability space, e.g. search for a trajec-
tory satisfying to a number of conditions, ex-
pressed either as a sequence of (second-order)
predicates, or as a temporal logic formula.

(3) Tree view shows hierarchical structure of
the application and the variety of presenta-
tion options, which can be applied to each
component. E.g. a block containing the for-
mal model of plant can be seen as its interface
(inputs and outputs), as well as the textual or
graphical form of the SNS model (in window
1). A ”pure” IEC61499 basic function block
is visible as its interface, structured text of
its content, or graphical view of its execu-
tion control chart. The graphical views can
display information about particular state of
the model (marking of places, etc), or state
of the execution control.

(4) Model/modelchecking status. Shows the
size of the generated model, size of the reach-
ability space, and results of search for a par-
ticular state.

(5) Process visualization display shows the
modeled plant in the state selected in the

reachability space. For the states having non-
zero time duration, process animation can be
displayed.

(6) Behavior of the interconnected model is
represented by means of its reachability
graph, where nodes correspond to the states,
and arcs represent transitions between the
states. Thus, a path (a trajectory) in the
reachability graph corresponds to a particu-
lar scenario in the behavior of the model. The
specified path is highlighted in the graph.

(7) For detailed analysis of the system’s behavior
along the highlighted trajectory it can be rep-
resented by means of asynchronous timing
diagrams, i.e. values of the requested inputs,
outputs or internal variables can be shown
graphically with respect to the states of the
trajectory. In addition, each state can be
visualized in animation window (5), and in
the source window (1).

5. EXAMPLE OF VERIFICATION SESSION

Let us illustrate application of VEDA to the
control system of the drilling station. Formulation
of specifications is certainly a human activity, but
usually technical documentation provides a lot of
raw material for the specifications. Specification
of correct behavior of the plant includes freedom
from dangerous situations. One of the dangerous
situations can be described as ” Attempt to move
the transfer stage during drilling”. This condition
can be represented as a predicate in terms of
input/output variables of the blocks as follows:
"DCTL.LIFT and TCTL.OUT”. VEDA checked
the validity of the predicate in the reachability
space of the closed-loop model (289 states) and
found the states where the condition holds. To
analyze reasons of the incorrect behavior, it is
possible to visualize the trajectories leading to
this state with signal diagrams of the variables,
and provide the view of the animated process
visualization display along it. The reason becomes
clear at the look at the signal diagram in Figure
7 and to the corresponding visualization of ECC
(see Figure 4) and process view.

Fig. 7. Timing diagram of the state activity variables:
state DRILLED of the transfer stage is transient.

Once the transfer stage arrives to the working
position, its controller has to come to the state
DRILLED and send a corresponding message
READY to the controller of drill. The latter issues
blocking condition BLK, which does not allow the
transfer stage to move away before the drilling is
over. In fact, the state DRILLED in the controller
of the transfer stage is unstable: the condition



on the transition to the next state REMOVE
is immediately TRUE, due to the logic of ECC
execution: the outgoing transition conditions are
evaluated even before the output events, related
to a particular state are issued. This implies that
the state of TCTL is changed to the REMOVE
even before the signal READY to DCTL has been
issued. To fix this error the transition condition
NOT BLK has to be fortified as: BLOCK AND
NOT BLK, where BLOCK is an event issued
by DCTL after setting the BLK to 1. After the
modification, the erroneous states disappear from
the reachability space.

The repetitive application of such a procedure
with various specifications helps to improve the
controller’s correctness.
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