
RECONFIGURATION OF MECHATRONIC SYSTEMS ENABLED
BY IEC 61499 FUNCTION BLOCKS

A.R. Sardesai, O. Mazharullah and V. Vyatkin

Department of Electrical and Computer Engineering
University of Auckland, Auckland, New Zealand

v.vyatkin@auckland.ac.nz

Abstract
This paper discusses a new approach to the
development of industrial manufacturing
control systems. In industry, there is an
increasing need for more intelligent and agile
control systems which are able to be flexible in
their operations. Through use of the new IEC
61499 standard, a new design methodology for
modeling industrial control systems has been
developed with these goals in mind. A design
pattern for the control of automation devices
has been created and tested. In addition, a
distributed intelligent automation system has
been developed in which different devices are
able to interact, communicate and adjust to their
respective environments.
In order to view and test the developed system,
a web based Human-Machine Interface (HMI)
has been created. This HMI is able to be run on
any internet enabled device, including Personal
Digital Assistants (PDAs) and mobile phones.
Through this HMI the workflow of the system
can be viewed and modified.

1. Introduction
In today's industrial manufacturing environment there an
increasing need for flexible, agile and adaptable
manufacturing systems. Traditional manufacturing
systems have typically relied upon a centralized
hierarchy of programmable logic devices. This hierarchy
is usually fixed or “hard-wired” [Vyatkin, 2006]. As a
result, in order to reconfigure the system, the plant must
be shut-down and the components must be rewired and
reprogrammed. From a purely economic standpoint this
is undesirable.
A flexible and agile manufacturing system must be able
to adapt and reconfigure based on changing
environments. They must be reusable across different
manufacturing systems and must be able to be deployed
across a wide array of micro controllers. It must be able
to react in real time while still being safe and reliable.
For this reason, there needs to be a paradigm shift from
centralized PLC control to more distributed control
architecture. Each component within the system must

have its own distributed controller which is able to
communicate with other devices while still being able
maintain its performance characteristics. The lack of any
central supervisory control also means that there is no
single point of failure. Components can be removed
while the rest of the system adapts and continues its
operation.

2. IEC 61499 standard
In order to achieve the goals of flexible and
reconfigurable manufacturing systems, new system
development architecture has been standardized. The
IEC 61499 standard is an open component based
architecture designed for the development of distributed
control and measurement systems [IEC61499, 2005]. It
describes how a distributed control system can be
created through the interconnection of event driven
software components. An IEC 61499 application can be
embedded within a micro controller such that it is able to
provide real time control of a device.
The fundamental unit of software encapsulation is the
Function Block. Function Blocks are reusable and are
able to encapsulate intellectual property. An important
point to note is that Function Blocks are event driven.
Main value of being event-driven is that the blocks do
not depend on any external schedule. So, a block
completely encapsulates the desired function and will
show same behavior anywhere. When an event occurs in
the environment, a user can choose to have a Function
Block react to this event and carry out a particular
calculation or provide some output. In this way,
networks of Function Blocks can be developed to fulfill
particular applications. It is important to note that the
IEC61499 standard provides a directly executable
specification. Function block systems are made to be run
with real system, not to merely model them.

3. Function Block Development Kit
(FBDK)

The most widely used tool used in the development of
function block systems is Function Block Development
Kit [FBDK, 2006]. It provides a graphical interface

through which IEC 61499 compliant systems can be
created and tested. Function Block Runtime (FBRT) is a
runtime platform which allows systems created with
FBDK to be run on any Java enabled platform.
Any micro controller which has a correctly installed
FBRT is able to run function block systems. As a result,
the FBRT system is a step towards middleware in
industrial automation. Linked to this is the notion of
portability. There is no need for proprietary languages
and development systems which can only be run on one
type of controller. This also facilitates the
intercommunication between different micro controllers
such that larger and more complex intelligent systems
can be developed.

4. The University of Auckland Test Bench
The University of Auckland test bench consists of two
FESTO mechatronic stations [Fig 1]. The purpose of the
setup is to simulate industrial manufacturing systems and
to test various system configurations.

Figure 1 – The University of Auckland Test Bench

Station 1 consists of a rotating table, three presence
sensors, a hole checker and a drill. In its standard
operation, the table will rotate whenever a piece is
placed on it. The drill checker will see if there is a hole
in the work piece, in which case the drill will simply
ignore the work piece. If there is no hole in the work
piece, the drill will be activated to create a hole. The
work piece is then pushed onto Station 2.
Station 2 consists of a pneumatic arm, a presence sensor,
a reflection sensor and two trays. When a work piece is
present, the arm picks it up and moves it into one of two
trays depending on the color of the piece. A faulty work
piece is defined as one which has no hole or is black.
In order to control the test bench, one Elsist Netmaster
micro controller and a TCS MO'Intelligence micro
controller were installed as shown in Figure 2. Both of
these controllers are able to run Function Block systems.
In addition, the stations provide all inputs and outputs as
binary values that can be easily manipulated using the
two aforementioned micro controllers. The function
block controllers were also connected to the FEC PLC

controlling the pneumatic arm.

Figure 2: Distributed hardware devices controlling the
test bench.

5. Implementation of Distributed
controllers using IEC 61499

The problem of efficient design of distributed controllers
is an open research subject addressed in a number of
works, in particular in [2] and [4]. In this work, in order
to facilitate the development of intelligent mechatronic
actors, a standard software structure called the 'Interface'
Function Block has been developed. [Fig 2].

:

Figure 3: The Interface Function Block

The intent of developing this software module was to
create a kind of ‘standard template’ structure for a
function block that controls a basic function of any
arbitrary device, for example, rotation of the table, or
linear movement of the drill. As long as the precondition
of the function can be expressed as a predicate on
Boolean inputs, the 'Interface' function block can be
used. In the case of a device implementing more than
one function, several 'Interface' function blocks can be
cascaded to provide the appropriate functionality.
When the relevant sensor event occurs in the
environment, the device controlled by the ‘Interface’
function block will be activated for a particular length of

time. This is achieved by setting the value of ‘actuator’
to high when the ‘REQ’ event is received and the value
of ‘Sensor’ is high. It will stay high until the ‘time up’
event is received. The ‘Interface’ function block cannot
be reactivated until the ‘NewCycle’ event is received.
This prevents premature reactivation of the device which
may hinder the safety of the overall system. The Enable
input to the interface function block allows individual
components to be enabled and disabled without affecting
the entire system.
As a result, a software module that can be used to
control the operation of any mechatronic device has been
created. Through simple manipulation of events, a
device can be operated. When many devices are
cascaded into a larger system, more complex and
interconnected operations can be carried out.
Through the use of the ‘Interface’ function block,
distributed system architecture can be achieved. Each
device has its own controller. This avoids any single
point of failure and means that each device can be
independently tested and serviced. A system with
multiple ‘Interface’ function blocks has the advantage of
performing multiple workflows through the
manipulation of the ‘Enable’ inputs. Hence, flexibility in
manufacturing systems has been achieved.

6. Intelligence in distributed system
The mechatronic test bench system model is designed
using distributed system architecture. The distributed
structure allows the system to be flexible and re-
configurable. Replacing or repairing a faulty component
in an assembly line forces it to be halted, incurring a
large cost for the factory. This was an important issue to
be considered when developing intelligence in the
system.
As discussed previously, the ‘Interface’ function block is
the base element used to create a distributed system.
However, this alone is insufficient to provide the
intelligence. For this reason, ‘Intelligent Agents’ have
been introduced. Each device, controlled by an
‘Interface’ function block, may have an associated
intelligent agent which reads the current system state and
its associated data to manipulate actuators in a particular
fashion. Each intelligent agent can set the ‘InputQ’ of an
‘Interface’, thus manipulating its actions.
There are two possible ways to create intelligent agents;
each of which is suitable for system engineers of
different back-grounds. These are both discussed below
through means of an example.

1.1. Combinational Logic Approach

As discussed earlier, the test bench has a drill measurer
and a drill. In a normal scenario, the hole checker checks
to see if a work piece has hole in it. If this there is no
hole, the drill makes a hole in the work piece. However,
if the drill measurer is disabled or has malfunctioned it
will not provide this information, so the system must
reconfigure and adapt. The workflow must change such

that every work piece is drilled.
The logic which explains this can be represented in a
form of a truth table [Table1].

Drill
Measurer
Enabled

Drill
measurement
failed

InputQ
(drill)

True True True
True False False
False X True

Table 1: Truth Table for Combinational Logic

This truth table can be converted into combinational
logic, a common approach used in circuit design by
electrical engineers. After this, a combination of function
block logic elements can be used to create an intelligent
agent for the drill. [Fig 3]

Figure 4: Combinational Logic in Function Blocks

1.2. Programming Approach

The combinational logic approach can be a tedious task
and the design can get confusing with increasing
complexity of dependencies. Hence, a simpler but more
programming based approach is used in the system to
design the intelligent agent of the sorting station. In this
approach, the functionality of an intelligent agent is
captured in a basic function block in form of an
algorithm.
In the sample scenario, the sorting station should sort
between faulty and non faulty, depending on whether or
not the work piece was drilled properly.
When the drill is working, the station should sort the
pieces as non-faulty. But if the drill itself is faulty,
Station 1 must use the hole checker to determine whether
or not a work piece already has a hole in it. Again, only
the work pieces with existing holes will be classified as
non-faulty. If both the drill and the hole checker are non-
functional, then the system must divert all pieces into the
faulty tray.
This functionality is to be captured in a form of truth
table [Fig 2]. If a work piece is to be diverted to the
faulty line, then the output of the intelligent agent must
be ‘false’.

Drill
Enabled

Drill
measurer
Enabled

Drill
check
passed

InputQ
(Sort)

True X X True
False True True True
False True False False
False False X False

Table 2: Truth Table for the Sorting of Work Pieces

This functionality is captured in a basic function block
with an algorithm (see Figure 4).

Figure 5:JAVA algorithm implementing the sorting
logic encapsulated into function block.

7. Human Machine Interface (HMI)
HMI provides a user or operator with the current state of
a system or process. It also facilitates the control of a
process.
After the development of a distributed control system for
the mechatronic test bench, it was necessary to create a
HMI which could control this test bench. The HMI was
initially created using standard FBDK visualization
components. The functionality of this HMI system and
its integration with the system control was tested
thoroughly. However, the functionality provided by this
single PC based HMI is insufficient for use in an
industrial production environment. The FBDK based
visualization can only be run from a computer on which
either FBDK or FBRT is running. Also it is necessary to
decide which computers will be displaying these HMI
elements before launching the system configuration on
the embedded platforms. It was not possible to move the
HMI or visualization to any other computer after launch

of the initial system configurations. This is a major
drawback of this system.
Portability of the HMI was considered as an important
aspect in this project. Two solutions were considered.
The first solution was to use the standard visualization
elements in FBDK and create a system configuration
which could be launched at any time on any PC and
control the system through network. The second solution
was to create a new webpage based HMI system from
scratch.
The first solution requires that the user have a computer
with FBDK or FBRT installed. In addition, every
computer which needs to view this HMI will have to
upload and calibrate the new system on its FBDK. This
also causes a new restriction that every computer will
have to upload the HMI system again if there is any
update in it. The second solution of webpage based HMI
eliminates all these issues. Hence, this solution was
chosen for development.

1.3. Development of a Web Based HMI

The web based HMI needs to provide a dynamically re-
configurable and an interactive user interface. Java based
applet programming was chosen. An applet is a Java
program which is run on a web page by including it
inside the source code of the page.
This applet programming method was chosen for two
main reasons. Firstly, FBDK itself is written in Java.
Hence, creating a Java based HMI system was a
favorable solution. Secondly, the applet solution
provides most of the networking and GUI drawing
features of the base Java language. This helps an applet
to be dynamically re-configurable through the internet
with no changes to the HTML web page.
The development of this applet based system consists of
two important parts: the function block representation of
the HMI interface and the communication protocol
between an IEC 61499 system and a web browser.

1.4. Function block development for the HMI

The HMI interface is displayed through an applet on a
web browser. It was necessary to create function block
representation of this interface to make it compatible
with the IEC 61499 standard.
Four elements were identified to be essential for an
implementation of a HMI system. These four elements
are ‘Label’ (for textual information), ‘Button’ (for an
event input from user), ‘Check Box’ (for Boolean input
from the user) and ‘Radio Button’ (for Boolean output to
the user). For each of these four elements, a function
block was created.
The function blocks have position variables as inputs
such that they can be accurately represented on a web
page. They also have event and variable inputs and
outputs which represent an action on the corresponding
element of the web page. A network of these function
blocks can then be integrated with any standard IEC
61499 system for the display of a web based HMI.

1.5. Communication

The communication between the applet and FBRT is
handled by a function block resource, which acts as an
proxy between these two. The function blocks update
their information to this resource. This information is
then passed on to the applets through a pre-defined
protocol over the internet. Also, the resource reads
information from the applet elements and passes them on
to the respective function blocks. Please refer to Figure 5
for an illustration of this information flow. An important
part of this HMI development was to generate a network
efficient, yet fully functional protocol for the
communication between FBRT and the web applet.

8. Development of a Tool for Generation of
a HMI

After developing the applet and the compatible Function
blocks, the main challenge was to give the exact position
parameters to the function blocks for the expected
display. It was very time consuming for big display
interfaces. Hence it was decided to develop a tool for
generation of this interface.
This software tool is written in Java. It allows the
developer to create, save and modify HMI interfaces. It
gives the developer control over type, position, size and
the name of an element. After creating a suitable
interface in the tool, it allows the information to be
exported in XML – based format of Function Blocks.
The tool can write an XML file readable by FBDK. The
XML file consists of a set of function blocks with pre-
defined variable inputs for positions. This provides an
efficient way of creating a HMI by giving a visual
preview of the interface at development time. This
considerably reduces the development time as the need
of writing the visual properties of the function blocks is
eliminated.

Figure 6: Communication Flow between FBRT and Applet

9. HMI for the Mechatronic test bench
After creating the web based HMI system and the tool to
generate the function block network, a web based HMI
was created to control the Mechatronic test bench. The
HMI consists of two pages. The first page gives
information to the user about the current workflow in the
system and the state of individual components. The
second page is an administrative page which gives
control over the functionality of the test bench.
There are two modes possible. In automatic mode, the
auto re-configurability of the system is enabled. In this
mode, two of the components can be enabled and
disabled to check the function of the intelligent agents in
the auto re-configuration of the system. This workflow is
also textually displayed on the information page. In
manual mode, individual components can be activated
with the buttons. This mode can be used in testing
individual components for any faults. The final system is
tested to run successfully on 4 simultaneous web
connections in different modes for a prolonged period of
time.

10. Future Work
One of the primary drawbacks of the IEC61499-based
system engineering at present is the lack of formal
verification tools. Function block systems tend to get
complicated and there is a need for tools that can track
and trace variables and events as a system executes. This
is currently unavailable.
Linked to this is the notion of determinism. Industry
demands systems that are reliable are able to produce
particular values as output when a particular input is
given. As more intelligence is developed, the
deterministic nature of a system tends to be reduced.
This needs to be guarded against.
Industrial automation systems also demand that there be
guaranteed response times for all operations. Currently,
the Function Block Runtime is implemented in Java
which is not as fast and real time as conventional PLCs.
Work must be done to improve the runtime execution
rate such that as systems become more complex, their
reliability is not decreased.

Conclusions
A model of flexible reconfigurable manufacturing
system has been created under distributed control
compliant with new international standard IEC 61499.
A design pattern for developing distributed systems was
created. A control system modeled using this design
pattern was proven to run successfully on a mechatronic
test bench.
The fault tolerance of the system was improved by
adding intelligent agents for auto re-configurability in
addition to the standard distributed structure of the
‘Interface’ function block.

A web based, IEC 61499 compliant, HMI was developed
and tested on the University of Auckland mechatronic
test bench. A software tool was developed for a visual
creation of this function block network.

References
[IEC61499, 2005] IEC61499, Part 1 “Architecture”:

Function Blocks for Industrial Process Measurement
and Control Systems, Standard, International
Electrotechnical Commission, Geneva, 2005

[Vyatkin, 2006] Vyatkin, V., V.: IEC 61499 Function
Blocks for Embedded and Distributed Control
Systems Design, p.1-271, Instrumentation Society of
America, USA, July, 2006, in print

[FBDK, 2006] Function Block Development Kit
(FBDK/FBRT),
http://www.holobloc.com/doc/fbdk/index.htm

[Vyatkin et al., 2006] Vyatkin, V., Hirsch M., Hanisch
H.M., Systematic Design Of Distributed Controllers
– and Their Implementation, 11th IEEE Conference
on Emerging Technologies and Factory Automation
(ETFA 2006), Proceedings, Prague, 2006

