
© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

I. INTRODUCTION: WHY IEC 61499?

1) System Level Design for Distributed

Automation

Design of distributed automation systems is

complicated by the fact that there is no single

programming language in which the developer

could describe the entire system, including logic

of each control node and their interactions. The

control nodes are usually implemented using

programmable logic controllers (PLCs) possibly

interconnected via various communication

networks. Lately, many other information sources

and consumers are appeared in industrial

networks besides PLCs, for example, intelligent

sensors and actuators, such as motor drives or

human-machine interface devices. The overall

behaviour of such distributed systems can be

rather complicated and sometimes sensitive to

subtle changes in the behaviour of each

participating party. The changes can be caused

not only by the internal logic, but also by

variation in operating systems, network protocols,

hardware performance, etc. Until recently, it was

quite hard for a designer to capture the

decentralized logic of a distributed application

within a single design framework, with sufficient

details of each device and their communication,

that would allow easy mapping and re-mapping

of the core decentralized logic to different

hardware architectures of networking control

nodes.

The IEC 61499 architecture was conceived in

anticipation of the demand for distributed

automation. It incorporates several solutions

facing distributed automation challenges. It can

be said that IEC 61499 proposes a system level

design language for distributed measurement and

control systems, thus bridging the gap between

the popular PLC programming languages and

distributed systems. According to the IEC 61499

model, a distributed system consists of computer

devices equipped with interfaces to the

environment, such as communication networks or

physical machinery and processes. The universal

design artefact of the IEC 61499 architecture is

function block (FB). Function blocks can be used

for describing decentralized control logic, but

also for describing properties of devices, such as

their interfaces. To combine several function

blocks into an application, they are connected by

event and data connection arcs. Thus, the

complete functionality of distributed control

system can be represented in terms of function

blocks and connections between them.

To determine completely and precisely the

behaviour of such a distributed application, it is

important to know also the rules of function block

execution, i.e. semantics. The IEC 61499

standard defines the semantics for basic and

composite function blocks and for their networks.

However, it was found in the joint research effort,

especially in the last five years that these

definitions are incomplete and leave sufficient

freedom for interpretation. The semantic issues

have been discussed yet during the standard’s

development and trial period of industrial and

academic approbation (approx. 2000 – 2003).

Some semantic ambiguities related to lifetime of

event variables in ECC evaluation were reported

in [4]. The final draft of the standard has taken

into account some of the findings, however in

quite a strange way. Thus, the latches on event

inputs were completely removed from the text

(not very essential in our view), but a more

essential recommendation for a set of transition

conditions going out from each state to have

logically complementary set of conditions (e.g.

their OR always to be TRUE) was not added.

Implementation of IEC 61499 compliant devices

and systems is achieved by compilers translating

the source code of function blocks and

applications built thereof into executable code,

and/or by run-time environments interpreting the

source code or compiled executable code. When

The IEC 61499 Standard and its Semantics
Valeriy Vyatkin

v.vyatkin@auckland.ac.nz

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

developing such compilers, different

implementers can take different decisions on

ambiguous issues, and, as a result, the same

control application will run differently in control

devices of different vendors.

Different interpretations of the standard’s text can

add to the confusion even more. Without

revealing sensitive commercial details we would

like to cite two examples. One of implementers

incorrectly understood the term “transition

clearance” in the standard’s text, interpreting it as

“clearance of event variables”. As a result the

implementers decided to clear event variable at

the end of FB invocation, so event variable could

be used several times. Such interpretation much

differs from the standard’s prescription to use

event once. Another company has developed in

their tool a built-in interpreter of function blocks

along with a compiler for some embedded targets.

Since the lack of attention to the semantic issues,

the same function blocks run differently in the

interpreter and after the compilation and

deployment.

Investigation of the semantic issues of function

blocks happened to be a very exciting research

activity with research methods ranging from

computer science to somewhat legal studies or

theology. Indeed, analyzing the standard and

deriving from its text formal models of function

blocks execution is not very formal process

requiring interpretation of a semi-formal

document. Sometimes, the text is insufficient to

make an unambiguous conclusion, so other

relevant sources have to be taken into account.

In 2006 o3neida [6] has formed a taskforce

aiming at the development of a document

removing ambiguities of the standard. Such

document is called Compliance Profile on

Execution Semantics. In this paper we present

some of the findings produced in the course of

compliance profile development.

Respecting provisions of the standard is very

important when a commercial implementation is

developed. In our view, the fact that the standard

has some ambiguities does not mean that it is not

good at all. When developers attempt creating

devices and tools compliant with IEC 61499 they

shall follow the letter of the standard (whenever

possible) or its spirit (when the letter is

insufficient).

We have to admit that academic developers have

not been that much concerned so far with strict

following the standard in this way. But, this can

be explained by research nature of their work and

the need to broaden the horizons and to see new

challenges in distributed automation. The

industrial implementers have to be more careful

in the standard’s interpretation to achieve true

portability of their products.

2) Code Portability, Encapsulation and Object-

orientated design

Control engineers have been always dreaming

about better portability of programs between

programmable controllers. The need to run a

program on another type of hardware arises very

often and for many reasons. Towards this aim,

programming languages of PLCs have been

standardized yet in 1993 in IEC 61131-3 standard

and all major PLC vendors claim compliance of

their products with this standard. However, unlike

usual computers, it is not easy to get a program

run on a PLC of some other vendor. The

problems can be due to different syntax, but

mostly to the different semantics of certain

programmatic structures.

Another engineering problem refers to object –

orientated design. Automated machines are often

built from relatively autonomous modules, each

with its own control function. Intuitively, it is

beneficial to organize the control code following

the structure of the machine. For that, control

functions of individual modules need to be

encapsulated in program organization units

(POU), which can be assembled in bigger control

programs of complete machines without changes

to their internals. Often a new machine re-uses

many mechanical components from the previous

model, so can do the control program. Moreover,

it can be beneficial to design control of a machine

in a more abstract way, without thinking at early

design stages about exact hardware architecture

on which the code will run. Indeed, in many cases

hardware can vary, while the functionality and

the control code can remain (almost) the same.

For example, the hardware can be one single

PLC, or a number of smaller PLCs connected via

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

network. Thus, allocation of POUs to particular

control devices shall be shifted to the later design

stages. But, it was found that POUs of PLC

programs do not always ensure correct

encapsulation, since the code encapsulated in

such POUs can behave differently depending on

the context in which it is invoked [9]. Different

allocations can imply different context thus

changing the behaviour of the overall system.

Thus, portability happened to be tightly

interrelated with encapsulation. The lack of

portability can be due differences in syntax or

semantics of certain programming language

commands, but, more generally, because of

different context in which POUs are invoked.

This problem diminishes the benefits of object-

oriented design and is very common in

development of distributed control systems.

II. IEC 61499: AMBITION AND CHALLENGES

The central structural unit of the IEC 61499

architecture is function block. Function blocks

have clearly defined interfaces of event and data

inputs and outputs. Event inputs are used to

activate the block. A function block may have

internal variables which are fully protected, i.e.

not directly accessible from outside. As a result of

internal computations the block may change

output data variables and emit output events,

which, if connected to event inputs of other

blocks, will activate them.

Behaviour of a basic function block is determined

by a state machine, called execution control chart

(ECC). Semantically ECC is equivalent to a

Moore type finite automaton. States of ECC can

have associated actions, each consisting of

invocation of an algorithm and emission of an

output event. Algorithms can be programmed in

different programming languages even within a

single basic FB. Thus, basic FBs can be regarded

as a portable abstract model of a single controller.

Function block instances can be connected one

with another by event and data connection arcs

forming function block networks. The

connections define control and data flow between

FB instances thus determining the network’s

execution semantics. FB networks are seen as a

universal model of control systems, both

distributed and centralized. In distributed systems

FB instances included in a network can be

regarded as independent processes.

Communication between them is abstractly

Figure 1. Distribution of the application across 2 devices: the connections between blocks which are mapped to the same device are preserved. The

connections crossing the device boundaries are appended by communication function blocks.

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

modelled by event and data passing, which is

assumed to be instantaneous. However, in a real

distributed system communication is not

instantaneous and sometimes even not reliable.

The IEC 61499 standard includes a mechanism to

add more detail to the abstract FB network model

of a system. Application’s FBs can be allocated to

distributed devices, and communication FBs

inserted whenever event or data connections cross

borders of devices. This is illustrated in Figure 1.

For re-use, FB networks can be also encapsulated

in components, such as composite function blocks

and subapplications.

Two major groups of issues in the function blocks

semantics have been spotted and investigated by

researchers. The first is behaviour of basic

function blocks. Second refers to the semantics of

function block networks, which form

applications, as well as the body of composite

function blocks and of sub-applications.

The semantics of distributed systems is very

much dependent on the properties of

communication networks connecting distributed

devices. The distributed semantic models are yet

to be proposed.

III. EXAMPLE

For illustration of the function block execution

rules we will use an example of pneumatic

cylinder as presented in Figure 2(A). The cylinder

shuttles back and force either from the left to the

middle position or from the left to the end

position depending on the selected mode of

operation. The mode is selected by pressing the

button “MODE” which has two physical

positions, one corresponding to the value 0 and

the other to the value 1. When any object crosses

the safety light curtain the operation has to stop

until the object leaves the safety zone.

The light curtain signal is connected to a specific

controller input that generates interrupt at every

change of the value. In terms of function blocks,

the interrupt is translated to an event at the input

of a function block. The buttons START and

MODE are also generating interrupts, which are

also represented as events.

The IEC 61499 application for control of our

system is presented in Figure 2(B) The central

part of the application is function block

CONTROLLER – an instance of FB type

CYLINDER_CTL. This FB has six logic inputs,

corresponding to both buttons START and

MODE, 3 discrete position values (HOME, MID,

END) and the logic status of the light curtain

(ON). Also there are 4 event inputs. The INIT is

used for the FB initialisation. The BTN event

input indicates a change in a button state

(pressed/released), the SENS event input is raised

when the cylinder arrives to one of the three

discrete positions, and the LGHT event input

indicates a change in the light curtain status.

The data arrive to the CONTROLLER FB from 3

service interface FBs (SIFB): BUTTONS,

POSITIONS and LIGHT. The first and the last

ones implement the resource initiated service

model, i.e. upon any change of the source signal,

e.g. light curtain status, the corresponding FB is

activated without any input event, and produces

output event CNF and updated value of the data.

The second SIFB POSITIONS (of FB type

ENCODER) is of a different nature, it needs to be

invoked by its event input REQ in order to re-

compute its outputs based on the displacement of

the cylinder. Note that the displacement value is

assumed to be made available for the block

internally rather than through an explicit input

variable. To ensure regular update of the position

values the POSITION FB is activated

periodically using an instance of E_CYCL FB as

“a pulse generator”.

The control logic FB CONTROLLER computes

four output signals: two actuators LEFT and

RIGHT, and two indicators: LED for lighting the

button START in those times of operation when

it needs to be “sensitive” to a press, and

OPMODE, used to display current operation

mode (i.e. zone 0 or 1). Internal details of the

CONTROLLER function block are shown in

Figure 2(C)

Note that algorithms in CYLINDER_CTL are

written in different programming languages:

some in Ladder Logic Diagrams and others in

Structured Text. Each algorithm invocation

results in single scan through the ladder diagram

or the code.

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

IV. SEMANTICS OF A BASIC FUNCTION BLOCK

A basic function block is activated by an event

input. For example, CONTROLLER is a basic

FB and it can be activated by event arrival to any

of its four event inputs. A reaction on event is

determined by evaluation of ECC and invocation

of algorithms. Event outputs can also be emitted

in states after the associated algorithms are

executed. A single invocation of FB and

subsequent executions of ECC and algorithms are

referred to as a single FB run. A number of

standard’s prescriptions imply that the run is

atomic, i.e. it cannot be interrupted by some other

FB. It is also has to be reasonably short, not to

make starving other FBs waiting for execution.

It turns out that ECC states can be of two types:

those where ECC can stop and wait for incoming

input events (let us call them sensitive), and

transitional, which are just passed during a run.

In Figure 2(C) sensitive states are gray shaded.

The order of ECC transitions’ evaluation follows

their order in textual XML-based representation

of the FB. However, in graphical representation

no hints provided to determine the order. This can

result in two ECCs looking identically, but

producing completely different reactions.

Figure 2. Pneumatic cylinder with two modes of operation and safety light curtain (A), function block application of the cylinder control: the controller

function block connected with service interface FBs reading sensor values from inputs and writing actuators’ values to the outputs (B), and function block

implementing the cylinder controller: interface, ECC and some algorithms are shown (C).

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

Syntax of ECC transitions is defined

ambiguously. In one place the standard refers to

“event input variables” thus implying several

such variables can be used in the same

expression. However, the normative Annex

explicitly defines syntax of ECC transition

condition as

[event input]|[Boolean expression over

data]|[event input]&[Boolean expression over data]

The impact of the syntax is quite substantial. If

more than one event variable were allowed, it

would imply the possibility of several events

arriving simultaneously at FB inputs. That would

defy the atomic nature of the FB single run. It

would also allow checking the fact of

simultaneous events arrival that is impossible

with only one event input reference.

The standard does not provide sufficient details

on how to treat event input variables. Lack of

attention to these fine details is explained by the

concept of event-driven invocation of function

blocks, suggesting that there is no need to

consider event input variables as real variables,

since they are used only once. However, it turns

out that there are many subtle issues around that.

For example, lifetime of their values is not well

defined. It seems that the most appropriate

solution is to allow such variables to keep their

values in the interval between FB invocation and

until the earliest of two events: either an ECC

transition whose condition includes reference to

the variable evaluates to TRUE, or evaluation of

the FB ends and the FB becomes idle, so no event

variables would remain TRUE for the next run.

These provisions would imply that in every run

exactly one event input variable is TRUE.

Furthermore, the ECC transition syntax allows

omit event input and have conditions that are only

‘Boolean expression over data’. Imagine an ECC

state with all outgoing transitions of this type. For

example, state SELECT in ECC in Figure 2(C) is

such a state. If the logical sum (i.e. OR) of all

transition conditions going from such a state is

not TRUE then the FB could stop in the state

(unlike our case where (MODE=0) OR

(MODE=1) = TRUE). Some implementations,

e.g. FBDK used to treat such states in quite non-

intuitive way, failing to evaluate the ‘non-

eventful’ ECC transitions. The FBDK developers

were referring to the concept of event-driven

invocation, arguing that transitions from

‘sensitive’ states must explicitly include event

names they are ‘listening to’.

The standard also does not define when exactly

output events to be emitted. This can happen after

an action is completed, or after all actions of a

state are completed, or at the end of a single run

altogether for all states that have been passed

through.

Let us consider in detail some of these issues

using our example for illustration (See Figure 3

for the enlarged ECC fragment). In the state

WAIT the controller is waiting for an input

stimulus, which can be any change in the position

information (event SENS), pressing of a button

(event BTN) or the change in the light curtain

status (event LGHT). Upon any of these events

the transition conditions are evaluated and here

two of the semantic issues may show their

impact.

First, the order of transition evaluation may play

its role in case if LGHT and SENS occur

simultaneously. SENS may coincide with the

LGHT event because of the timer-driven nature

of SENS – it is emitted by the periodic tick

Figure 3. Enlarged fragment of the ECC of CYLINDER_CTL.

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

generator function block. Since the transition

priorities are not visible from the graphical

representation of ECC, the transition from

‘WAIT’ to ‘SELECT’ can be of a high priority

than from ‘WAIT’ to ‘STOP’, so the light curtain

event will be missed and an accident can happen.

Second is the input event clearance rule. Suppose

the LGHT event has occurred. There are three

transitions from the ‘WAIT’ state having ‘LGHT’

in their conditions. Suppose the transition

‘WAIT’ -> ‘BLOCK’ has the highest priority, so

it will be evaluated first. If an implementation has

chosen to use event only once, it will evaluate (to

FALSE) the transition ‘WAIT’->’BLOCK’, and

will clear the event variable LGHT, so all other

transitions will also evaluate to FALSE and, as a

result, the light curtain event will be missed. So,

the life of an input event has to be longer. But

how much longer?

Suppose the ECC transition from ‘WAIT’ to

‘STOP’ occurs. At this stage the LGHT event

should be cleared, otherwise the next transition

from ‘STOP’ to ‘UNBLK’ would immediately

happen, which would be incorrect. The

Compliance Profile [6] proposes to clear event

input variable after the first transition that

includes it and evaluates to TRUE but in the end

of the run at the latest. This solution seems to be

the only reasonable.

V. SEMANTICS OF FB NETWORKS

The semantics of FB networks is determined by

the sequence of function blocks invocation. The

abstract event flow model of IEC61499 seems to

be insufficient to define the execution sequence

unambiguously.

Several provisions of the standard related to basic

FB semantics imply the fact that in a single FB

network (say, in a part of an application allocated

to a particular device), only one function block

can be active at every moment of time. This

conclusion led to two implementation ideas:

sequential and cyclic execution models.

The sequential model has been justified by

sequential hypothesis in [15], formulated as a

result of studying and interpreting text of the

standard. In the sequential model it is attempted

to ensure that sequence of emitted events is

preserved in the order of invocation of the

destination FBs. Several implementation ideas of

such event serialization have been proposed: store

events emitted by all blocks in a global queue

[16], or keep in a queue function blocks that were

sent an event (in the order of event emission)

[17], or store events in queues associated with

each event input of each function block in the

network. Once a function block is finished its run,

the next to be executed will be determined by

selecting the FB reference from the top of the

queue.

The cyclic model is justified by the legacy PLC-

based automation systems, in which function

blocks are invoked periodically in a cyclic

manner. When this idea is ‘transplanted’ to the

IEC 61499, it still can preserve the ‘unit’ nature

of FB invocation. An unpleasant consequence,

however, is the possibility of having several

‘energized’ input events at an FB invocation. As

we have seen in the previous section, in a basic

FB there is no way to distinguish this situation

from a sequential arrival of events. The simplest

form of cyclic execution may require invocation

of each function block in the FB network, as it is

done in ISaGRAF [20]. A possible optimisation

can invoke only those FBs which received events

in the previous scan cycle, as proposed in [25].

Another, recently appeared model of FB network

semantics is parallel [16]. Its main idea is to

allow parallel execution of several function

blocks. Although the standard favours ‘one at

time’ FB execution, this requirement originates in

the need to execute code of function blocks on

single-processor devices. This seems to be a bit

outdated nowadays. One can use multi-core

processor architectures or even custom hardware

implementation of a given FB network. So, FBs

can be executed in parallel, provided that the

blocks do not interrupt each other and don’t

modify internal data of each other. The parallel

model has one very important feature: it preserves

the semantics of FB applications when they are

mapped to different networking architectures of

hardware.

In the parallel semantics it is proposed to treat

event forking (similar to E_SPLIT FB) as a

parallel launch of the event recipient FBs. The

next question that may arise is at which pace run

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

the concurrent FBs. Synchronous model [23]

proposes to align the speed of running with global

instantaneous event called tick. In particular, in

[23] it was chosen to align tick with one ECC

transition in a basic FB, but other ideas are also

possible, for example, have all FB single runs

equivalent to a tick. Asynchronous parallel model

[22] does not make any assumptions on the speed

of FB execution.

The FBDK/FBRT implementation of IEC 61499

is using an execution model different from all

mentioned above. With respect to FB Networks it

implements the breadth-first search approach

interpreting event passing as a direct method call

at the destination FB. This execution model was

analyzed in [24] where it was named as Non-

Preemptive MultiThreading Resource (NPMTR).

This model in our view is not fully compliant to

the provisions of the standard, but was very

useful for quick and simple prototype

implementation of IEC 61499.

In Figure 4 behaviour of our sample application

from Figure 2, B is presented in the four

mentioned execution models. The initialisation

chain is chosen for the illustration, which starts

with the START FB. Arrows indicate events

passed from a block to block. Obviously,

differences in the sequence of FB invocation can

lead to different computation results, i.e. the same

application may produce different results if

executed on devices implementing different

execution models.

VI. CONCLUSION

It seems impossible at this stage to come up with

a single execution model for FB networks, so

defining a limited number of models can be seen

as a progress towards improving portability of

function block applications. The Compliance

Profile [6] follows this approach.

It is also quite obvious that differences in

execution models show themselves in quite

extraordinary conditions, i.e. in presence of

several simultaneously (or nearly simultaneously)

generated events. Defining conditions of

execution semantics tolerance (i.e. achieving

identical behaviour of FB applications in different

semantics) seems to be an exciting research topic

for the near future.

Figure 4. Sequence of function blocks invocation during initialization in four execution models. Arrows show events passing between function blocks.

© IEEE INDUSTRIAL ELECTRONICS MAGAZINE – EARLY DRAFT

The IEC 61499 has reached certain maturity, and

certification on compliance becomes an important

task. The compliance profile defining the limited

set of execution models can serve as a guideline

for the certification.

VII. REFERENCES

[1] Function Blocks for Industrial-Process Measurement and

Control Systems - Part 1: Architecture, International

Electrotechnical Commission, Geneva, 2005

[2] FBDK – Function Block Development Kit, Online:

www.holobloc.com

[3] ICS Triplex ISaGRAF Workbench for IEC 61499/ 61131,

v.5.1,Online:http://www.icstriplex.com/

[4] Vyatkin, V., Hanisch, H.M., Starke, P., Roch, S.

'Formalisms for verification of discrete control applications

on example of IEC1499 function blocks', "Verteilte

Automatisierung" (Distributed Automation), Proceedings,

Magdeburg, Germany, March, 2000

[5] Vyatkin V., IEC 61499 Function Blocks For Embedded and

Distributed Control Systems Design, 297p., ISA/O3neida,

USA, 2007

[6] o3neida, IEC 61499 Compliance Profile -- Execution

Models of IEC 61499 Function Block Applications, draft in

progress,

http://www.oooneida.org/standards_development_Complian

ce_Profile.html, Online: March, 2009

[7] C. Sünder et al.: Usability and Interoperability of IEC 61499

based distributed automation systems, Proc. 4th IEEE Intl

Conference on Industrial Informatics, INDIN06, Singapore,

2006

[8] Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing

real-time constrained control applications modelled in IEC

61499 with respect to dynamic reconfiguration, 3rd IEEE

Conference on Industrial Informatics (INDIN’0),

Proceedings, Perth, Australia, August 2005

[9] Vyatkin V., Salcic Z., Roop P., Fitzgerald J., Information

Infrastructure of Intelligent Machines based on IEC61499

Architecture, IEEE Industrial Electronics Magazine, 2007,

1(4) pp. 17-29

[10] M. Riedl, C. Diedrich, F. Naumann, “SFC in IEC 61499“,

13th IEEE Conference on Emerging Technologies and

Factory Automation, Prague., September 20-22, 2006,

pp.662-667

[11] J. Chouinard, R. Brennan, Software for Next Generation

Automation and Control, 4th IEEE Intl. Conf. on Industrial

Informatics, Singapore, 2006

[12] J. LM Lastra, L. Godinho, A. Lobov, R. Tuokko, “An IEC

61499 Application Generator for Scan-Based Industrial

Controllers”, in Proc. of the 3rd IEEE Conference on

Industrial Informatics, Proceedings, Perth, Australia, August

2005

[13] L. Ferrarini and C. Veber, Implementation approaches for

the execution model of IEC 61499 applications, 2nd IEEE

Conference on Industrial Informatics, Proceedings, Berlin,

June 2004

[14] L. Ferrarini, M. Romanò, and C. Veber, Automatic

Generation of AWL Code from IEC 61499 Applications, in

Proc. of the 4th IEEE Conference on Industrial Informatics,

Singapore, August 2006

[15] V. Vyatkin, V. Dubinin, Sequential Axiomatic Model for

Execution of Basic Function Blocks in IEC61499, 5th IEEE

Conference on Industrial Informatics (INDIN’07), Proc., pp.

1183-1188, Vienna, 2007

[16] V. Vyatkin, V. Dubinin, Ferrarini, L.M., Veber C.

Alternatives for Execution Semantics of IEC61499, 5th IEEE

Conference on Industrial Informatics, Proc., pp. 1151-1156,

Vienna, 2007

[17] G. Čengić, O. Ljungkrantz, and K. Ǻkesson, “Formal

Modeling of Function Block Applications Running in IEC

61499 Execution Runtime,” in Proc. of 11th IEEE Conf.

ETFA 2006, Prague

[18] C. Sünder, A. Zoitl, J.H. Christensen, M. Colla, T. Strasser

"Execution Models for the IEC 61499 elements: Composite

Function Block and Subapplication", In Proceedings of

IEEE Int. Conference on Industrial Informatics, Vienna ,

2007

[19] V. Dubinin and V. Vyatkin, “On Definition of a Formal

Model for IEC 61499 Function Blocks,” EURASIP Journal

on Embedded Systems, vol. 2008, Article ID 426713, 10

pages, 2008. doi:10.1155/2008/426713

[20] V. Vyatkin, J. Chouinard, “On Comparisons the ISaGRAF

implementation of IEC 61499 with FBDK and other

implementations”, 6th IEEE International Conference on

Industrial Informatics (INDIN’08), Daejeon, Korea, July

2008, Page(s):289 – 294

[21] K. Thramboulidis, C. Tranoris, “IEC61499 Execution Model

Semantics”, Int. Conf. on Industrial Electronics, Technology

& Automation (CISSE-IETA 06), Dec. 4-14, 2006 Tech 86.

[22] V. Vyatkin, Modelling and execution of reactive function

block systems with Condition/Event nets, 4th IEEE

Conference on Industrial Informatics (INDIN ‘06),

Proceedings, Singapore, 2006

[23] L.H. Yoong, P. Roop, V. Vyatkin, Z. Salcic, “A

Synchronous Approach for IEC 61499 Function Block

Implementation,” IEEE Transactions on Computers, 2009,

in print

[24] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R.

Brennan, A. Valentini, L. Ferrarini, T. Strasser, J. L.

Martinez-Lastra, and F. Auinger, “Usability and

Interoperability of IEC 61499 based distributed automation

systems”, 4th IEEE Conference on Industrial Informatics

(INDIN ‘06), Proceedings, Singapore, 2006

[25] P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime

Framework implementing the Cyclic Execution Semantics”,

7th IEEE Conference on Industrial Informatics, Cardiff, July

2009 (INDIN’09), submitted

