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I. INTRODUCTION: WHY IEC 61499? 

1) System Level Design for Distributed 

Automation 

Design of distributed automation systems is 

complicated by the fact that there is no single 

programming language in which the developer 

could describe the entire system, including logic 

of each control node and their interactions. The 

control nodes are usually implemented using 

programmable logic controllers (PLCs) possibly 

interconnected via various communication 

networks. Lately, many other information sources 

and consumers are appeared in industrial 

networks besides PLCs, for example, intelligent 

sensors and actuators, such as motor drives or 

human-machine interface devices. The overall 

behaviour of such distributed systems can be 

rather complicated and sometimes sensitive to 

subtle changes in the behaviour of each 

participating party. The changes can be caused 

not only by the internal logic, but also by 

variation in operating systems, network protocols, 

hardware performance, etc. Until recently, it was 

quite hard for a designer to capture the 

decentralized logic of a distributed application 

within a single design framework, with sufficient 

details of each device and their communication, 

that would allow easy mapping and re-mapping 

of the core decentralized logic to different 

hardware architectures of networking control 

nodes. 

The IEC 61499 architecture was conceived in 

anticipation of the demand for distributed 

automation. It incorporates several solutions 

facing distributed automation challenges. It can 

be said that IEC 61499 proposes a system level 

design language for distributed measurement and 

control systems, thus bridging the gap between 

the popular PLC programming languages and 

distributed systems. According to the IEC 61499 

model, a distributed system consists of computer 

devices equipped with interfaces to the 

environment, such as communication networks or 

physical machinery and processes. The universal 

design artefact of the IEC 61499 architecture is 

function block (FB). Function blocks can be used 

for describing decentralized control logic, but 

also for describing properties of devices, such as 

their interfaces. To combine several function 

blocks into an application, they are connected by 

event and data connection arcs. Thus, the 

complete functionality of distributed control 

system can be represented in terms of function 

blocks and connections between them.  

To determine completely and precisely the 

behaviour of such a distributed application, it is 

important to know also the rules of function block 

execution, i.e. semantics. The IEC 61499 

standard defines the semantics for basic and 

composite function blocks and for their networks. 

However, it was found in the joint research effort, 

especially in the last five years that these 

definitions are incomplete and leave sufficient 

freedom for interpretation. The semantic issues 

have been discussed yet during the standard’s 

development and trial period of industrial and 

academic approbation (approx. 2000 – 2003). 

Some semantic ambiguities related to lifetime of 

event variables in ECC evaluation were reported 

in [4]. The final draft of the standard has taken 

into account some of the findings, however in 

quite a strange way. Thus, the latches on event 

inputs were completely removed from the text 

(not very essential in our view), but a more 

essential recommendation for a set of transition 

conditions going out from each state to have 

logically complementary set of conditions (e.g. 

their OR always to be TRUE) was not added. 

Implementation of IEC 61499 compliant devices 

and systems is achieved by compilers translating 

the source code of function blocks and 

applications built thereof into executable code, 

and/or by run-time environments interpreting the 

source code or compiled executable code. When 
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developing such compilers, different 

implementers can take different decisions on 

ambiguous issues, and, as a result, the same 

control application will run differently in control 

devices of different vendors.  

Different interpretations of the standard’s text can 

add to the confusion even more. Without 

revealing sensitive commercial details we would 

like to cite two examples. One of implementers 

incorrectly understood the term “transition 

clearance” in the standard’s text, interpreting it as 

“clearance of event variables”. As a result the 

implementers decided to clear event variable at 

the end of FB invocation, so event variable could 

be used several times. Such interpretation much 

differs from the standard’s prescription to use 

event once. Another company has developed in 

their tool a built-in interpreter of function blocks 

along with a compiler for some embedded targets. 

Since the lack of attention to the semantic issues, 

the same function blocks run differently in the 

interpreter and after the compilation and 

deployment. 

Investigation of the semantic issues of function 

blocks happened to be a very exciting research 

activity with research methods ranging from 

computer science to somewhat legal studies or 

theology. Indeed, analyzing the standard and 

deriving from its text formal models of function 

blocks execution is not very formal process 

requiring interpretation of a semi-formal 

document. Sometimes, the text is insufficient to 

make an unambiguous conclusion, so other 

relevant sources have to be taken into account.  

In 2006 o3neida [6] has formed a taskforce 

aiming at the development of a document 

removing ambiguities of the standard. Such 

document is called Compliance Profile on 

Execution Semantics. In this paper we present 

some of the findings produced in the course of 

compliance profile development.  

Respecting provisions of the standard is very 

important when a commercial implementation is 

developed. In our view, the fact that the standard 

has some ambiguities does not mean that it is not 

good at all. When developers attempt creating 

devices and tools compliant with IEC 61499 they 

shall follow the letter of the standard (whenever 

possible) or its spirit (when the letter is 

insufficient). 

We have to admit that academic developers have 

not been that much concerned so far with strict 

following the standard in this way. But, this can 

be explained by research nature of their work and 

the need to broaden the horizons and to see new 

challenges in distributed automation. The 

industrial implementers have to be more careful 

in the standard’s interpretation to achieve true 

portability of their products. 

 

2) Code Portability, Encapsulation and Object-

orientated design 

Control engineers have been always dreaming 

about better portability of programs between 

programmable controllers. The need to run a 

program on another type of hardware arises very 

often and for many reasons. Towards this aim, 

programming languages of PLCs have been 

standardized yet in 1993 in IEC 61131-3 standard 

and all major PLC vendors claim compliance of 

their products with this standard. However, unlike 

usual computers, it is not easy to get a program 

run on a PLC of some other vendor. The 

problems can be due to different syntax, but 

mostly to the different semantics of certain 

programmatic structures.  

Another engineering problem refers to object – 

orientated design. Automated machines are often 

built from relatively autonomous modules, each 

with its own control function. Intuitively, it is 

beneficial to organize the control code following 

the structure of the machine. For that, control 

functions of individual modules need to be 

encapsulated in program organization units 

(POU), which can be assembled in bigger control 

programs of complete machines without changes 

to their internals. Often a new machine re-uses 

many mechanical components from the previous 

model, so can do the control program. Moreover, 

it can be beneficial to design control of a machine 

in a more abstract way, without thinking at early 

design stages about exact hardware architecture 

on which the code will run. Indeed, in many cases 

hardware can vary, while the functionality and 

the control code can remain (almost) the same. 

For example, the hardware can be one single 

PLC, or a number of smaller PLCs connected via 
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network. Thus, allocation of POUs to particular 

control devices shall be shifted to the later design 

stages. But, it was found that POUs of PLC 

programs do not always ensure correct 

encapsulation, since the code encapsulated in 

such POUs can behave differently depending on 

the context in which it is invoked [9]. Different 

allocations can imply different context thus 

changing the behaviour of the overall system.   

Thus, portability happened to be tightly 

interrelated with encapsulation. The lack of 

portability can be due differences in syntax or 

semantics of certain programming language 

commands, but, more generally, because of 

different context in which POUs are invoked. 

This problem diminishes the benefits of object-

oriented design and is very common in 

development of distributed control systems.  

II. IEC 61499: AMBITION AND CHALLENGES 

The central structural unit of the IEC 61499 

architecture is function block. Function blocks 

have clearly defined interfaces of event and data 

inputs and outputs. Event inputs are used to 

activate the block. A function block may have 

internal variables which are fully protected, i.e. 

not directly accessible from outside. As a result of 

internal computations the block may change 

output data variables and emit output events, 

which, if connected to event inputs of other 

blocks, will activate them.  

Behaviour of a basic function block is determined 

by a state machine, called execution control chart 

(ECC). Semantically ECC is equivalent to a 

Moore type finite automaton. States of ECC can 

have associated actions, each consisting of 

invocation of an algorithm and emission of an 

output event. Algorithms can be programmed in 

different programming languages even within a 

single basic FB. Thus, basic FBs can be regarded 

as a portable abstract model of a single controller.  

Function block instances can be connected one 

with another by event and data connection arcs 

forming function block networks. The 

connections define control and data flow between 

FB instances thus determining the network’s 

execution semantics. FB networks are seen as a 

universal model of control systems, both 

distributed and centralized. In distributed systems 

FB instances included in a network can be 

regarded as independent processes. 

Communication between them is abstractly 

 
Figure 1. Distribution of the application across 2 devices: the connections between blocks which are mapped to the same device are preserved. The 

connections crossing the device boundaries are appended by communication function blocks. 
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modelled by event and data passing, which is 

assumed to be instantaneous. However, in a real 

distributed system communication is not 

instantaneous and sometimes even not reliable. 

The IEC 61499 standard includes a mechanism to 

add more detail to the abstract FB network model 

of a system. Application’s FBs can be allocated to 

distributed devices, and communication FBs 

inserted whenever event or data connections cross 

borders of devices. This is illustrated in Figure 1.  

For re-use, FB networks can be also encapsulated 

in components, such as composite function blocks 

and subapplications.  

Two major groups of issues in the function blocks 

semantics have been spotted and investigated by 

researchers. The first is behaviour of basic 

function blocks. Second refers to the semantics of 

function block networks, which form 

applications, as well as the body of composite 

function blocks and of sub-applications.  

The semantics of distributed systems is very 

much dependent on the properties of 

communication networks connecting distributed 

devices. The distributed semantic models are yet 

to be proposed.  

III. EXAMPLE 

For illustration of the function block execution 

rules we will use an example of pneumatic 

cylinder as presented in Figure 2(A). The cylinder 

shuttles back and force either from the left to the 

middle position or from the left to the end 

position depending on the selected mode of 

operation. The mode is selected by pressing the 

button “MODE” which has two physical 

positions, one corresponding to the value 0 and 

the other to the value 1. When any object crosses 

the safety light curtain the operation has to stop 

until the object leaves the safety zone. 

The light curtain signal is connected to a specific 

controller input that generates interrupt at every 

change of the value. In terms of function blocks, 

the interrupt is translated to an event at the input 

of a function block. The buttons START and 

MODE are also generating interrupts, which are 

also represented as events.  

The IEC 61499 application for control of our 

system is presented in Figure 2(B) The central 

part of the application is function block 

CONTROLLER – an instance of FB type 

CYLINDER_CTL. This FB has six logic inputs, 

corresponding to both buttons START and 

MODE, 3 discrete position values (HOME, MID, 

END) and the logic status of the light curtain 

(ON). Also there are 4 event inputs. The INIT is 

used for the FB initialisation. The BTN event 

input indicates a change in a button state 

(pressed/released), the SENS event input is raised 

when the cylinder arrives to one of the three 

discrete positions, and the LGHT event input 

indicates a change in the light curtain status.  

The data arrive to the CONTROLLER FB from 3 

service interface FBs (SIFB): BUTTONS, 

POSITIONS and LIGHT. The first and the last 

ones implement the resource initiated service 

model, i.e. upon any change of the source signal, 

e.g. light curtain status, the corresponding FB is 

activated without any input event, and produces 

output event CNF and updated value of the data.  

The second SIFB POSITIONS (of FB type 

ENCODER) is of a different nature, it needs to be 

invoked by its event input REQ in order to re-

compute its outputs based on the displacement of 

the cylinder. Note that the displacement value is 

assumed to be made available for the block 

internally rather than through an explicit input 

variable. To ensure regular update of the position 

values the POSITION FB is activated 

periodically using an instance of E_CYCL FB as 

“a pulse generator”.  

The control logic FB CONTROLLER computes 

four output signals: two actuators LEFT and 

RIGHT, and two indicators: LED for lighting the 

button START in those times of operation when 

it needs to be “sensitive” to a press, and 

OPMODE, used to display current operation 

mode (i.e. zone 0 or 1). Internal details of the 

CONTROLLER function block are shown in 

Figure 2(C)  

Note that algorithms in CYLINDER_CTL are 

written in different programming languages: 

some in Ladder Logic Diagrams and others in 

Structured Text. Each algorithm invocation 

results in single scan through the ladder diagram 

or the code. 
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IV. SEMANTICS OF A BASIC FUNCTION BLOCK  

A basic function block is activated by an event 

input. For example, CONTROLLER is a basic 

FB and it can be activated by event arrival to any 

of its four event inputs. A reaction on event is 

determined by evaluation of ECC and invocation 

of algorithms. Event outputs can also be emitted 

in states after the associated algorithms are 

executed. A single invocation of FB and 

subsequent executions of ECC and algorithms are 

referred to as a single FB run. A number of 

standard’s prescriptions imply that the run is 

atomic, i.e. it cannot be interrupted by some other 

FB. It is also has to be reasonably short, not to 

make starving other FBs waiting for execution.  

It turns out that ECC states can be of two types: 

those where ECC can stop and wait for incoming 

input events (let us call them sensitive), and 

transitional, which are just passed during a run. 

In Figure 2(C) sensitive states are gray shaded. 

The order of ECC transitions’ evaluation follows 

their order in textual XML-based representation 

of the FB. However, in graphical representation 

no hints provided to determine the order. This can 

result in two ECCs looking identically, but 

producing completely different reactions.  

 
Figure 2. Pneumatic cylinder with two modes of operation and safety light curtain (A), function block application of the cylinder control: the controller 

function block connected with service interface FBs reading sensor values from inputs and writing actuators’ values to the outputs (B), and function block 

implementing the cylinder controller: interface, ECC and some algorithms are shown (C). 
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Syntax of ECC transitions is defined 

ambiguously. In one place the standard refers to 

“event input variables” thus implying several 

such variables can be used in the same 

expression. However, the normative Annex 

explicitly defines syntax of ECC transition 

condition as  

 

[event input]|[Boolean expression over 

data]|[event input]&[Boolean expression over data] 

 

The impact of the syntax is quite substantial. If 

more than one event variable were allowed, it 

would imply the possibility of several events 

arriving simultaneously at FB inputs. That would 

defy the atomic nature of the FB single run. It 

would also allow checking the fact of 

simultaneous events arrival that is impossible 

with only one event input reference.  

The standard does not provide sufficient details 

on how to treat event input variables. Lack of 

attention to these fine details is explained by the 

concept of event-driven invocation of function 

blocks, suggesting that there is no need to 

consider event input variables as real variables, 

since they are used only once. However, it turns 

out that there are many subtle issues around that.  

For example, lifetime of their values is not well 

defined. It seems that the most appropriate 

solution is to allow such variables to keep their 

values in the interval between FB invocation and 

until the earliest of two events: either an ECC 

transition whose condition includes reference to 

the variable evaluates to TRUE, or evaluation of 

the FB ends and the FB becomes idle, so no event 

variables would remain TRUE for the next run. 

These provisions would imply that in every run 

exactly one event input variable is TRUE. 

Furthermore, the ECC transition syntax allows 

omit event input and have conditions that are only 

‘Boolean expression over data’. Imagine an ECC 

state with all outgoing transitions of this type. For 

example, state SELECT in ECC in Figure 2(C) is 

such a state. If the logical sum (i.e. OR) of all 

transition conditions going from such a state is 

not TRUE then the FB could stop in the state 

(unlike our case where (MODE=0) OR 

(MODE=1) = TRUE). Some implementations, 

e.g. FBDK used to treat such states in quite non-

intuitive way, failing to evaluate the ‘non-

eventful’ ECC transitions. The FBDK developers 

were referring to the concept of event-driven 

invocation, arguing that transitions from 

‘sensitive’ states must explicitly include event 

names they are ‘listening to’.  

The standard also does not define when exactly 

output events to be emitted. This can happen after 

an action is completed, or after all actions of a 

state are completed, or at the end of a single run 

altogether for all states that have been passed 

through. 

Let us consider in detail some of these issues 

using our example for illustration (See Figure 3 

for the enlarged ECC fragment). In the state 

WAIT the controller is waiting for an input 

stimulus, which can be any change in the position 

information (event SENS), pressing of a button 

(event BTN) or the change in the light curtain 

status (event LGHT). Upon any of these events 

the transition conditions are evaluated and here 

two of the semantic issues may show their 

impact.  

First, the order of transition evaluation may play 

its role in case if LGHT and SENS occur 

simultaneously. SENS may coincide with the 

LGHT event because of the timer-driven nature 

of SENS – it is emitted by the periodic tick 

 
Figure 3. Enlarged fragment of the ECC of CYLINDER_CTL. 
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generator function block. Since the transition 

priorities are not visible from the graphical 

representation of ECC, the transition from 

‘WAIT’ to ‘SELECT’ can be of a high priority 

than from ‘WAIT’ to ‘STOP’, so the light curtain 

event will be missed and an accident can happen.  

Second is the input event clearance rule. Suppose 

the LGHT event has occurred. There are three 

transitions from the ‘WAIT’ state having ‘LGHT’ 

in their conditions. Suppose the transition 

‘WAIT’ -> ‘BLOCK’ has the highest priority, so 

it will be evaluated first. If an implementation has 

chosen to use event only once, it will evaluate (to 

FALSE) the transition ‘WAIT’->’BLOCK’, and 

will clear the event variable LGHT, so all  other 

transitions will also evaluate to FALSE and, as a 

result, the light curtain event will be missed. So, 

the life of an input event has to be longer. But 

how much longer?  

Suppose the ECC transition from ‘WAIT’ to 

‘STOP’ occurs. At this stage the LGHT event 

should be cleared, otherwise the next transition 

from ‘STOP’ to ‘UNBLK’ would immediately 

happen, which would be incorrect. The 

Compliance Profile [6] proposes to clear event 

input variable after the first transition that 

includes it and evaluates to TRUE but in the end 

of the run at the latest. This solution seems to be 

the only reasonable.  

V. SEMANTICS OF FB NETWORKS 

The semantics of FB networks is determined by 

the sequence of function blocks invocation. The 

abstract event flow model of IEC61499 seems to 

be insufficient to define the execution sequence 

unambiguously. 

Several provisions of the standard related to basic 

FB semantics imply the fact that in a single FB 

network (say, in a part of an application allocated 

to a particular device), only one function block 

can be active at every moment of time. This 

conclusion led to two implementation ideas: 

sequential and cyclic execution models.  

The sequential model has been justified by 

sequential hypothesis in [15], formulated as a 

result of studying and interpreting text of the 

standard. In the sequential model it is attempted 

to ensure that sequence of emitted events is 

preserved in the order of invocation of the 

destination FBs. Several implementation ideas of 

such event serialization have been proposed: store 

events emitted by all blocks in a global queue 

[16], or keep in a queue function blocks that were 

sent an event (in the order of event emission) 

[17], or store events in queues associated with 

each event input of each function block in the 

network. Once a function block is finished its run, 

the next to be executed will be determined by 

selecting the FB reference from the top of the 

queue.  

The cyclic model is justified by the legacy PLC-

based automation systems, in which function 

blocks are invoked periodically in a cyclic 

manner. When this idea is ‘transplanted’ to the 

IEC 61499, it still can preserve the ‘unit’ nature 

of FB invocation. An unpleasant consequence, 

however, is the possibility of having several 

‘energized’ input events at an FB invocation. As 

we have seen in the previous section, in a basic 

FB there is no way to distinguish this situation 

from a sequential arrival of events. The simplest 

form of cyclic execution may require invocation 

of each function block in the FB network, as it is 

done in ISaGRAF [20]. A possible optimisation 

can invoke only those FBs which received events 

in the previous scan cycle, as proposed in [25].  

Another, recently appeared model of FB network 

semantics is parallel [16]. Its main idea is to 

allow parallel execution of several function 

blocks. Although the standard favours ‘one at 

time’ FB execution, this requirement originates in 

the need to execute code of function blocks on 

single-processor devices. This seems to be a bit 

outdated nowadays. One can use multi-core 

processor architectures or even custom hardware 

implementation of a given FB network. So, FBs 

can be executed in parallel, provided that the 

blocks do not interrupt each other and don’t 

modify internal data of each other. The parallel 

model has one very important feature: it preserves 

the semantics of FB applications when they are 

mapped to different networking architectures of 

hardware.  

In the parallel semantics it is proposed to treat 

event forking (similar to E_SPLIT FB) as a 

parallel launch of the event recipient FBs. The 

next question that may arise is at which pace run 
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the concurrent FBs. Synchronous model [23] 

proposes to align the speed of running with global 

instantaneous event called tick. In particular, in 

[23] it was chosen to align tick with one ECC 

transition in a basic FB, but other ideas are also 

possible, for example, have all FB single runs 

equivalent to a tick. Asynchronous parallel model 

[22] does not make any assumptions on the speed 

of FB execution.   

The FBDK/FBRT implementation of IEC 61499 

is using an execution model different from all 

mentioned above. With respect to FB Networks it 

implements the breadth-first search approach 

interpreting event passing as a direct method call 

at the destination FB. This execution model was 

analyzed in [24] where it was named as Non-

Preemptive MultiThreading Resource (NPMTR).  

 

This model in our view is not fully compliant to 

the provisions of the standard, but was very 

useful for quick and simple prototype 

implementation of IEC 61499.  

In Figure 4 behaviour of our sample application 

from Figure 2, B is presented in the four 

mentioned execution models. The initialisation 

chain is chosen for the illustration, which starts 

with the START FB. Arrows indicate events 

passed from a block to block. Obviously, 

differences in the sequence of FB invocation can 

lead to different computation results, i.e. the same 

application may produce different results if 

executed on devices implementing different 

execution models. 

VI. CONCLUSION 

It seems impossible at this stage to come up with 

a single execution model for FB networks, so 

defining a limited number of models can be seen 

as a progress towards improving portability of 

function block applications. The Compliance 

Profile [6] follows this approach. 

It is also quite obvious that differences in 

execution models show themselves in quite 

extraordinary conditions, i.e. in presence of 

several simultaneously (or nearly simultaneously) 

generated events. Defining conditions of 

execution semantics tolerance (i.e. achieving 

identical behaviour of FB applications in different 

semantics) seems to be an exciting research topic 

for the near future.  

 
Figure 4. Sequence of function blocks invocation during initialization in four execution models. Arrows show events passing between function blocks. 
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The IEC 61499 has reached certain maturity, and 

certification on compliance becomes an important 

task. The compliance profile defining the limited 

set of execution models can serve as a guideline 

for the certification. 

VII. REFERENCES 

[1] Function Blocks for Industrial-Process Measurement and 

Control Systems - Part 1: Architecture, International 

Electrotechnical Commission, Geneva, 2005 

[2] FBDK – Function Block Development Kit, Online: 

www.holobloc.com  

[3] ICS Triplex ISaGRAF Workbench  for IEC 61499/ 61131, 

v.5.1,Online:http://www.icstriplex.com/ 

[4] Vyatkin, V., Hanisch, H.M., Starke, P., Roch, S. 

'Formalisms for verification of discrete control applications 

on example of IEC1499 function blocks', "Verteilte 

Automatisierung" (Distributed Automation), Proceedings, 

Magdeburg, Germany, March, 2000 

[5] Vyatkin V., IEC 61499 Function Blocks For Embedded and 

Distributed Control Systems Design, 297p., ISA/O3neida, 

USA, 2007 

[6] o3neida, IEC 61499 Compliance Profile -- Execution 

Models of IEC 61499 Function Block Applications, draft in 

progress, 

http://www.oooneida.org/standards_development_Complian

ce_Profile.html, Online:  March, 2009 

[7] C. Sünder et al.: Usability and Interoperability of IEC 61499 

based distributed automation systems, Proc. 4th IEEE Intl 

Conference on Industrial Informatics, INDIN06, Singapore, 

2006 

[8] Zoitl A., Grabmair G., Auinger F., and Sunder C. Executing 

real-time constrained control applications modelled in IEC 

61499 with respect to dynamic reconfiguration, 3rd IEEE 

Conference on Industrial Informatics (INDIN’0), 

Proceedings, Perth, Australia, August 2005 

[9] Vyatkin V., Salcic Z., Roop P., Fitzgerald J., Information 

Infrastructure of Intelligent Machines based on IEC61499 

Architecture, IEEE Industrial Electronics Magazine, 2007, 

1(4) pp. 17-29 

[10] M. Riedl, C. Diedrich, F. Naumann, “SFC in IEC 61499“, 

13th IEEE Conference on Emerging Technologies and 

Factory Automation, Prague., September 20-22, 2006, 

pp.662-667 

[11] J. Chouinard, R. Brennan, Software for Next Generation 

Automation and Control, 4th IEEE Intl. Conf. on Industrial 

Informatics, Singapore, 2006 

[12] J. LM Lastra, L. Godinho, A. Lobov, R. Tuokko, “An IEC 

61499 Application Generator for Scan-Based Industrial 

Controllers”, in Proc. of the 3rd IEEE Conference on 

Industrial Informatics, Proceedings, Perth, Australia, August 

2005 

[13] L. Ferrarini and C. Veber, Implementation approaches for 

the execution model of IEC 61499 applications, 2nd IEEE 

Conference on Industrial Informatics, Proceedings, Berlin, 

June 2004 

[14] L. Ferrarini, M. Romanò, and C. Veber, Automatic 

Generation of AWL Code from IEC 61499 Applications, in 

Proc. of the 4th IEEE Conference on Industrial Informatics, 

Singapore, August 2006 

[15] V. Vyatkin, V. Dubinin, Sequential Axiomatic Model for 

Execution of Basic Function Blocks in IEC61499, 5th IEEE 

Conference on Industrial Informatics (INDIN’07), Proc., pp. 

1183-1188,  Vienna, 2007 

[16] V. Vyatkin, V. Dubinin, Ferrarini, L.M., Veber C. 

Alternatives for Execution Semantics of IEC61499, 5th IEEE 

Conference on Industrial Informatics, Proc., pp. 1151-1156,  

Vienna, 2007 

[17] G. Čengić, O. Ljungkrantz, and K. Ǻkesson, “Formal 

Modeling of Function Block Applications Running in IEC 

61499 Execution Runtime,” in Proc. of 11th IEEE Conf. 

ETFA 2006, Prague 

[18] C. Sünder, A. Zoitl, J.H. Christensen, M. Colla, T. Strasser 

"Execution Models for the IEC 61499 elements: Composite 

Function Block and Subapplication", In Proceedings of 

IEEE Int. Conference on Industrial Informatics, Vienna , 

2007 

[19] V. Dubinin and V. Vyatkin, “On Definition of a Formal 

Model for IEC 61499 Function Blocks,” EURASIP Journal 

on Embedded Systems, vol. 2008, Article ID 426713, 10 

pages, 2008. doi:10.1155/2008/426713 

[20] V. Vyatkin, J. Chouinard, “On Comparisons the ISaGRAF 

implementation of IEC 61499 with FBDK and other 

implementations”, 6th IEEE International Conference on 

Industrial Informatics (INDIN’08), Daejeon, Korea, July 

2008, Page(s):289 – 294 

[21] K. Thramboulidis, C. Tranoris, “IEC61499 Execution Model 

Semantics”, Int. Conf. on Industrial Electronics, Technology 

& Automation (CISSE-IETA 06), Dec. 4-14, 2006 Tech 86. 

[22] V. Vyatkin, Modelling and execution of reactive function 

block systems with Condition/Event nets, 4th IEEE 

Conference on Industrial Informatics (INDIN ‘06), 

Proceedings,  Singapore, 2006  

[23] L.H. Yoong, P. Roop, V. Vyatkin, Z. Salcic, “A 

Synchronous Approach for IEC 61499 Function Block 

Implementation,” IEEE Transactions on Computers, 2009, 

in print 

[24] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. 

Brennan, A. Valentini, L. Ferrarini, T. Strasser, J. L. 

Martinez-Lastra, and F. Auinger, “Usability and 

Interoperability of IEC 61499 based distributed automation 

systems”, 4th IEEE Conference on Industrial Informatics 

(INDIN ‘06), Proceedings,  Singapore, 2006 

[25] P. Tata, V. Vyatkin, “Proposing a novel IEC61499 Runtime 

Framework implementing the Cyclic Execution Semantics”, 

7th IEEE Conference on Industrial Informatics, Cardiff, July 

2009 (INDIN’09), submitted 


