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1. Introduction 

Modeling is extensively used in research work on intelligent manufacturing to solve 
such problems as optimal dynamic reconfiguration of production facilities, or 
optimization of material flow and throughput. Also, models are used for avoidance of 
possible deadlocks, or for prevention of malfunctions caused by incorrectness in 
control algorithms. As the components of automation systems are getting more 
autonomous, the more embedded and reusable must be the models.  

Models may give opportunities to simulate the system’s behavior, to analyze 
system’s structure (such as connectivity of certain elements), or to analyze 
properties of system’s dynamic behavior even without conducting the simulation. A 
production plan may impose a branching structure of the control with multiple 
scenarios of automation system’s behavior. However, even a purely sequential 
control may lead to such behavior due to malfunctions in some hardware elements. 
In both cases the formal analysis might be the only way to reveal potentially 
dangerous situations. This sort of analysis requires modeling of closed-loop 
plant/controller systems, where the model encapsulates properties of the plant, the 
controller as well as the structure of the system. 

Modeling can be especially beneficial for flexible, re-configurable automation 
systems. In traditional hierarchical control systems, re-configuration requires to re-
design controllers, sometimes in a very sophisticated way. Then the new 
functionality must be tested to ensure the desired behavior in the closed loop, and 
eventually the new functionality must be encoded in a language used for controller 
programming. In the same manner process monitoring, diagnosis, and supervision 
by the operator have to be re-designed with similar levels of difficulty. All these tasks 
have to be accomplished quickly to minimize lost production. A faster system 
integration, however, could be achieved if the testing routines were substituted by 
formal validation of newly arisen system configurations.  

Unfortunately, modeling still is not a part of regular activity in engineering of 
industrial automation systems. Development and application of models are rarely 
done in a systematic way. Usually the models are developed for a particular 
modeling task, e.g. parameter estimation, productivity optimization, prediction of 
interaction results, formal validation of controllers, etc. The occasional application, 



 

however, reduces the prospective benefits and increases the costs of model 
development. 

One of the reasons discouraging control engineers from embedding modeling in 
their projects is the absence of a unifying architectural framework, which would 
integrate the control, service and modeling software in a single and consistent way, 
and would be equally good as for efficient implementation, as well as for the 
analysis. In this paper we attempt to show the integration of modeling into an open, 
vendor- and network-independent architecture based on strict compliance with the 
new upcoming global standard IEC 61499 [1,2] for the use of function blocks in 
distributed industrial control and automation systems. The IEC61499 represents the 
missing consistent architectural framework to integrate run-time control and 
diagnosis applications, simulation and formal analysis of agile distributed automation 
systems. 

This paper provides an example of using IEC61499 to combine systematic system 
engineering of distributed automation systems with modeling and formal verification 
of such systems. 

2. Encapsulation of Modeling in Component Architecture 

Many of modern production systems are built as a composition of automatically 
controlled machines produced by different vendors. Integration of single machines 
into production systems requires corresponding integration of control software 
modules into decentralized controllers for the whole system.  

Attempts to cope with the arising problems have led to the concept of component 
software design where the proprietary software of constituent machines is 
encapsulated into so called “software components”. An example of practical 
development in this direction is the project PROFInet of the Profibus User 
Organization (PNO) [3] which targets the integration of existing compliant control 
hardware (Programmable Logic Controllers) and software (following the standard 
IEC61131-3) of different vendors into a single system, providing data exchange 
between the components.  

Further requirements to the component-based system engineering may include the 
means of hardware-independent design of the components and encapsulation of 
versatile functionalities, such as interface abstractions, controllers, simulation 
models, visualization functions, and formal models for verification. These 
requirements can be fulfilled by means of compliance with IEC61499.  

The IEC61499 architecture creates the following prerequisites for embedded 
modeling: 

1. Event-driven function blocks guarantee the independence of execution 
semantics from the particular implementation devices where the blocks are 
executed. This, in turn, creates necessary prerequisites for practical application 
of the MVCDA architecture for encapsulating versatile functionalities of control 
systems into software components. 

2. Formal modeling elements are incorporated to the description of components: 
basic function blocks have execution control charts, service interface blocks may 
have their behavior documented by service primitives following ISO TR 8509. 



 

3. The IEC61499 formally defines the critical algorithms of implementation such as 
input event processing, or algorithms dispatching, etc. 

The ideas of system engineering in IEC61499 will be illustrated on the small 
example of “DRILLING STATION” described as follows. 

 
Figure 1. Structure of the production cell: a processing 
unit (drill), a transportation unit (carriage), and a 
logistics unit (loader). 

The station consists of a boring 
machine (drill) and a carriage, 
which delivers workpieces to the 
home position of the drill. The 
loading/unloading of the carriage is 
performed by the loader in the 
loading position, that is opposite to 
the home position. It is assumed 
that all the constituent units show a 
big deal of autonomous behavior 
that allows their integration virtually 
without any “master controller”. 

 
Despite its fairly primitive nature, this sample object allows illustration of various 
phenomena arising in component-based industrial systems, e.g. concurrent 
operations in different components, or impacts of reconfigurations, such as 
substitution of a component by an almost functionally equivalent one, having slight 
differences in interfaces, dynamic properties, etc. 

Component-based system engineering assumes that the hardware tools are 
accompanied by software components, which encapsulate the relevant 
functionalities. The software engineering then follows the engineering of the system 
in the sense that each tool in the real system is represented by the corresponding 
component in the software, while the information interconnection of the components 
generally follows the relations of the parts in the real system. 

In terms of IEC61499, the component may be represented as a composite function 
block and the functioning of the integral system as an application formed from the 
function blocks interconnected via events and data.  

With respect to the sample drilling station it may result in the structure shown in 
Figure 2. The block diagram shows the data and message connections of the 
components. The application supports both automatic and manual modes of control. 

 
Figure 2. Component representation of the functionality of “Drilling station”. 



 

Further implementation steps may include: 

- Definition of the architecture of the control system as a set of network-
connected control devices and resources such as intelligent 
sensors/actuators, computational resources, fieldbus segments, or 
visualization panels. IEC61499 provides the necessary architectural means 
for definition of these types. 

 
Figure 3. Hierarchical structure of the "Drill" component in MVC design pattern. 



 

- Mapping of the application onto the architecture, i.e. assign the constituent 
function blocks to the resources, where they will be executed. Thus, the 
executable system configuration is obtained that can be uploaded to the 
physical devices and executed. At this step the communication functions shall 
be added to the distributed parts of application in order to provide seamless 
data and event flow exchange. 

Thanks to the opportunities opened by IEC61499, the control application can be 
designed following the object-oriented Model/View/Controller (MVC) pattern [4,5] 
that logically integrates closed-loop plant-controller models into system design. 
Thus, modeling can be embedded into software components within the same formal 
framework. Application of the MVC pattern is illustrated in Figure 3 on example of 
the “DRILL” component, whose hierarchical structure is further discussed.  

Level 1: Model/View/Controller 

The component DRILL is constituted from the blocks OBJECT and CONTROLLER 
interconnected in closed loop to each other, and also connected to the inputs and 
outputs of the component.  

The block OBJECT of type DM_MV_0 (Drill with Motor Model and View, Type 0) 
represents the functionality of the equipment, while the block CONTROLLER 
encapsulates the control logic. The execution modes include the MANUAL and the 
AUTOMATIC mode, determined by the AUTO_MAN qualifier. If the qualifier is TRUE 
(automatic mode) then the OBJECT block receives the control commands (LIFT, 
SINK, TURN) from the CONTROLLER. Otherwise these signals are taken from the 
inputs of the block itself, which can be connected to manual control buttons. 

Level 2: Model/View  
The block VIEW is responsible for displaying of the image of drill on the operator 
station screen. At every event CHGI the outlined part of the display as shown in 
Figure 3, is refreshed given the values received from the OBJECT block. The 
location of the drill’s head is displayed according to the coordinate POS. The block 
OBJECT of type DM_0 (stands for Drill with Motor, Type 0) represents the drill itself. 
Its interface almost copies the interface of DM_MV: all commands and data coming 
from the controller are directly transferred to it. 

Level 2:Controller 
The sequential control of the drill is defined in the form of sequential function chart 
and encapsulated in the block CONTROLLER of type CTL2.  

Level 3:Structural Model 

This level represents the structure of the drill composed from two sub-models: a 
model of the drill’s head as a vertically moving object, and a model of spindle’s 
rotation. The model reflects the fact of relative independence of the components: the 
axis position of the head has no influence on its rotation. The rotation status of the 
motor, however, influences the results of drilling. For this reason the ROT (rotation) 
output of the ROTATION (Motor) block is connected to the ROTATES input of the 
model of the head. The blocks LINEAR (of type LINEAR_S_0) and ROTATION (of 
type MOTOR_S) encapsulate the functionality of real component units of the object: 
they receive control inputs and generate the output parameters such as axis position 



 

of the head and turning speed of the spin of the motor. They also produce the values 
of Boolean and analog sensors, e.g. the position sensors UP and DOWN.  

Level 4:Model of a Single Unit 

The next level of the component hierarchy is represented by single functional units 
of the equipment, such as vertically moving head and rotation motor of the drill. 
These components can be either further defined by means of dynamic models and 
models of the corresponding sensors, or they can be substituted by direct interfaces 
to real devices. 

The model and the interface to the real process are combined within one function 
block LINEAR_MR_0 (Model + Real object). The event input SIMUL with qualifier SQ 
controls the way of the outputs assignment: if SQ=TRUE then the SWITCH relays 
outputs of the simulation model (SIMMOD). Otherwise, if SQ=FALSE, the outputs 
are taken from the block REALOBJ serving as an interface to the actual DRILL. 

Level 5:Simulation Model 
The central part of the simulation model is block MOD (of type LINEAR) that 
encapsulates a discrete implementation of the dynamic model of the vertically 
moving drill’s head. Internals of this block are discussed in the next section. The 
state of the model is re-evaluated at every event TIMER. These events are 
generated by the block PERIODIC with frequency defined by the time discretization 
parameter DT as long as the simulation qualifier SQ is TRUE. The model produces 
the numeric parameter POS (in the interval from 0 to 100) indicating the vertical 
position of the head. Blocks SHIGH, SLOW of type SENS represent the discrete 
sensors indicating correspondingly up and low positions of the head. The LOW and 
HIGH parameters of the SENS block represent the threshold interval in which the 
numeric input value VAL must fall in order to the logic output RES to be produced. 

3. Modeling the Dynamic and Logic of Processes 

As shown in Figure 4, the drill’s head moves vertically within coordinate variation 
limits 0 and 100. The higher edge of the workpiece is assumed to have vertical 
coordinate 50.  

 
Figure 4.  Drill's vertical 
movement axis. 

Even primitive dynamic processes such as linear movement 
of drill’s head cannot be efficiently described by pure 
mathematical equations in presence of logic control signals. 
The model has to be hybrid, i.e. include both mathematical 
definition of the coordinate change, along with the logic 
model of state switching. Direct implementation of such 
modeling is possible by means of Execution Control Charts 
of IEC61499 basic function blocks. The block’s interface 
reflects the fact, that usually the control actions are 
transmitted to the plant by Boolean signals (LIFT, SINK in 
this model). The model also needs some information about 
the external environment: the condition PRESENT stands 
for the workpiece status, and ROTATES informs the model 
about the spinning status of the spindle. 

Depending on the values of these two conditions, the linear moving may have 
different speed in the lower part of the moving interval, e.g.: the drill cannot move 



 

down if the spindle does not rotate, but the workpiece is present. On the other hand, 
if no workpiece is present, rotation of the spindle does not influence vertical 
movement.  

The model delivers two output values. The numeric output POS represents the 
vertical coordinate of the drill’s head, and the logic value FAILURE is an integral 
condition representing all sorts of incorrect or failure situations. 

The state chart (ECC) model of the linear progress of the drill is shown in Figure 5.  
The state chart is built from states (rectangular shapes) and state transitions (arcs) 
marked with Boolean conditions. In the chart are two types of states, namely:  fixed 
position states UP_POS (POS=0), MID_POS (POS=50), DOWN_POS (POS=100) 
and dynamic states (MOVE_UP, MOVE_DOWN, etc.) with linear change of 
parameter POS as POS=POSold+kdt, where the coefficient k is the speed of moving, 
dt is the time increment and POSold is the previously calculated value of the 
parameter. 

The model describes the uncontrolled behavior as follows. The spindle moves freely 
in the upper part of the axis, no matter whether the workpiece present or not. When 
the middle position is reached and the control signal SINK remains ON, the spindle 
continues its moving downwards. Should the workpiece be in the home position, and 
the bore spins, then normal drilling goes on. If the drill does not rotate, then it just 
hits the blank workpiece, and a failure occurs. If no workpiece is present, then the 
drill moves down idle, with the speed higher than that of drilling. The same applies to 
the moving upwards.  

 
Figure 5. Execution Control Chart implementation of the state chart model. 

4. Model Analysis 

The new system configuration can be analyzed by the prototype of the verification 
tool VEDA (Verification Environment for Distributed Applications) [8,9]. The tool is 
integrated with the engineering environment FBDK and the run-time platform FBRT 
and allows formal verification of IEC61499 system configurations. VEDA checks 



 

whether the system configuration complies with a pre-given set of conditions, 
describing forbidden or desired behavior of the control system.  

To conduct the formal validation procedure, VEDA transforms the function block 
model into the corresponding model in Net Condition/Event Systems [6,7]. This 
formalism was especially adjusted to cope with the complexity of formal verification 
for systems with distributed states, in particular IEC61499 function blocks, containing 
asynchronous parts (models of equipment) along with synchronous models of 
controllers.  

An example of the NCES model corresponding to the “Linear model of DRILL with 
sensors” is shown in Figure 6.  Thanks to the ECC structural representation, the 
NCES model can be generated from the ECC automatically. 

The tool VEDA inputs the applications, generates the NCES models for the 
remaining (controller) blocks presented in languages IEC61499 and verifies the 
compliance of the models behavior with the set of pre-given specifications of 
permitted/forbidden behavior. If a trajectory is found, which does not comply with the 
specifications, it can be analyzed in detail by means of simulation (e.g. using the 
simulation function block LINEAR with the corresponding input parameters). 

 
Figure 6. Net Condition/Event discrete state model of the linearly moving part of the drill with two 

logic position sensors. 

5. Conclusion 
This paper illustrates the modeling approach that targets distributed automation 
systems, enables both simulation, formal verification and their combinations, as well 
as combines the following features: 
?  Heterogeneous – combining the features of discrete and hybrid formalisms, that 

enables mutual positive impacts and benefits, e.g. interpretation of verification 
results by simulation;  

?  Scalable to the desired precision of modeling by abstraction of unnecessary 
details; 



 

?  Embeddable – encapsulated into component’s description. This way the model 
can follow industrial objects throughout their life-cycle. 

Currently the work is under way on implementation and formal analysis of a realistic-
scale distributed control testbed (Figure 7) based on full compliance with IEC61499 
architecture [10]. 

 

Figure 7. Distributed automation testbed. 

6. References 
1. Function Blocks for Industrial Process Measurement and Control Systems. 

Publicly Available Specification, International Electrotechnical Commission, 
Tech. Comm. 65, Working group 6, Geneva, 1998.  

2. R. Lewis: Modeling Control Systems using IEC 61499, IEE, London, 2001 
3. PROFInet – project of Profibus User Organization, URL: 

http://www.profibus.com  
4. J.H. Christensen: Design patterns for system engineering with IEC 61499. 

Proc. Of Conference "Verteilet Automatisierung" (Distributed Automation), 
pages 63--71, Magdeburg, Germany, 2000 

5. J.H.Christensen: IEC 61499 ARCHITECTURE, ENGINEERING, 
METHODOLOGIES AND SOFTWARE TOOLS, 5th IFIP International 
Conference on Information Technology for BALANCED AUTOMATION 
SYSTEMS In Manufacturing and Services, to appear in Proceedings, Cancun, 
Mexico, September, 2002 

6. H.-M. Hanisch und A. Luder: Modular Modeling of Closed-Loop Systems.  
Colloquium on Petri Net Technologies for Modeling Communication Based  
Systems, Berlin, Germany, October 21-22, 1999, Proceedings, pp. 103-126 

7. P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, A. Luder: Analysing signal-
event systems, Technical report, Humboldt Universitat zu Berlin, Institut fur 
Informatik, http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/, 
July, 1999 



 

8. Vyatkin V., Hanisch H.-M. Bringing the model-based verification of distributed 
control systems to the engineering practice, in book Intelligent Manufacturing 
Systems 2001, Elsevier Science, pp.152-157, November 2001 

9. Vyatkin V., Hanisch H.-M.: Verification of Distributed Control Systems in 
Intelligent Manufacturing, Journal of Intelligent Manufacturing, special issue 
on Internet Based modeling in Intelligent Manufacturing, to appear in No.1, 
2003 

10. Distributed Automation Testbed at http://at.iw.uni-halle.de/~testbeds  


