
Martin-Luther University of Halle-Wittenberg
Department of Engineering Science

IEC61499, distributed control systems,
Discrete-state modelling,

formal verification

Valeriy VYATKIN
Hans-Michael HANISCH

SOFTWARE ENVIRONMENT FOR AUTOMATED VERIFICATION OF
DISTRIBUTED INDUSTRIAL CONTROLLERS FOLLOWING IEC61499

Abstract. This paper presents the Verification Environment for Distributed Applications (VEDA), which
is a software package for Deep Debugging of distributed controllers. Deep Debugging is a combination of
model-based simulation and verification united by a homogeneous graphical user interface. VEDA deals
with controllers defined in IEC61131 and IEC61499 and automatically generates the formal model of the
controller given the controller’s source code.
VEDA includes some facilities to develop models of plants: a graphic editor for Signal-Net Systems
models and means to specify visualization of the model. It allows also to simulate the controller/plant
closed-loop system, and to prove formally whether the overall behavior of the system satisfies some
desired/undesired properties. For better analysis, results of the verification can be visualized by tracing
trajectories with timing diagrams of required parameters. Formulation of specifications is facilitated using
the visual Signal Diagram Specification Language (SDSL).

INTRODUCTION

The theory of formal modeling and finite-state verification of discrete control systems
has been actively developed in the last decade, starting from the works of E.Clarke et al.
[Clarke86], and J. Ostroff [Ostroff89]. The general pattern of the verification is as follows:
the closed-loop plant/controller system is modeled using a discrete state formalism (for
instance, state machines, Petri nets, or their derivatives). As a result the closed-loop model
is obtained. The model can be used to check the validity of certain properties for its
reachable states. It can be done automatically if the properties are described formally as
Boolean conditions, predicates, or temporal logic expressions.

Despite of its numerous advantages, the formal verification remains exotic in the
practice of control engineering. One of the reasons of that is the high computational
complexity of the formal model-checking. But progress in hardware development and
successes in the theory of verification constantly extend the borders of its practical
applicability. The existing formalisms do not completely meet the requirements of modeling
of the control systems. These are either synchronous (Esterel, Grafcet) that fits to the
modeling of controllers, or asynchronous (Petri nets, State machines) that better fits to the
modeling of plants. And, last but not the least, is the lack of appropriate user-interface
solutions. To bring verification into engineering practice, it has to be better integrated with
the currently existing simulation functions.

Current ways of controller design are usually based on a controller’s architecture, which is a
Programmable Logic Controller (PLC). The execution system of such a PLC executes the
control program - written in special languages, which are standardized in the International
Standard IEC 61131-3 – [IEC1131] in a purely sequential, cyclic order. First, the current
status of the plant, which is indicated by sensors, is stored in an input buffer, then the whole
control program is executed, while the values of inputs in the buffer remain unchanged, and
in the last step the calculated outputs are transmitted to the actuators of the plant.
Although the problems of verifying correctness of a control program in such a classical
architecture is hard enough, practical needs for more flexibility, distribution, and fast and
easy reconfiguration bring up new controller architectures.
The uniform vendor-independent solution for programming of distributed control systems
provides the currently being developed IEC standard 61499 [IEC61499, Christensen2000].
Representation of the systems according to the standard helps to focus on the essential
issues, regardless of the variety of existing hardware and software solutions and network
protocols. In the framework of IEC61499 the controller can be understood as its software
code which can be tested without knowledge about particular implementation details. In
IEC 61499 the basic programming structure is function blocks with event and data inputs
and outputs. The block is conditionally divided onto the "head" responsible for the
execution logic, and "body" which contains the algorithms of data processing.
The result of this change of paradigm is that there is no longer a strictly sequential execution
of the control program. Each function block has its own event-driven execution control, and
the complete execution control of a system of composed function blocks is physically as
well as functionally distributed. It is obvious that new challenges for testing or verification
result from this design approach.

In this paper, which is a sequel to the paper [Vyatkin2000] presented on the previous
Workshop, we present an overview of the verification process supported by a number of
methods and software tools, destined to make it really integrated with the routine work of
control engineers. The presented approach bases on the modelling of control systems with
Signal Net Systems (SNS) [Starke2000]. An integrated software environment VEDA
(Verification Environment for Distributed Applications) has been developed to support all
steps of controller design and testing. The paper is structured according to these steps.

STEP 1. CONTROLLER DESIGN

The process of verification applies to the controllers following the IEC61499. For example,
consider a simple plant "BORING STATION" in Figure 1. It consists of a boring machine
(drill) and a transfer stage, which delivers workpieces to the working position of the drill.
The loading/unloading of the drill is performed in the loading position (detected by sensor
load.pos.), opposite to the working position. The drill starts drilling automatically, when the
workpiece comes to the working position.

down

up

work. pos. load. pos.

loaded

DRILL

LIFT

MOVE IN MOVE OUT

CONTROLLER
of

Transfer Stage
Figure 1. Structure of the distributed control system.

When drilling is over, the workpiece is
moved away. Presence of the
workpiece on the tray is reported by
means of the sensor loaded. Control of
the plant is performed by means of two
independent controllers (one for the
drill, and the other for the transfer
stage). Sensors and actuators are
connected to their respective
controllers by segments of networks.
The controllers also communicate via
network. Access to the data is limited
for each controller by the data available
in its own network segments, plus the

data explicitly provided by the other controller. A block diagram (following IEC61499) of
the distributed control system of the plant is presented in Figure 2. Function block TS_CTL
implements the control logic of the transfer stage, block DR_CTL controls the drill, the
block MOD represents the plant or its model, and the block INIT models initialization of the
controllers (for example in case of a start-up of the control device). According to IEC61499,
a function block consists of head (the upper part) and body (the lower part). The head is
connected to the event inputs and outputs and is responsible for the execution logic. The
body is connected to the data input/outputs and contains the data processing algorithms,
which are called by the execution control.

LOAD_P

WP

BLK

IN

OUT

DRILL

CHANGE

LIFT

UP

WORK.POS.

LOAD.POS.

DOWN

MOD

INIT

OUT

IN

TS_CTL

CHGI

CHGI

CHGO

READY

LOADED

LOADED

INIT

BLOCK

INIT1

LOCK

CHGO

INIT

DR_EV

UP LIFT

DOWN DRILL

DR_CTL

CHG

Figure 2. Block diagram of the control system following IEC61499.

The internal control logic of the blocks TS_CTL and DR_CTL is implemented by means of
Execution Control Charts (ECC) presented in Figure 3. The ECC represents state-machines,
and its syntax is a simplified version of the Sequential Function Chart (SFC), which is a

programming language of IEC61131-3. For simplicity we extended the syntax of the ECC,
allowing simple algorithms, such as an assignment of a variable to be presented directly at
the places, reserved for the algorithm calls.

The control logic of drill and transfer stage is quite simple: once loaded with a workpiece
the transfer stage delivers it to the working position, and then reports to the controller of the
drill about that. The latter blocks moving of the transfer stage during the drilling, by issuing
the corresponding signal LOCK.

As a result of the design step, the source code of the application (network of interconnected
function blocks) is obtained. In general it includes the component algorithms, and is
presented in Extended Structured Text format (the Structured Text (ST) is also a
programming language of IEC61131). Now the application needs to be validated, i.e.
correctness of its outputs has to be proved for all input combinations, which are possible in
the real life. To generate the inputs, a finite state model of the plant is used. It is connected
to the controllers in the closed loop, as it can be seen from Figure 2.

a)

START

INIT

NOT BLK & LOADED

NOT BLKBLOCK &

WP

WAIT

DRILLED

BRING

REMOVE

IN:=1

IN:=0

OUT:=1

OUT:=0

CHGO

READY

CHGO

CHGO

LOAD_P

INIT & WP

assignment of
output event variable

 b)

START

INIT & UP

DOWN

UP

UP

INIT &
NOT UP INITZ

LIFTING

WAITING

DRILL

LIFT:=1

LIFT:=1

LIFT:=0

CHGODR_EV

states calls of
algorithms

Figure. 3 Execution Control Charts of the function blocks TS_CTL (a), and DR_CTL (b).

In fact, the whole interconnected system has to be substituted by its finite-state model. We
use for modeling the formalism of Signal-Net systems [ASEN, Starke2000]. The model has
the same modular structure as the original application. The models of the control function
blocks are generated automatically by VEDA, given their source code. The model of plant
has to be prepared manually. This will be briefly explained in the following section.

STEP 2. MODELING PLANT

The model-based testing of control algorithms is widely used in practice and suggested as a
basic component of system engineering in IEC1499, which supports the MVC framework
(Model, View, Controller). To add the verification to this framework, a formal model of
plant is required.

It is also useful to combine the
formal model with the models used
for simulation and visualization,
and further incorporate them into an
IEC61499 function block to provide
a homogeneous representation. The
model of plant can be also built in
the modular way. The modeling
starts with the design of a finite
state model of each subsystem,
further connecting these
components by event and condition
signals. The SNS formalism allows
designing models according to this
top-down approach. The model of
the drilling station is presented in
Figure 4. The model is a module of
SNS, composed as a network of
modules, where modules “Drill”
and “Transfer Stage” model the
units of the same name, and the
other five modules model the logic
sensors.

p1

p1

p1

p1

p1

p1

p2

p2

p2

p2

p2

p2

p6

p3

p7

p4

p8t8p5

t5

t6

t1

t1

t1

t1

t1

t1

t7

t3

t2

t2

t2

t2

t2

t2

t4

down

load position

work pos. moving out

moving in

lifting

drilling

up

[5,]?

[5,]?

[0,]?

[0,]?

[0,]?

[0,]?

[3,]?

[3,]?

Model of Plant

Drill

Transfer stage

LIFT

LIFT

IN

IN

DRILL

DRILL

OUT

OUT

up

load.pos

down

work.pos.

LOADED

CHGI

Figure 4. SNS model of plant and sensors.

Outputs of the logic sensors are represented by two event outputs in SNS: one for value
“false”, and the other for the value “true”. Hence, a connection line from MOD to either
TS_CTL, or DR_CTL in the block diagram in Figure 2 corresponds to two condition arcs in
the SNS model. The same applies to the connections from the controller to the model of
plant: the negative value of each signal is always available.
The model is built using timed SNS, where each arc from a place to transition is marked by
the permeability time interval [lo, hi]. The default value assigned implicitly to all arcs is
[0,?]. In terms of the model, the interval sets the time limits of the marking age in the
source place when the corresponding arc may affect firing of its target transition. Its usage
can be illustrated as follows. If the moving in takes minimum 5 time units, then we mark the
corresponding arc from the place p5 to the transition t5 in the module “Transfer Stage” by
interval [5,?]. In this paper we are not able (due to limited space) to present all the details of
the model building using SNS. Obviously, features of the SNS do not limit the developers
only by state-machine modeling. The general framework of the model-development, as it is
supported by VEDA, is given in Figure 5. Based on the technological documentation of the
plant, the SNS model of each unit’s behavior is developed. This process is assisted by the
interactive editor of SNS. Along with that, each state of the unit’s behavior can be
associated with the corresponding visualization display, and even with animation. For this
purpose a Simple Modeling Language (SML) is developed. Statements of SML describe
every object of the visualization in connection with the SNS model.

DRILL

CHANGE

LIFT

UP

WORK.POS.

LOAD.POS.

DOWN

MOD

OUT

IN

CHGI

LOADED

FB in
Extended

Structured
Text

Visual Editor
of SNS

Figure 5. Modeling of plant supported by means of VEDA.

The visual editor of SNS provides editing of SNS models and their transformation in
Function Block format, which is correspondingly extended to be able to store the
information about SNS on one hand, and to be compatible with the usual IEC61499 FBs on
the other. As a result of this step we obtain the ASCII file of the Function Block, containing
the model of plant, and the corresponding SML file, containing the information about
visualization.

STEP 3: SELECT AN APPROPRIATE DEBUGGING PATTERN

VEDA offers a number of verification opportunities. Sometimes the easiest way to test the
controller is to enter the control program to a control device (say a PLC) directly connected
to the plant, and then run it. For this purpose the model of the controller can be run in the
step-by-step mode in connection with the real plant, provided by a softPLC software being
run together with VEDA. Since no implementation of IEC61499 is available so far, the
combination of VEDA and softPLC can be regarded as one. The other options are model-
based.
If the full model of plant is developed as previously explained, the block with the model has
to be linked to the block of the controller forming thus the model of the closed-loop system.
The model can be run step-by-step (simulation) or can be exposed to formal verification.
The properties to be verified, or conditions of correct behavior are to be expressed as
predicates, or temporal logic formulae.
If the model of the plant is not available, a partial model can be generated from
specifications given in the Signal Diagram Specification Language (SDSL).

CTL

REQ CNF

DOWN LIFT
DRILL
MOVE

UP
WP

Real
Plant

CTL

REQ CNF

DOWN LIFT
DRILL
MOVE

UP
WP

DRILL

CHGI

LIFT

MOVE

UP

CHGO

DOWN

WP

MODEL OF PLANT

CTL

REQ CNF

DOWN LIFT
DRILL
MOVE

UP
WP

Figure 6. a.) Testing in connection with real plant; b) Model-based testing in the closed-loop; c) Open-loop testing;
It is possible to define values of some event and data inputs (which are of interest) and their
relationship to each other, leaving the others non-specified explicitly (i.e. assigned by a
default constant). The outputs can be specified in a similar manner. The specification of
inputs is translated then to an equivalent SNS model, which can be connected to the model
of the controller. The result is the open-loop model, which can be used in a way similar to
that of the closed-loop modeling. The specifications of outputs can be automatically
translated to temporal logic expressions, i.e. to statements about output behavior of the
controller under specified inputs. The statements can be further proved using a model
checker.

STEP 4. DEEP DEBUGGING

Deep Debugging is a combination of model-based simulation and verification united by a
homogeneous graphical user interface. This process assisted by VEDA is illustrated in
Figure 7. VEDA integrates several functions of simulation and verification. Starting from a
source code of the closed-loop system, which consists of the controller and a model of the
plant, VEDA generates automatically the SNS model of the system.
Several options then can be chosen: The model can be simulated in step-by-step way with
visualization of the model's state during this process. Simulation, however, does not allow
checking of all possible scenarios of system's behavior. However if the required property
can be formulated as a Boolean statement or expression in CTL (Computation Tree Logic)
then it can be checked using either the internal model-checker of VEDA, or SESA – a more
powerful model-checker and analyzer. As a result, the property is either proved, or it fails in
a counterexample state. Then, it is important to explain the reason of the failure. For this
purpose the trajectories from the initial state to the counterexample state have to be studied.
They can be visualized using timing-state diagrams of selected parameters (such as inputs,
outputs, and internal variables of the controller). Each state of the diagram can be further
visualized by SCADA-style process display, and model state display. As a result failures in
the controller can be analyzed and corrected efficiently.

After several iterations of model-based simulation and verification the controller can be
tested in closed-loop with the real plant using the soft-PLC component of VEDA (not
implemented yet).

Firing rule
implementation

(SNS firing engine)

Visualization tools

Translator of
IEC1499
to SNS

Generator of CTL
specifications

and partial models
from TSDL

Reachability Analysis

Verbal specifications

Source
code

of controller
in IEC 1499

Signal/Net System
Model of controller

or closed-loop
system

Timing Diagram

Specification Language

Temporal logic
[e.g.EF(P & P)]out.tr unload

Counterexample
state is found

specification fulfills? NoYes

Analysis of trajectories

VEDA

Soft PLC

Figure 7. Process of the Deep Debugging assisted by VEDA.

To facilitate formulation of specifications the Timing Diagram Specification Language can
be used. To check how the controller reacts on a particular input sequence, it is possible to
specify the sequence in SDSL (even partially, for some inputs it is possible to set the
"undefined" value), and automatically get the SNS model with equivalent output behavior.
The model can be connected to the model of the controller, and all together examined by the
model-checker. As a result we can get the timing diagrams of outputs. Moreover, the
desired outputs can be specified in SDSL, then automatically converted to equivalent CTL
expressions, which can be verified/falsified using the model-checker as it was explained
above.

EXAMPLE OF APPLICATION

We expose the drilling station controller to VEDA, checking it on presence of dangerous
states in its reachability graph. One of the dangerous conditions is an attempt to move the
transfer station during the drilling. The corresponding predicate is: “DCTL.LIFT and
TCTL.OUT”. VEDA checked the reachability space of the closed–loop model (4861 states)
on the validity of the predicate and pointed out the dangerous states. Also VEDA reported

presence of a dead state in the reachability graph, which signals about a deadlock in the
system behavior.
To analyze reasons of the incorrect behavior, it is possible to visualize the trajectories
leading to this state with signal diagrams of the variables, and provide the view of the
animated process visualization display along it. The reason becomes clear at the look at the
signal diagram in Figure 8,a and corresponding visualization in Figure 8,b.
Once the transfer stage arrives to the working position, its controller has to come to the state
DRILLED and send a corresponding message READY to the controller of drill. The latter
issues blocking condition BLK, which does not allow the transfer stage to move away
before the drilling is over.

a)

 b)
Figure 8. Timing diagram of signals along a trajectory leading to a dangerous state and its animated visualization

display.
In fact, the state DRILLED in the controller of the transfer stage is unstable: the condition
on the transition to the next state REMOVE is immediately TRUE, due to the logic of ECC
execution: the outgoing transition conditions are evaluated even before the output events,
related to a particular state are issued. This implies that the state of TS_CTL is changed to
the REMOVE even before the signal READY to DR_CTL has been issued. To fix this error
the transition condition NOT BLK has to be fortified as: BLOCK & NOT BLK, where
BLOCK is an event issued by DR_CTL after setting the BLK to 1.
After the modification, the deadlock state disappears and no more states satisfying the
danger condition is present. Besides the number of reachable states is reduced to 330 that
clearly simplifies further verification of the controller. The repetitive application of such a
procedure with various specifications helps to improve the controller’s correctness.

CONCLUSION

The paper presents main features of the verification software VEDA and shows a basic idea
of its application. The further work will include theoretical and practical steps aimed at the
extension of the functions of VEDA, as well as attempts of its application in real control
engineering.

ACKNOWLEDGEMENT

The work is supported by the Deutsche Forschungsgemeinschaft under reference Ha
1886/10-1.

REFERENCES

[ASEN] P.Starke, S.Roch, K.Schmidt, H.-M. Hanisch, A.Luder: Analysing
signal-event systems, Technical report, Humboldt Universitat zu
Berlin, Institut fur Informatik, July, 1999

[Clarke86] E.Clarke, E.A. Emerson, and A.P. Sista: Automatic verification of
finite state concurrent systems using temporal logic, ACM Trans. on
Programming Languages and Systems, (8):244-263, 1986.

[Christensen2000] J.H.Christensen: Basic concepts of IEC 61499. in Proc. of Conference
"Verteile Automatisieriung" (Distributed Automation), pages 55--62,
Magdeburg, Germany, 2000

[Halbwachs93] N. Halbwachs: Synchronous Programming of Reactive Systems,
Kluwer, 1993

[IEC61499] IEC61499- Function Blocks for Industrial Process Measurement and
Control Systems, International Electric Commission, Draft,
Tech.Comm. 65, Working group 6, Geneva

[IEC1131] International Standard IEC 1131-3, Programmable Controllers - Part
3, International Electric Commission, 1993, Geneva

[Ostroff89] J.S. Ostroff: Temporal Logic for real-time systems, Wiley, London,
1989

[Sreenivas91] R.S.Sreenivas, B.H.Krogh: On condition/event systems with discrete
state realisations Discrete Event Dynamic Systems: Theory and
Applications, 2(1):209-236,1991

[Starke2000] P. Starke: Symmetries of signal-net systems. Workshop on
Concurrency, Specification and Programming, pages 285--297,
October 2000.

[Vyatkin2000] V.Vyatkin, H.-M. Hanisch: Modeling of IEC61499 function blocks as
a clue to their verification. In Proc. of XI Workshop on Supervising
and Diagnostics of Machining, Karpacz, Poland, March 2000.

[Vyatkin2000-1] V. Vyatkin, H.-M. Hanisch: Practice of modeling and verification of
distributed controllers using Signal-Net Systems, in Proceedings of
the Workshop on Concurrency, Specification and Programming' 2000,
pages 335— 349, Humboldt University, Berlin, 2000.

