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Abstract. This paper presents the Verification Environment for Distributed Applications (VEDA), which 
is a software package for Deep Debugging of distributed controllers. Deep Debugging is a combination of 
model-based simulation and verification united by a homogeneous graphical user interface. VEDA deals 
with controllers defined in IEC61131 and IEC61499 and automatically generates the formal model of the 
controller given the controller’s source code. 
VEDA includes some facilities to develop models of plants: a graphic editor for Signal-Net Systems 
models and means to specify visualization of the model. It allows also to simulate the controller/plant 
closed-loop system, and to prove formally whether the overall behavior of the system satisfies some 
desired/undesired properties. For better analysis, results of the verification can be visualized by tracing 
trajectories with timing diagrams of required parameters. Formulation of specifications is facilitated using 
the visual Signal Diagram Specification Language (SDSL). 

INTRODUCTION  

The theory of formal modeling and finite-state verification of discrete control systems 
has been actively developed in the last decade, starting from the works of E.Clarke et al. 
[Clarke86], and J. Ostroff [Ostroff89]. The general pattern of the verification is as follows: 
the closed-loop plant/controller system is modeled using a discrete state formalism (for 
instance, state machines, Petri nets, or their derivatives). As a result the closed-loop model 
is obtained. The model can be used to check the validity of certain properties for its 
reachable states. It can be done automatically if the properties are described formally as 
Boolean conditions, predicates, or temporal logic expressions.  

Despite of its numerous advantages, the formal verification remains exotic in the 
practice of control engineering. One of the reasons of that is the high computational 
complexity of the formal model-checking. But progress in hardware development and 
successes in the theory of verification constantly extend the borders of its practical 
applicability. The existing formalisms do not completely meet the requirements of modeling 
of the control systems. These are either synchronous (Esterel, Grafcet) that fits to the 
modeling of controllers, or asynchronous (Petri nets, State machines) that better fits to the 
modeling of plants. And, last but not the least, is the lack of appropriate user-interface 
solutions. To bring verification into engineering practice, it has to be better integrated with 
the currently existing simulation functions.  



Current ways of controller design are usually based on a controller’s architecture, which is a 
Programmable Logic Controller (PLC). The execution system of such a PLC executes the 
control program - written in special languages, which are standardized in the International 
Standard IEC 61131-3 – [IEC1131] in a purely sequential, cyclic order. First, the current 
status of the plant, which is indicated by sensors, is stored in an input buffer, then the whole 
control program is executed, while the values of inputs in the buffer remain unchanged, and 
in the last step the calculated outputs are transmitted to the actuators of the plant. 
Although the problems of verifying correctness of a control program in such a classical 
architecture is hard enough, practical needs for more flexibility, distribution, and fast and 
easy reconfiguration bring up new controller architectures.  
The uniform vendor-independent solution for programming of distributed control systems 
provides the currently being developed IEC standard 61499 [IEC61499, Christensen2000]. 
Representation of the systems according to the standard helps to focus on the essential 
issues, regardless of the variety of existing hardware and software solutions and network 
protocols. In the framework of IEC61499 the controller can be understood as its software 
code which can be tested without knowledge about particular implementation details. In 
IEC 61499 the basic programming structure is function blocks with event and data inputs 
and outputs. The block is conditionally divided onto the "head" responsible for the 
execution logic, and "body" which contains the algorithms of data processing. 
The result of this change of paradigm is that there is no longer a strictly sequential execution 
of the control program. Each function block has its own event-driven execution control, and 
the complete execution control of a system of composed function blocks is physically as 
well as functionally distributed. It is obvious that new challenges for testing or verification 
result from this design approach.  

In this paper, which is a sequel to the paper [Vyatkin2000] presented on the previous 
Workshop, we present an overview of the verification process supported by a number of 
methods and software tools, destined to make it really integrated with the routine work of 
control engineers. The presented approach bases on the modelling of control systems with 
Signal Net Systems (SNS) [Starke2000]. An integrated software environment VEDA 
(Verification Environment for Distributed Applications) has been developed to support all 
steps of controller design and testing. The paper is structured according to these steps. 

STEP 1. CONTROLLER DESIGN 

The process of verification applies to the controllers following the IEC61499. For example, 
consider a simple plant "BORING STATION" in Figure 1. It consists of a boring machine 
(drill) and a transfer stage, which delivers workpieces to the working position of the drill. 
The loading/unloading of the drill is performed in the loading position (detected by sensor 
load.pos.), opposite to the working position. The drill starts drilling automatically, when the 
workpiece comes to the working position.  
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Figure 1. Structure of the distributed control system. 

When drilling is over, the workpiece is 
moved away. Presence of the 
workpiece on the tray is reported by 
means of the sensor loaded. Control of 
the plant is performed by means of two 
independent controllers (one for the 
drill, and the other for the transfer 
stage). Sensors and actuators are  
connected to their respective 
controllers by segments of networks. 
The controllers also communicate via 
network. Access to the data is limited 
for each controller by the data available 
in its own network segments, plus the  

data explicitly provided by the other controller. A block diagram (following IEC61499) of 
the distributed control system of the plant is presented in Figure 2. Function block TS_CTL 
implements the control logic of the transfer stage, block DR_CTL controls the drill, the 
block MOD represents the plant or its model, and the block INIT models initialization of the 
controllers (for example in case of a start-up of the control device). According to IEC61499, 
a function block consists of head (the upper part) and body  (the lower part). The head is 
connected to the event inputs and outputs and is responsible for the execution logic. The 
body is connected to the data input/outputs and contains the data processing algorithms, 
which are called by the execution control. 
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Figure 2. Block diagram of the control system following IEC61499. 

The internal control logic of the blocks TS_CTL and DR_CTL is implemented by means of 
Execution Control Charts (ECC) presented in Figure 3. The ECC represents state-machines, 
and its syntax is a simplified version of the Sequential Function Chart (SFC), which is a 



programming language of IEC61131-3. For simplicity we extended the syntax of the ECC, 
allowing simple algorithms, such as an assignment of a variable to be presented directly at 
the places, reserved for the algorithm calls.  

The control logic of drill and transfer stage is quite simple: once loaded with a workpiece 
the transfer stage delivers it to the working position, and then reports to the controller of the 
drill about that. The latter blocks moving of the transfer stage during the drilling, by issuing 
the corresponding signal LOCK. 

As a result of the design step, the source code of the application (network of interconnected 
function blocks) is obtained. In general it includes the component algorithms, and is 
presented in Extended Structured Text format (the Structured Text (ST) is also a 
programming language of IEC61131). Now the application needs to be validated, i.e. 
correctness of its outputs has to be proved for all input combinations, which are possible in 
the real life. To generate the inputs, a finite state model of the plant is used. It is connected 
to the controllers in the closed loop, as it can be seen from Figure 2.  
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Figure. 3 Execution Control Charts of the function blocks TS_CTL (a), and DR_CTL (b).  

In fact, the whole interconnected system has to be substituted by its finite-state model. We 
use for modeling the formalism of Signal-Net systems [ASEN, Starke2000]. The model has 
the same modular structure as the original application. The models of the control function 
blocks are generated automatically by VEDA, given their source code. The model of plant 
has to be prepared manually. This will be briefly explained in the following section. 

STEP 2. MODELING PLANT 

The model-based testing of control algorithms is widely used in practice and suggested as a 
basic component of system engineering in IEC1499, which supports the MVC framework 
(Model, View, Controller). To add the verification to this framework, a formal model of 
plant is required. 



It is also useful to combine the 
formal model with the models used 
for simulation and visualization, 
and further incorporate them into an 
IEC61499 function block to provide 
a homogeneous representation. The 
model of plant can be also built in 
the modular way. The modeling 
starts with the design of a finite 
state model of each subsystem, 
further connecting these 
components by event and condition 
signals. The SNS formalism allows 
designing models according to this 
top-down approach. The model of 
the drilling station is presented in 
Figure 4. The model is a module of 
SNS, composed as a network of 
modules, where modules “Drill” 
and “Transfer Stage” model the 
units of the same name, and the 
other five modules model the logic 
sensors. 
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Figure 4. SNS model of plant and sensors. 

Outputs of the logic sensors are represented by two event outputs in SNS: one for value 
“false”, and the other for the value “true”. Hence, a connection line from MOD to either 
TS_CTL, or DR_CTL in the block diagram in Figure 2 corresponds to two condition arcs in 
the SNS model. The same applies to the connections from the controller to the model of 
plant: the negative value of each signal is always available.  
The model is built using timed SNS, where each arc from a place to transition is marked by 
the permeability time interval [lo, hi]. The default value assigned implicitly to all arcs is 
[0,? ]. In terms of the model, the interval sets the time limits of the marking age in the 
source place when the corresponding arc may affect firing of its target transition. Its usage 
can be illustrated as follows. If the moving in takes minimum 5 time units, then we mark the 
corresponding arc from the place p5 to the transition t5 in the module “Transfer Stage” by 
interval [5,? ]. In this paper we are not able (due to limited space) to present all the details of 
the model building using SNS. Obviously, features of the SNS do not limit the developers 
only by state-machine modeling. The general framework of the model-development, as it is 
supported by VEDA, is given in Figure 5. Based on the technological documentation of the 
plant, the SNS model of each unit’s behavior is developed. This process is assisted by the 
interactive editor of SNS. Along with that, each state of the unit’s behavior can be 
associated with the corresponding visualization display, and even with animation. For this 
purpose a Simple Modeling Language (SML) is developed. Statements of SML describe 
every object of the visualization in connection with the SNS model. 
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Figure 5. Modeling of plant supported by means of VEDA. 

 
The visual editor of SNS provides editing of SNS models and their transformation in 
Function Block format, which is correspondingly extended to be able to store the 
information about SNS on one hand, and to be compatible with the usual IEC61499 FBs on 
the other. As a result of this step we obtain the ASCII file of the Function Block, containing 
the model of plant, and the corresponding SML file, containing the information about 
visualization. 

STEP 3: SELECT AN APPROPRIATE DEBUGGING PATTERN 

VEDA offers a number of verification opportunities. Sometimes the easiest way to test the 
controller is to enter the control program to a control device (say a PLC) directly connected 
to the plant, and then run it. For this purpose the model of the controller can be run in the 
step-by-step mode in connection with the real plant, provided by a softPLC software being 
run together with VEDA. Since no implementation of IEC61499 is available so far, the 
combination of VEDA and softPLC can be regarded as one. The other options are model-
based. 
If the full model of plant is developed as previously explained, the block with the model has 
to be linked to the block of the controller forming thus the model of the closed-loop system. 
The model can be run step-by-step (simulation) or can be exposed to formal verification. 
The properties to be verified, or conditions of correct behavior are to be expressed as 
predicates, or temporal logic formulae. 
If the model of the plant is not available, a partial model can be generated from 
specifications given in the Signal Diagram Specification Language (SDSL). 
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Figure 6. a.) Testing in connection with real plant; b) Model-based testing in the closed-loop; c) Open-loop testing; 
It is possible to define values of some event and data inputs (which are of interest) and their 
relationship to each other, leaving the others non-specified explicitly (i.e. assigned by a 
default constant). The outputs can be specified in a similar manner. The specification of 
inputs is translated then to an equivalent SNS model, which can be connected to the model 
of the controller. The result is the open-loop model, which can be used in a way similar to 
that of the closed-loop modeling. The specifications of outputs can be automatically 
translated to temporal logic expressions, i.e. to statements about output behavior of the 
controller under specified inputs. The statements can be further proved using a model 
checker. 

STEP 4. DEEP DEBUGGING 

Deep Debugging is a combination of model-based simulation and verification united by a 
homogeneous graphical user interface. This process assisted by VEDA is illustrated in 
Figure 7. VEDA integrates several functions of simulation and verification. Starting from a 
source code of the closed-loop system, which consists of the controller and a model of the 
plant, VEDA generates automatically the SNS model of the system. 
Several options then can be chosen: The model can be simulated in step-by-step way with 
visualization of the model's state during this process. Simulation, however, does not allow 
checking of all possible scenarios of system's behavior. However if the required property 
can be formulated as a Boolean statement or expression in CTL (Computation Tree Logic) 
then it can be checked using either the internal model-checker of VEDA, or SESA – a more 
powerful model-checker and analyzer. As a result, the property is either proved, or it fails in 
a counterexample state. Then, it is important to explain the reason of the failure. For this 
purpose the trajectories from the initial state to the counterexample state have to be studied. 
They can be visualized using timing-state diagrams of selected parameters (such as inputs, 
outputs, and internal variables of the controller). Each state of the diagram can be further 
visualized by SCADA-style process display, and model state display. As a result failures in 
the controller can be analyzed and corrected efficiently.   



After several iterations of model-based simulation and verification the controller can be 
tested in closed-loop with the real plant using the soft-PLC component of VEDA (not 
implemented yet). 
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Figure 7. Process of the Deep Debugging assisted by VEDA. 

To facilitate formulation of specifications the Timing Diagram Specification Language can 
be used. To check how the controller reacts on a particular input sequence, it is possible to 
specify the sequence in SDSL (even partially, for some inputs it is possible to set the 
"undefined" value), and automatically get the SNS model with equivalent output behavior. 
The model can be connected to the model of the controller, and all together examined by the 
model-checker. As a result we can get the timing diagrams of outputs. Moreover, the 
desired outputs can be specified in SDSL, then automatically converted to equivalent CTL 
expressions, which can be verified/falsified using the model-checker as it was explained 
above. 

EXAMPLE OF APPLICATION 

We expose the drilling station controller to VEDA, checking it on presence of dangerous 
states in its reachability graph. One of the dangerous conditions is an attempt to move the 
transfer station during the drilling. The corresponding predicate is: “DCTL.LIFT and 
TCTL.OUT”. VEDA checked the reachability space of the closed–loop model (4861 states) 
on the validity of the predicate and pointed out the dangerous states. Also VEDA reported 



presence of a dead state in the reachability graph, which signals about a deadlock in the 
system behavior.  
To analyze reasons of the incorrect behavior, it is possible to visualize the trajectories 
leading to this state with signal diagrams of the variables, and provide the view of the 
animated process visualization display along it. The reason becomes clear at the look at the 
signal diagram in Figure 8,a and corresponding visualization in Figure 8,b.  
Once the transfer stage arrives to the working position, its controller has to come to the state 
DRILLED and send a corresponding message READY to the controller of drill. The latter 
issues blocking condition BLK, which does not allow the transfer stage to move away 
before the drilling is over.  

a)

 

 b)  
Figure 8. Timing diagram of signals along a trajectory leading to a dangerous state and its animated visualization 

display. 
In fact, the state DRILLED in the controller of the transfer stage is unstable: the condition 
on the transition to the next state REMOVE is immediately TRUE, due to the logic of ECC 
execution: the outgoing transition conditions are evaluated even before the output events, 
related to a particular state are issued. This implies that the state of TS_CTL is changed to 
the REMOVE even before the signal READY to DR_CTL has been issued. To fix this error 
the transition condition NOT BLK has to be fortified as: BLOCK & NOT BLK, where 
BLOCK is an event issued by DR_CTL after setting the BLK to 1. 
After the modification, the deadlock state disappears and no more states satisfying the 
danger condition is present. Besides the number of reachable states is reduced to 330 that 
clearly simplifies further verification of the controller. The repetitive application of such a 
procedure with various specifications helps to improve the controller’s correctness. 

CONCLUSION 

The paper presents main features of the verification software VEDA and shows a basic idea 
of its application. The further work will include theoretical and practical steps aimed at the 
extension of the functions of VEDA, as well as attempts of its application in real control 
engineering. 
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