

OPEN OBJECT-ORIENTED MODELLING AND VALIDATION FRAMEWORK
FOR MODULAR INDUSTRIAL AUTOMATION SYSTEMS

Valeriy Vyatkin, Hans-Michael Hanisch, Gustavo Bouzon

Dept. of Engineering Sciences,

Martin Luther University Halle–Wittenberg,
06099, Halle, Germany

Dept. of Automation and Systems, CTC

CP 476, Federal University of Santa Catarina
88040-900,Florianópolis, SC, Brazil

Valeriy.Vyatkin@iw.uni-halle.de

Hans-Michael.Hanisch@iw.uni-halle.de
gbouzon@das.ufsc.br

Abstract: This paper introduces a framework for formal modelling and validation of
automation systems intended to be used by control engineers. The framework is based
on a graphical, modular, and typed formalism of Net Condition/Event Systems.
This allows for modelling of realistic hierarchically organized industrial automation
systems in a closed loop. The framework consists of methodologies and tools which
enable formal analysis of automation systems.
The framework will be used to improve safety, reliability and robustness of automation
systems predicting potential faults and deadlocks. Copyright © 2004 IFAC

Keywords: Verification, PLC modelling, manufacturing systems, discrete event
systems.

1 INTRODUCTION

Modern production systems need to be more flexible
and re-configurable. For this reason they are built
from standardized processing modules. Their
software is also organized in a modular form and is
executed on distributed control devices.
When new configurations of production systems are
formed from the modular components, the testing
becomes a bottleneck for quick commissioning.
Formal validation can reduce the time-consuming
testing and commissioning phases of system’s
development and deployment. As the functionality of
such systems is determined by cooperation of entities
of heterogeneous domains, e.g. mechanical, electric,
automation hardware and software, the validation has
to take into account the relevant properties from all
these domains.
Formal modelling of automation systems proved to be
helpful for validation of automation systems by
simulation or by formal verification of static and
dynamic properties. In automation systems the
software represents a variable part, while the models
of equipment can be reused through the engineering
cycle. Once developed by a machine vendor, the
models may follow the equipment, enabling the
machine users (e.g. system integrators) to validate
new configurations of the machines re-using the
models of their components.

This vision, however, requires a more systematic
approach to the modelling, than that can be seen now.
Models in most of the formalisms such as Petri nets
or finite automata lack integrating capabilities: while
they may cope well with the modelling of a particular
process, building the overall model of a system
comprising several processes is difficult.
An opposite example make the modelling techniques
based on the Unified Modelling Language (UML).
The UML is getting increasingly popular also in
automation for its ability to describe systems in
object-oriented form. However, the UML lacks a
formal background and can hardly be used for deep
analysis of the systems.
This paper tries to sketch another approach for
systematic modelling of systems by means of a
modular modelling formalism.
The paper is organized as follows: Section 2 discusses
some extensions to the formalism. Section 3
introduces the approach to modelling and describes
the framework of tools supporting it. Section 4
elaborates more on the application scenarios of
modelling for better automation systems. Section 5
considers an example of a machine modelling, and
Section 6 provides some considerations on the
validation. The paper is concluded with discussion of
future research.

2 STRUCTURAL EXTENSIONS AND
LIMITATIONS

2.1 Modelling formalism

In this work we use the formalisms of Net
Condition/Event Systems (NCES) (H.-M. Hanisch
and A. Lüder, 1999). The modular capabilities have
encouraged further development of a systematic
approach to modelling of industrial systems. The
formalism is:
Modular, i.e. it provides encapsulation of
place/transition models into modules, connected to
each other by condition and event arcs.
Graphical, that simplifies understanding of the
model’s semantic and facilitates application by
engineers.
Distributed state, that helps to cope with the
complexity of model-checking, especially when
decentralized systems are modelled.
Discrete time, that allows to add new, time
dimension to the discrete modelling.
Supported by the model-checking tool SESA (Starke,
Roch et al.), NCES were applied in a number of
studies on formal validation of automation systems
(e.g. H.-M. Hanisch, T. Pannier et al, 2000).
However, the borders of the NCES formalism have
been reached. In particular, questions of creating
nested modular models (i.e. encapsulation of a
network of modules inside a module) theoretically
consideration of which started in (Thieme, 2002),
needs to be continued and reflected in
implementations.
 The automation becomes a field of distributed
architectures (e.g. IEC61499) where automation
systems are represented as networks of function
blocks. Evident similarities between the NCES
modelling concept and the function block
architectures have motivated further development
(Vyatkin V., Hanisch H.-M. et al. 2003) of the NCES
formalism that targets:
- Definition of model types to simplify

encapsulation and reuse of the models;
- Less restricted rules for interconnections of

modules (multiple input and output links are
allowed).

The formalism is supported by the corresponding
tools and methodologies.

2.2 Model type definition
In the formalism discussed in this paper a basic unit
of model is called module. A module is defined by its
interface and content. The interface contains a type
name, names of event inputs and outputs, and of
condition inputs and outputs. The content can be
either a NCES, i.e. places, transitions and arcs as
described in the previous section, or a network of
model instances, i.e. of other modules, interconnected
via event and condition arcs.
A NCES has to be encapsulated in a module. The
corresponding model type is called basic. A basic
model type is defined by a graphical representation of
a NCES module, i.e. by definition of its interface
(event and condition inputs and outputs), and of its
place/transition model. The module identifier serves

as the type identifier. The values of inputs influence
the model’s dynamic as they are connected to the
model’s transitions by condition and event arcs. The
model’s states and transitions may be reflected at the
outputs as they are connected to places/transitions of
the model by condition and event arcs.
A composite model type includes a description of
block’s interface, instances of constituent modules
that are instances of other model types (basic or
composite), and connection arcs.
The definition above makes the NCES “compatible”
with other kinds of object-oriented modelling, for
example using Unified Modelling Language (UML).
Several works appeared recently on application of
object-oriented modelling to machines and production
systems (e.g. M. Bonfè, C. Fantuzzi, 2003). The UML
class diagrams are used in these works to represent
the structure of production objects as composed from
more elementary ones, that also paves the way to
hierarchical models. However, application of UML
for formal analysis is difficult as it lacks formality.
Thus, the approach presented in this paper bridges the
gap between the expression power of UML and the
formal semantics of NCES.

3 MODELLING APPROACH AND TOOL

FRAMEWORK

3.1 Closed-loop modelling
The control systems is considered as composed of
two independent components: object and controller,
connected in a closed loop by control signals and
process data. Modelling according to this view
requires to model uncontrolled reactive behaviour of
objects.
It is worth mentioning that the closed-loop approach
to the modelling enables expression of the
specifications directly in terms of the machine
behaviour (not only I/Os of the controller).

3.2 Integrated tools for model creation, editing

and analysis
The modelling approach explained in this paper is
supported by a number of software tools:
The graphical editor provides full graphical authoring
and editing of the models. The editor uses an open
XML-based data format for basic and composite
NCES models. The data format of composite model
blocks intentionally was made identical with that of
IEC61499 function blocks, supported by tool
(FBDK).
The integrated environment for Model Assembly
(iMA) inputs the model type files given in XML and
is capable of:
1) Assembling a composite, hierarchically

organized model from modules contained in
different libraries. The component model types
are instantiated into NCES modules.

2) Translating the model into a “flat” NCES with
the through numbering of places and transitions.
The inter-module connections are converted into
event and condition arcs between places and
transitions. Thus the module boundaries are
removed and the model-checking tools can be

applied. In particular, the translator generates
files in the input format of SESA model checker.

4 MODELLING OF AUTOMATED PLANTS

Benefits of the typed modelling are well visible in the
following example of object modelling. The
automated lifter (product of Flexlink Automation Oy.,
FINLAND) as shown in Figure 1 is used in
production of electronic components. The lifter can
be controlled by two different controllers: an
OMRON PLC programmed in ladder logic and
Nematron SoftPLC programmed in Visual Flow
Chart language. Though both controllers achieve
similar control goals, the internal logic of control
algorithms and even the logic of program execution
are completely different (cyclically scanned vs.
sequential). However, both controllers eventually deal
with the same object.
When the closed-loop plant-controller systems are
validated, the model of the lifter can be reused over
and over again in connection with models of
controllers of different types.
The lifter consists of three transporters, one of which
is mounted on a vertically moving platform driven by
a step motor as schematically represented in Figure
2.

Figure 1. The lifter.

The structure of the model type “Lifter” is defined by
means of UML class diagrams as shown in Figure 3.

Figure 2. Structure and operation sequence of the lifter.

The definition literally says that the object “Lifter”
consists of 4 elements. The loading and unloading
one-directional conveyors are identical but turned in
opposite directions. The corresponding models are of
type Conveyor. The vertically moving platform (an
object of type StepMotor) has a moving belt that
moves pallets in both directions (modelled as an
object of type Conveyor2D).

Lifter

LoadingConv:
Conveyor

LiftingConv:
Conveyor2D

Vertical:
StepMotor

UnloadConv:
Conveyor

Figure 3. Definition of the model type (class) “Lifter” by means of

UML class diagrams.

Note that the model in Figure 3 does not define an
interface of the lifter, nor dependencies between its
constituent parts. These dependencies can be reflected
in modular models by event and condition
connections between the corresponding modules as
exemplified in Figure 4.
Let us consider the model of a Conveyor. In our
example two different types of conveyors are used –
capable to move only in one direction, and those
moving in both directions. The model of a more
complex conveyor can be created based on the simple
model using the mechanism of inheritance.
The interface of the model type “Conveyor” can be
seen in Figure 4. The model itself can be
conceptually divided onto three elements: Status,
Position, and Sensor as shown in the class diagram in
Figure 5, left. The Status element of type
MovingStatus models the behaviour of the motor
that drives the conveyor and converts the logic
control signals into one of the states “Moving” or
“Standing still” (that corresponds to the one-
directional conveyor). Input “PRESENT” indicates if
a pallet is present, and input “FORCED” is used to
indicate influence of a neighbour belt on the
movement of the pallet.

Figure 4. A model of Lifter represented as a network of NCES

modules.

The output condition FW_ST is used by the model of
belt position.
The structure of the model of the bi-directional
conveyor is identical to that of the uni-directional.
The difference is in the model Status that has type
MovingStatus2D that inherits the interface properties
of the one-directional MovingStatus and extends
them with one more input and output for the retracted
movement. This is shown in Figure 5 (right). All
transporters are equipped with a single position
sensor indicating presence of the pallet (fully loaded
on the conveyor).

Conveyor

Position:
DiscretePosition

Status:
MovingStatus

Sensor:
LogicSensor

inputs
FWD: bool;
FAILURE: event;
RESUME: event;
outputs
FW_ST: bool

MovingStatus

MovingStatus 2D

inputs:
RETR:bool;
outputs:
RET_ST:bool;

Figure 5. Model type definition of the conveyor and inheritance of

the MovingStatus model types.

The data/event flow connections between the sub-
models constituting the model of the conveyor are
represented in Figure 6.

Figure 6. Modular view of the model of conveyor.

The basic models can be described further in form of
NCES modules. Figure 7,a shows an implementation
of the MovingStatus in NCES. The model receives
the control signal FWD and transforms it into the
state of the belt: place p2 corresponds to the state “belt
stands still”, place p1 – belt moves and p3 to the state
indicating a failure. The belt moves when the control
signal FWD is ON, and stops when the signal goes
OFF (i.e. negation of the signal FWD goes on).
An occurrence of a failure is indicated by an external
event that may come from the corresponding model.
For example, it can be a stochastic model of failures.
Note that the model is sensitive to failures only when
the belt moves, i.e. when the place p1 is marked. It is
assumed that the failure can be fixed by an external
interaction indicated by event input RESUME.
The model MovingStatus2D for the bi-directional
moving belt is shown Figure 7. It models one
additional state for moving backwards, and
correspondingly more transitions between all possible
states.
The position of a pallet on the belt can be modelled
with different precision. A qualitative model in
Figure 8 distinguishes only 3 states of a pallet on the
belt: no pallet, pallet on the belt with its front edge
between the belt’s ends, and pallet’s front edge is
beyond the right end of the belt.
A more precise modelling of the position can be done
using the arc-timed version of NCES. Let us assume
that the belt is 3 units long and the pallet is two units
long as shown in Figure 9. The speed of the belt is 1
unit of length per second. Then it will take 3 seconds
for a pallet to reach the right end of the belt and 2
more seconds to leave the belt completely.

Figure 7. Models of the moving status for uni-directional and bi-

directional belts.
Place p1 corresponds to the state “No pallet”. When a
pallet appears (input condition “Present”) and the
state of the moving belt is “Moving forward”
(indicated by the input condition FWD) then the
transition t1 occurs and the token goes to place p2.

Figure 8. A qualitative non-timed model of the pallet's position.

This place indicates the state “Front edge of the pallet
is in the interval 1 of the conveyor”. Another reason
to transfer to this state is the presence of the input
condition “Forced”. This condition indicates that the
pallet is pushed onto the belt by some external force
that maybe another moving belt positioned backwards
to this one. This option is modelled by transition t12.
In general, moving in this case is slower than if
driven by the own motor of the belt. The presented
model, however, does not cover with enough
precision the case when both forces are present
simultaneously. Note that the transition from p1 to p2
(either via t1 or t12) is a qualitative one and does not
take time (more precisely has zero delay).
The places p2-p4 correspond to the location of the
pallet (again front edge!) in the intervals 1-3
respectively. A transition from interval i to interval
i+1 occurs in either case “FWD” and “Present” or
“Forced” and “Present”.
The latter, however, works only till less than the half
of the pallet is on the belt – beyond this point friction
would not let the pallet move driven only by the
external force. The moving to the next interval takes
1000 ms if driven by the own motor of the belt or
twice as long under the external force. The backward
moving from interval i+1 to interval i occurs if the
combination of input conditions “RETR” and
“Present” are true. It also takes 1000ms under
assumption that the speed of the moving belt in both
directions is the same.
Arriving of the pallet to the 3rd interval is indicated by
the sensor. This is modelled by two event outputs
“Sens ON” and “Sens OFF” associated with firing of
transitions t8 and t9 or t11, respectively. The sensor
goes off when either the front edge of the pallet
moves backward to the interval 2, or when the back

edge of the pallet leaves the belt in forward direction
(and the pallet completely disappears from the belt).

Figure 9. Model of the position of the pallet on the conveyor

discretized on 3 intervals.

This model can represent the state of the pallet on the
belt with better precision. However, it has its own
limitations and drawbacks. In particular, let us
consider how the alternative kinds of movement are
modelled. A place indicating a position (e.g. p3
indicating interval 2) has several outgoing arcs (p3-t4,
p3-t5 and p3-t14) marked with non zero time delays
([1000,∞], [1000,∞], [2000,∞]). Transitions that are
targets of these arcs have condition input signals that
represent alternative control signals (RETR, FWD,
Forced). Either of transitions will fire when it is
enabled by marking, conditions and time. It is
important that all these conditions are mutually
orthogonal (alternative) and they never change within
the minimum delay of the place (1000ms in our case).
Otherwise the model will not work as intended.

5 VALIDATION

The validation of automation systems modelled by
NCES can be performed by simulation and formal
verification via model checking.
Simulation usually follows a limited number of
scenarios in the system’s behaviour. In contrast, the
model-checking studies multiple scenarios caused for
example by some unpredictable factors, such as
variable durations of some operations,
communication delays, malfunctions, etc.
In the described framework, the model-checking can
be conducted either by means of SESA, or by an
embedded model-checker. In the latter case, the
results of the model-checking, such as a reachability
space (full, or generated until an
example/counterexample is found) can be visualized
as state/time diagrams of relevant values (e.g.
represented as marking of certain places, or firing of
certain transitions).
The verification consists in proving specifications
with respect to the dynamic behaviour of the model.
The specifications can be given either in form of
second order predicates, or in form of temporal logic
expressions. Terms of the expressions can be formed
from inputs, outputs and internal variables of the
controller or variables of the model of plant. The

latter have to be eventually expressed via marking of
places in the model.
More examples of formal verification can be found in
(Vyatkin V., Hanisch H.-M, 2003). In the example
mentioned in the previous section of particular
interest were:

1. Robustness of the system in case of malfunctions
of some sensors;

2. The control programs in VFL are branching.
Formal verification helps to prove that the
response time is never exceeded in any feasible IO
combination.

3. Quality assurance: the lifter must never allow the
situations when the pallet leans or jumps. It may
be caused by inexact synchronization of
conveyors’ levels which may be a result of
synchronization of control programs;

The overall model after assembly encountered 571
places and 828 transitions. However, the model-
checking of a normal behaviour (without modelling
malfunctions in sensors) resulted in the reachability
space not exceeding 40000 states. This result reflects
the efficiency of distributed state modelling with
NCES.

6 GRAPHICAL SPECIFICATION

Although specification of properties for model-
checking in temporal logic may be easily created by
experts on verification, engineers would benefit of
having user-friendly means of specifying the desired
behaviour of a module. Inspired by timing diagrams,
well-known in the hardware branch, a graphical
language for describing the dependency of interface
signal changes has been proposed (Vyatkin2001,
Bouzon 2002).
A graphical description of a specification is illustrated
in Figure 10. Signal changes at the beginning or
ending of the diagram are implicitly simultaneous.
Nevertheless, no further ordering is determined by the
horizontal position of signal changes – therefore, a
timing diagram usually specifies a partial ordering
among signal changes.
The semantic associated to the diagram is as follows:
when the set of levels specified at the beginning of
the diagram is achieved, it is required that the
sequence of changes at the signals does not violate
the partial ordering specified at the diagram, until a
final state is reached.
Translation and verification approaches differ slightly
depending on whether the verified module has inputs.
When verifying NCES (autonomous) modules, each
signal specification is translated into a NCES
supervisor module comprising two basic submodules:
an event generator creates sequences of transitions,
one for each change of level specified for the signal.
 Each transition stimulates, through an event arc, the
corresponding event input of a signal generator,
which causes the output of the signal generator to
recreate the signal according to the input stimulated.
Ordering operators are translated into special places
and transitions that create interdependency of event
generators.

Figure 10. Specification including two event inputs, one condition
output and a simultaneity operator.

The verified module is then connected through event
arcs to the event generators of the corresponding
signals, in such a way that every change of signal in
the first is reported to the latter. Along with the
translation of the specification into NCES modules, a
set of automatically generated temporal-logic
statements is created. The composite module is then
model-checked against these statements to verify if
each transition at the supervisor always fires
whenever the corresponding transition at the verified
module is fired.

Figure 11. Translation of a single specification for a condition
output, and linking to the verified model.

The graphical specification also provides automatic
test possibilities for input/output behaviour or non-
autonomous NCES modules. In this case, the NCES
supervisor modules that describe input signals are
used for generating the specified sequences of input
signal changes, while the output signals are again
verified as described before.

7 CONCLUSION

This paper provided a short overview of an extended
modular modelling paradigm which combines the
ideas of object-oriented typed modelling of the
mainstream UML with benefits of modular place-
transition nets. Though the UML support is not
integrated to the tool framework supporting NCES so
far, however, the similarities with IEC61499 function
blocks allow for using the CORFU environment
(Thramboulidis, 2002) in connection with Rational
Rose in order to define the model’s structure and
interfaces and convert them to the form of
interconnected NCES modules. This approach allows
for taking advantage of formal verification
methodologies and tools with NCES.
Generation of NCES models from UML state charts
will be a subject of future research.

8 ACKNOWLEDGEMENTS

The work was supported by the Deutsche Forschungs
gemeinschaft under reference Ha 1886/12-2.
The closed-loop model of Lifter was developed
following the methodology presented in this paper
(Section 4) in MOVIDA-1, a project funded by the
National Technology Agency in Finland -TEKES. (A.
Lobov, et al.).
The authors thank Reijo Tuokko, Jose L Martinez
Lastra and Andrei Lobov from Tampere University of
Technology (TUT), as well as all MOVIDA-1
partners, for providing the opportunity to apply the
object-oriented version of NCES to real automated
equipment and for fruitful discussions on the
presented modelling approach.

9 REFERENCES
H.-M. Hanisch and A. Lüder: Modular Modelling of Closed-Loop

Systems, Colloquium on Petri Net Technologies for Modelling
Communication Based Systems, Berlin, Germany, October 21-
22, 1999, Proceedings, pp. 103-126

P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, A. Lüder:
Analysing signal-event systems, Technical report, Humboldt
Universitat zu Berlin, Institut für Informatik,
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/,
July, 1999

H.-M. Hanisch, T. Pannier, D. Peter, S. Roch, and P. Starke:
Modelling and verification of a modular lever crossing controller
design, Automatisierungstechnik, 48, 2000.

J. Thieme: Symbolische Erreichbarskeitanalyse und automatische
Implementierung struktuirter, zeitbewerter Steuerungsmodelle,
Dissertation zur Erlagung des Grades Dr.-Ing., Berlin: Logos
Verl., 2002

IEC 61499 - Function Blocks for Industrial Process Measurement
and Control Systems. Publicly Available Specification,
International Electrotechnical Commission, Tech. Comm. 65,
Working group 6, Geneva, 1998.

Vyatkin V., Hanisch H.-M., Pfeiffer T., “Modular typed formalism
for systematic modelling of automation systems”, 1st IEEE
Conference on Industrial Informatics (INDIN’03), Proceedings,
Banff, Canada, August 2003

Vyatkin V., Hanisch H.-M. Verification of Distributed Control
Systems in Intelligent Manufacturing, Journal of Intelligent
Manufacturing, special issue on Internet Based Modelling in
Intelligent Manufacturing, vol.14, N.1, 2003, pp.123-136

Vyatkin V.: Intelligent Mechatronic Components: Control System
Engineering using an Open Distributed Architecture, IEEE
Conference on Emerging Technologies in Factory Automation
(ETFA'03), Proceedings, Lisbon, September, 2003

M. Bonfè and C. Fantuzzi: Design and Verification of Industrial
Logic Controllers with UML and Statecharts, submitted to the
IEEE Conference on Control Application 2003, June 23-35,
Istanbul, Turkey

FBDK - Function Block Development Kit at www.holobloc.org
K. Thramboulidis: Development of Distributed Industrial Control

Applications: The CORFU Framework, 4th IEEE International
Workshop on Factory Communication Systems, August 2002,
Vasteras, Sweden

Vyatkin, Valeriy and Hanisch, H.-M. “Application of Visual
Specifications for Verification of Distributed Controllers”.
Proceedings of the 2001 IEEE Systems, Man, and Cybernetic
Conference.

G. Bouzon: Development of a visual specification language for
verification of Distributed Controllers, Final Paper (Bachelor
Degree), Dept. of Automation and Systems, Federal University
of Santa Catarina, Florianópolis, May 2002 (in portuguese)

A. Lobov, J. L. Martinez Lastra, R. Tuokko, V. Vyatkin:
Methodology for Modelling Visual Flowchart Control Programs
using Net Condition/Event Systems Formalism in Distributed
Environments, IEEE Conference on Emerging Technologies in
Factory Automation (ETFA'03), Proceedings, Lisbon,
September, 2000

