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Abstract: This paper introduces a framework for formal modelling and validation of 
automation systems intended to be used by control engineers. The framework is based 
on a graphical, modular, and typed formalism of Net Condition/Event Systems.  
This allows for modelling of realistic hierarchically organized industrial automation 
systems in a closed loop. The framework consists of methodologies and tools which 
enable formal analysis of automation systems. 
The framework will be used to improve safety, reliability and robustness of automation 
systems predicting potential faults and deadlocks. Copyright © 2004 IFAC 
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1 INTRODUCTION 
 
Modern production systems need to be more flexible 
and re-configurable. For this reason they are built 
from standardized processing modules. Their 
software is also organized in a modular form and is 
executed on distributed control devices. 
When new configurations of production systems are 
formed from the modular components, the testing 
becomes a bottleneck for quick commissioning. 
Formal validation can reduce the time-consuming 
testing and commissioning phases of system’s 
development and deployment. As the functionality of 
such systems is determined by cooperation of entities 
of heterogeneous domains, e.g. mechanical, electric, 
automation hardware and software, the validation has 
to take into account the relevant properties from all 
these domains.  
Formal modelling of automation systems proved to be 
helpful for validation of automation systems by 
simulation or by formal verification of static and 
dynamic properties. In automation systems the 
software represents a variable part, while the models 
of equipment can be reused through the engineering 
cycle. Once developed by a machine vendor, the 
models may follow the equipment, enabling the 
machine users (e.g. system integrators) to validate 
new configurations of the machines re-using the 
models of their components.  

This vision, however, requires a more systematic 
approach to the modelling, than that can be seen now. 
Models in most of the formalisms such as Petri nets 
or finite automata lack integrating capabilities: while 
they may cope well with the modelling of a particular 
process, building the overall model of a system 
comprising several processes is difficult.  
An opposite example make the modelling techniques 
based on the Unified Modelling Language (UML). 
The UML is getting increasingly popular also in 
automation for its ability to describe systems in 
object-oriented form. However, the UML lacks a 
formal background and can hardly be used for deep 
analysis of the systems.  
This paper tries to sketch another approach for 
systematic modelling of systems by means of a 
modular modelling formalism. 
The paper is organized as follows: Section 2 discusses 
some extensions to the formalism. Section 3 
introduces the approach to modelling and describes 
the framework of tools supporting it. Section 4 
elaborates more on the application scenarios of 
modelling for better automation systems. Section 5 
considers an example of a machine modelling, and 
Section 6 provides some considerations on the 
validation. The paper is concluded with discussion of 
future research. 
 



     

2 STRUCTURAL EXTENSIONS AND 
LIMITATIONS 

2.1 Modelling formalism 
 
In this work we use the formalisms of Net 
Condition/Event Systems (NCES) (H.-M. Hanisch 
and A. Lüder, 1999). The modular capabilities have 
encouraged further development of a systematic 
approach to modelling of industrial systems. The 
formalism is: 
Modular, i.e. it provides encapsulation of 
place/transition models into modules, connected to 
each other by condition and event arcs. 
Graphical, that simplifies understanding of the 
model’s semantic and facilitates application by 
engineers. 
Distributed state, that helps to cope with the 
complexity of model-checking, especially when 
decentralized systems are modelled. 
Discrete time, that allows to add new, time 
dimension to the discrete modelling. 
Supported by the model-checking tool SESA (Starke, 
Roch et al.), NCES were applied in a number of 
studies on formal validation of automation systems 
(e.g. H.-M. Hanisch, T. Pannier et al, 2000).  
However, the borders of the NCES formalism have 
been reached. In particular, questions of creating 
nested modular models (i.e. encapsulation of a 
network of modules inside a module) theoretically 
consideration of which started in (Thieme, 2002), 
needs to be continued and reflected in 
implementations. 
 The automation becomes a field of distributed 
architectures (e.g. IEC61499) where automation 
systems are represented as networks of function 
blocks. Evident similarities between the NCES 
modelling concept and the function block 
architectures have motivated further development 
(Vyatkin V., Hanisch H.-M. et al. 2003) of the NCES 
formalism that targets:  
- Definition of model types to simplify 

encapsulation and reuse of the models; 
- Less restricted rules for interconnections of 

modules (multiple input and output links are 
allowed). 

The formalism is supported by the corresponding 
tools and methodologies.  
 
2.2 Model type definition 
In the formalism discussed in this paper a basic unit 
of model is called module. A module is defined by its 
interface and content. The interface contains a type 
name, names of event inputs and outputs, and of 
condition inputs and outputs. The content can be 
either a NCES, i.e. places, transitions and arcs as 
described in the previous section, or a network of 
model instances, i.e. of other modules, interconnected 
via event and condition arcs.  
A NCES has to be encapsulated in a module. The 
corresponding model type is called basic. A basic 
model type is defined by a graphical representation of 
a NCES module, i.e. by definition of its interface 
(event and condition inputs and outputs), and of its 
place/transition model. The module identifier serves 

as the type identifier. The values of inputs influence 
the model’s dynamic as they are connected to the 
model’s transitions by condition and event arcs. The 
model’s states and transitions may be reflected at the 
outputs as they are connected to places/transitions of 
the model by condition and event arcs. 
A composite model type includes a description of 
block’s interface, instances of constituent modules 
that are instances of other model types (basic or 
composite), and connection arcs.  
The definition above makes the NCES “compatible” 
with other kinds of object-oriented modelling, for 
example using Unified Modelling Language (UML). 
Several works appeared recently on application of 
object-oriented modelling to machines and production 
systems (e.g. M. Bonfè, C. Fantuzzi, 2003). The UML 
class diagrams are used in these works to represent 
the structure of production objects as composed from 
more elementary ones, that also paves the way to 
hierarchical models. However, application of UML 
for formal analysis is difficult as it lacks formality. 
Thus, the approach presented in this paper bridges the 
gap between the expression power of UML and the 
formal semantics of NCES.  
 
3 MODELLING APPROACH AND TOOL 

FRAMEWORK 
 
3.1 Closed-loop modelling 
The control systems is considered as composed of 
two independent components: object and controller, 
connected in a closed loop by control signals and 
process data. Modelling according to this view 
requires to model uncontrolled reactive behaviour of 
objects.  
It is worth mentioning that the closed-loop approach 
to the modelling enables expression of the 
specifications directly in terms of the machine 
behaviour (not only I/Os of the controller). 
 
3.2 Integrated tools for model creation, editing 

and analysis 
The modelling approach explained in this paper is 
supported by a number of software tools:  
The graphical editor provides full graphical authoring 
and editing of the models. The editor uses an open 
XML-based data format for basic and composite 
NCES models. The data format of composite model 
blocks intentionally was made identical with that of 
IEC61499 function blocks, supported by tool 
(FBDK).  
The integrated environment for Model Assembly 
(iMA) inputs the model type files given in XML and 
is capable of: 
1) Assembling a composite, hierarchically 

organized model from modules contained in 
different libraries. The component model types 
are instantiated into NCES modules.  

2) Translating the model into a “flat” NCES with 
the through numbering of places and transitions. 
The inter-module connections are converted into 
event and condition arcs between places and 
transitions. Thus the module boundaries are 
removed and the model-checking tools can be 



     

applied. In particular, the translator generates 
files in the input format of SESA model checker.  

 
4 MODELLING OF AUTOMATED PLANTS 
 
Benefits of the typed modelling are well visible in the 
following example of object modelling. The 
automated lifter (product of Flexlink Automation Oy., 
FINLAND) as shown in Figure 1 is used in 
production of electronic components. The lifter can 
be controlled by two different controllers: an 
OMRON PLC programmed in ladder logic and 
Nematron SoftPLC programmed in Visual Flow 
Chart language. Though both controllers achieve 
similar control goals, the internal logic of control 
algorithms and even the logic of program execution 
are completely different (cyclically scanned vs. 
sequential). However, both controllers eventually deal 
with the same object.  
When the closed-loop plant-controller systems are 
validated, the model of the lifter can be reused over 
and over again in connection with models of 
controllers of different types.  
The lifter consists of three transporters, one of which 
is mounted on a vertically moving platform driven by 
a step motor as schematically represented in Figure 
2.  
 

 
Figure 1.  The lifter. 

 
The structure of the model type “Lifter” is defined by 
means of UML class diagrams as shown in Figure 3.  

 
Figure 2. Structure and operation sequence of the lifter. 

 
The definition literally says that the object “Lifter” 
consists of 4 elements. The loading and unloading 
one-directional conveyors are identical but turned in 
opposite directions. The corresponding models are of 
type Conveyor. The vertically moving platform (an 
object of type StepMotor) has a moving belt that 
moves pallets in both directions (modelled as an 
object of type Conveyor2D).  

Lifter

LoadingConv:
Conveyor

LiftingConv:
Conveyor2D

Vertical:
StepMotor

UnloadConv:
Conveyor

 
Figure 3. Definition of the model type (class) “Lifter” by means of 

UML class diagrams. 
 
Note that the model in Figure 3 does not define an 
interface of the lifter, nor dependencies between its 
constituent parts. These dependencies can be reflected 
in modular models by event and condition 
connections between the corresponding modules as 
exemplified in Figure 4. 
Let us consider the model of a Conveyor. In our 
example two different types of conveyors are used – 
capable to move only in one direction, and those 
moving in both directions. The model of a more 
complex conveyor can be created based on the simple 
model using the mechanism of inheritance. 
The interface of the model type “Conveyor” can be 
seen in Figure 4. The model itself can be 
conceptually divided onto three elements: Status, 
Position, and Sensor as shown in the class diagram in 
Figure 5, left. The Status element of type 
MovingStatus models the behaviour of the motor 
that drives the conveyor and converts the logic 
control signals into one of the states “Moving” or 
“Standing still” (that corresponds to the one-
directional conveyor). Input “PRESENT” indicates if 
a pallet is present, and input “FORCED” is used to 
indicate influence of a neighbour belt on the 
movement of the pallet.  

 
Figure 4.  A model of Lifter represented as a network of NCES 

modules. 

The output condition FW_ST is used by the model of 
belt position.  
The structure of the model of the bi-directional 
conveyor is identical to that of the uni-directional. 
The difference is in the model Status that has type 
MovingStatus2D that inherits the interface properties 
of the one-directional MovingStatus and extends 
them with one more input and output for the retracted 
movement. This is shown in Figure 5 (right). All 
transporters are equipped with a single position 
sensor indicating presence of the pallet (fully loaded 
on the conveyor). 
 



     

Conveyor

Position:
DiscretePosition

Status:
MovingStatus

Sensor:
LogicSensor

inputs
FWD: bool;
FAILURE: event;
RESUME: event;
outputs
FW_ST: bool

MovingStatus

MovingStatus 2D

inputs:
RETR:bool;
outputs:
RET_ST:bool;

 
Figure 5. Model type definition of the conveyor and inheritance of 

the MovingStatus model types. 
 
The data/event flow connections between the sub-
models constituting the model of the conveyor are 
represented in Figure 6.  
 

 
Figure 6. Modular view of the model of conveyor. 

 
The basic models can be described further in form of 
NCES modules. Figure 7,a shows an implementation 
of the MovingStatus in NCES. The model receives 
the control signal FWD and transforms it into the 
state of the belt: place p2 corresponds to the state “belt 
stands still”, place p1 – belt moves and p3 to the state 
indicating a failure. The belt moves when the control 
signal FWD is ON, and stops when the signal goes 
OFF (i.e. negation of the signal FWD goes on). 
An occurrence of a failure is indicated by an external 
event that may come from the corresponding model. 
For example, it can be a stochastic model of failures. 
Note that the model is sensitive to failures only when 
the belt moves, i.e. when the place p1 is marked. It is 
assumed that the failure can be fixed by an external 
interaction indicated by event input RESUME. 
The model MovingStatus2D for the bi-directional 
moving belt is shown Figure 7. It models one 
additional state for moving backwards, and 
correspondingly more transitions between all possible 
states.  
The position of a pallet on the belt can be modelled 
with different precision.  A qualitative model in 
Figure 8 distinguishes only 3 states of a pallet on the 
belt: no pallet, pallet on the belt with its front edge 
between the belt’s ends, and pallet’s front edge is 
beyond the right end of the belt. 
A more precise modelling of the position can be done 
using the arc-timed version of NCES. Let us assume 
that the belt is 3 units long and the pallet is two units 
long as shown in Figure 9. The speed of the belt is 1 
unit of length per second. Then it will take 3 seconds 
for a pallet to reach the right end of the belt and 2 
more seconds to leave the belt completely. 

 

 
Figure 7. Models of the moving status for uni-directional and bi-

directional belts. 
Place p1 corresponds to the state “No pallet”. When a 
pallet appears (input condition “Present”) and the 
state of the moving belt is “Moving forward” 
(indicated by the input condition FWD) then the 
transition t1 occurs and the token goes to place p2.  

 
Figure 8. A qualitative non-timed model of the pallet's position. 

This place indicates the state “Front edge of the pallet 
is in the interval 1 of the conveyor”. Another reason 
to transfer to this state is the presence of the input 
condition “Forced”. This condition indicates that the 
pallet is pushed onto the belt by some external force 
that maybe another moving belt positioned backwards 
to this one. This option is modelled by transition t12. 
In general, moving in this case is slower than if 
driven by the own motor of the belt. The presented 
model, however, does not cover with enough 
precision the case when both forces are present 
simultaneously. Note that the transition from p1 to p2 
(either via t1 or t12) is a qualitative one and does not 
take time (more precisely has zero delay). 
The places p2-p4 correspond to the location of the 
pallet (again front edge!) in the intervals 1-3 
respectively. A transition from interval i to interval 
i+1 occurs in either case “FWD” and “Present” or 
“Forced” and “Present”.  
The latter, however, works only till less than the half 
of the pallet is on the belt – beyond this point friction 
would not let the pallet move driven only by the 
external force. The moving to the next interval takes 
1000 ms if driven by the own motor of the belt or 
twice as long under the external force. The backward 
moving from interval i+1 to interval i occurs if the 
combination of input conditions “RETR” and 
“Present” are true. It also takes 1000ms under 
assumption that the speed of the moving belt in both 
directions is the same. 
Arriving of the pallet to the 3rd interval is indicated by 
the sensor. This is modelled by two event outputs 
“Sens ON” and “Sens OFF” associated with firing of 
transitions t8 and t9 or t11, respectively. The sensor 
goes off when either the front edge of the pallet 
moves backward to the interval 2, or when the back 



     

edge of the pallet leaves the belt in forward direction 
(and the pallet completely disappears from the belt). 

 
Figure 9. Model of the position of the pallet on the conveyor 

discretized on 3 intervals.  

This model can represent the state of the pallet on the 
belt with better precision. However, it has its own 
limitations and drawbacks. In particular, let us 
consider how the alternative kinds of movement are 
modelled. A place indicating a position (e.g. p3 
indicating interval 2) has several outgoing arcs (p3-t4, 
p3-t5 and p3-t14) marked with non zero time delays 
([1000,∞], [1000,∞], [2000,∞]). Transitions that are 
targets of these arcs have condition input signals that 
represent alternative control signals (RETR, FWD, 
Forced). Either of transitions will fire when it is 
enabled by marking, conditions and time. It is 
important that all these conditions are mutually 
orthogonal (alternative) and they never change within 
the minimum delay of the place (1000ms in our case). 
Otherwise the model will not work as intended. 
 
5 VALIDATION 
 
The validation of automation systems modelled by 
NCES can be performed by simulation and formal 
verification via model checking.  
Simulation usually follows a limited number of 
scenarios in the system’s behaviour. In contrast, the 
model-checking studies multiple scenarios caused for 
example by some unpredictable factors, such as 
variable durations of some operations, 
communication delays, malfunctions, etc. 
In the described framework, the model-checking can 
be conducted either by means of SESA, or by an 
embedded model-checker. In the latter case, the 
results of the model-checking, such as a reachability 
space (full, or generated until an 
example/counterexample is found) can be visualized 
as state/time diagrams of relevant values (e.g. 
represented as marking of certain places, or firing of 
certain transitions).  
The verification consists in proving specifications 
with respect to the dynamic behaviour of the model. 
The specifications can be given either in form of 
second order predicates, or in form of temporal logic 
expressions. Terms of the expressions can be formed 
from inputs, outputs and internal variables of the 
controller or variables of the model of plant. The 

latter have to be eventually expressed via marking of 
places in the model.  
More examples of formal verification can be found in 
(Vyatkin V., Hanisch H.-M, 2003). In the example 
mentioned in the previous section of particular 
interest were:  

1. Robustness of the system in case of malfunctions 
of some sensors; 

2. The control programs in VFL are branching. 
Formal verification helps to prove that the 
response time is never exceeded in any feasible IO 
combination.   

3. Quality assurance: the lifter must never allow the 
situations when the pallet leans or jumps. It may 
be caused by inexact synchronization of 
conveyors’ levels which may be a result of 
synchronization of control programs;  

The overall model after assembly encountered 571 
places and 828 transitions. However, the model-
checking of a normal behaviour (without modelling 
malfunctions in sensors) resulted in the reachability 
space not exceeding 40000 states. This result reflects 
the efficiency of distributed state modelling with 
NCES.  
 
6 GRAPHICAL SPECIFICATION 
 
Although specification of properties for model-
checking in temporal logic may be easily created by 
experts on verification, engineers would benefit of 
having user-friendly means of specifying the desired 
behaviour of a module. Inspired by timing diagrams, 
well-known in the hardware branch, a graphical 
language for describing the dependency of interface 
signal changes has been proposed (Vyatkin2001,  
Bouzon 2002). 
A graphical description of a specification is illustrated 
in Figure 10. Signal changes at the beginning or 
ending of the diagram are implicitly simultaneous. 
Nevertheless, no further ordering is determined by the 
horizontal position of signal changes – therefore, a 
timing diagram usually specifies a partial ordering 
among signal changes. 
The semantic associated to the diagram is as follows: 
when the set of levels specified at the beginning of 
the diagram is achieved, it is required that the 
sequence of changes at the signals does not violate 
the partial ordering specified at the diagram, until a 
final state is reached. 
Translation and verification approaches differ slightly 
depending on whether the verified module has inputs. 
When verifying NCES (autonomous) modules, each 
signal specification is translated into a NCES 
supervisor module comprising two basic submodules: 
an event generator creates sequences of transitions, 
one for each change of level specified for the signal. 
 Each transition stimulates, through an event arc, the 
corresponding event input of a signal generator, 
which causes the output of the signal generator to 
recreate the signal according to the input stimulated. 
Ordering operators are translated into special places 
and transitions that create interdependency of event 
generators. 



     

 
Figure 10. Specification including two event inputs, one condition 
output and a simultaneity operator. 
 
The verified module is then connected through event 
arcs to the event generators of the corresponding 
signals, in such a way that every change of signal in 
the first is reported to the latter. Along with the 
translation of the specification into NCES modules, a 
set of automatically generated temporal-logic 
statements is created. The composite module is then 
model-checked against these statements to verify if 
each transition at the supervisor always fires 
whenever the corresponding transition at the verified 
module is fired. 

 
Figure 11. Translation of a single specification for a condition 
output, and linking to the verified model.  
 
The graphical specification also provides automatic 
test possibilities for input/output behaviour or non-
autonomous NCES modules. In this case, the NCES 
supervisor modules that describe input signals are 
used for generating the specified sequences of input 
signal changes, while the output signals are again 
verified as described before. 
 
7 CONCLUSION 
 
This paper provided a short overview of an extended 
modular modelling paradigm which combines the 
ideas of object-oriented typed modelling of the 
mainstream UML with benefits of modular place-
transition nets. Though the UML support is not 
integrated to the tool framework supporting NCES so 
far, however, the similarities with IEC61499 function 
blocks allow for using the CORFU environment 
(Thramboulidis, 2002) in connection with Rational 
Rose in order to define the model’s structure and 
interfaces and convert them to the form of 
interconnected NCES modules. This approach allows 
for taking advantage of formal verification 
methodologies and tools with NCES.  
Generation of NCES models from UML state charts 
will be a subject of future research.  
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