
Modelling and Verification of IEC 61499 Applications using Prolog

Victor Dubinin
Penza State University,

Penza, Russia
victor_n_dubinin@yahoo.com

Valeriy Vyatkin
The University of Auckland,

Auckland, New Zealand
v.vyatkin@auckland.ac.nz

Hans-Michael Hanisch
 Martin Luther University

of Halle-Wittenberg,
Halle, Germany

Hans-Michael.Hanisch@informatik.uni-halle.de

Abstract

This paper presents a new approach to modelling and
verification of function block applications of the IEC
61499 standard. The approach uses the language of
logic programming Prolog to represent a model of
function block network and to verify its properties. The
class of properties that can be checked is extended to
more substantial queries providing in return not only
“yes” or “no”, but also the parameters explaining the
reasons. The models essentially use the topological
properties of the function block network and allow data
of arbitrary types (not only Boolean) be used in the
queries.

1. Introduction

In IEC61499 an application is represented as a network
of function blocks (FB) interconnected by event and data
connections [1]. A function block is an abstract
component encapsulating some functionality that can be
implemented by software or even by hardware. Some
function blocks can be executed concurrently. The
processes encapsulated in function blocks can
communicate with each other thus increasing the
complexity of the overall behaviour.

Concurrency and communication make considerable
difficulties for behavioural analysis of function block
systems. Traditional testing and simulation approaches
are of limited applicability for many reasons.
Recognizing that, a number of works appeared, for
example [2,3,4,5,6], that suggest using formal modelling
and verification to extend the analysis power. The
mentioned works rely on modelling of function blocks
with a state-transition modelling formalism, like Net
Condition/Event Systems, Petri nets, Timed Automata,
etc. The models are further analyzed on compliance with
the safety or liveness properties using model-checking
tools. For example, a typical safety property says that the
system under control never gets to a dangerous state. A
liveness property may assert that the system never
deadlocks. However, the mentioned approaches are quite
limited in providing answers to the questions like “at
which values of parameter X parameter Y belongs to an
interval [a, b]”.

We have to mention that most of the modelling and
verification approaches use open-loop models of the

controller without a model of the behaviour of the
controlled object. It is therefore questionable to verify
liveness properties since they depend on the closed-loop
behaviour of the controller together with the controlled
system. In this paper we attempt to overcome these
limitations by modelling of closed-loop systems of
function blocks and by using the verification engine of
Prolog language of logic programming, whose
implementations contain a built-in deductive inference
engine. Advantages of this modelling approach are
simplicity, modularity and the ease of modifications.

The explicit event and data links between function
blocks provide additional means for verification if
compared with a general purpose software code.

We model function block systems using production
rules [9]. A production rule has the general form of:

IF <condition> THEN <action>

This kind of models can be well implemented using
Prolog [9] that is the most popular logic programming
language based on the Horn’s clause logic.

Prolog has several built-in mechanisms useful for
verification purposes, e.g. the deductive inference
mechanism with search and backtracking, and the
mechanism of unification.

Prolog has been widely applied in various application
areas. In particular, in [12] Prolog has been used for
modelling and verification of discrete systems, presented
in the form of high level Petri nets [10]. This modelling
has some similarities with the function block model of
IEC 61499 as it will be explained further in this paper.

Prolog queries allow formulation of complex
specifications in terms of transitions and states, and,
perhaps, even in terms of the application domain. Modal
logics (such as temporal logic) can be applied on top of
Prolog’s inference engine for further improvement of the
Prolog’s power [11]. The verification process consists in
the formulation of system properties in form of a Prolog
query with subsequent evaluation of the query in the
Prolog-based production system.
The verification process is inherently computationally
complex. However, a useful selection of boundary
constraints can help a lot in reducing the dimension of
the space of reachable states. The constraints can be
imposed as on the range of separate variables’ values as
well as on the combinations of values of variables, states
and signals.

The constraints can be expressed in the form of
Prolog clauses and be built directly to the interpreter of
production rules implemented in Prolog. The main
drawback of Prolog is its high computational demands
(both in terms of memory and time), however these are
getting compensated by the increasing computational
power of available computers and increased efficiency of
Prolog implementations. So, the use of Prolog won’t add
a qualitative raise in the resource requirements to the
complexity of verification.

The rest of the paper is structured as follows. Section
2 presents a sketch of the function block semantic model.
The model is presented in a rather informal way. It
should be noted that the presented model has a more
general nature than is required by the Prolog
implementation discussed in this paper. The presented
model specifies in more detail the semantic of function
blocks as it is defined in the standard. In Section 3 the
model is implemented using Prolog’s artefacts, namely
as a set of predicates and production rules. Interpretation
of these rules is discussed in Section 4. Section 5
presents an illustrative example of a function block
system modelling and verification using the developed
model. Chapter 6 discusses the ways of properties’
specification by the Prolog means. In conclusion
(Section 7) the directions of future research are
discussed.

2. The Function Block Model

1.1. Common information
In this paper we consider closed-loop networks of

basic function blocks that correspond to the “Object-
Control” or “Model-Control” design pattern, as
simplified from the MVC pattern introduced in [7]. The
considered networks are assumed to be “flat”, that is: not
include hierarchically other composite function blocks.
Hierarchical structures of function blocks have to be
“flattened”. For that the composite blocks have to be
substituted by their content appended by data valves
implementing data transfer through their interfaces.

The idea of data valves is explained as follows.
Composite function blocks consist of a network of
function blocks and buffers for input/output variables.
When translation of hierarchical composite blocks to a
flat network is done, the data cannot just flow between
the blocks of different hierarchical levels without taking
into account the buffers. An illustration is provided in
Figure 1.

The event/data associations of composite function
blocks FB6 and FB7 (shown in Figure 1, upper part)
determine sampling of the data while they are passed
from block to block. As noted in [14], the event/data
association can be arbitrary and not following the
connections within the composite block, so they need
special treatment when borders of the composite block
are removed in the process of flattening.

Figure 1. The function block obtained as a result of one
step of ‘flattening’ with data valves.
For dealing with this problem, the concept of data

valves with buffers was introduced in [13, 14]. The
concept and notation of data valves are illustrated in
Figure 2, a) and b) respectively.

a) b)
Figure 2. a) The data valve idea: the data input is copied
to the data output of the valve when the event input
arrives; b) compact notation of data valves.

Each outgoing and incoming event input (with their

respective data associations) of a composite function
block results in a data valve.

For the example presented in the upper part of Figure
1 the result of one step of the “flattening” with data
valves implementing the “border issues” is presented in
the lower part of the Figure 1. We do not represent the
valves in the function block notation as we regard them
to be a step towards a lower level implementation of
function blocks. Also note with this respect that Figure 1
represents an operation called “merging of composite
FBs” in the algebra of function blocks evolved by the
authors in [13, 14].

A state of a flat function block network is determined
by a tuple S=(S1,S2,…,Sn), where Si – is the state of i-th
(basic) FB or data valve. As defined in [14], the state of
the i-th FB is determined as Si=(csi, osmi, ZEIi, ZVIi

,ZVOi, ZVVi, ZBUFi), where csi is a current state of ECC
diagram, osmi is a state of ECC operation state machine
(ECC interpreter), ZEIi – is a function indicating values
of event inputs, ZVIi, ZVOi and ZVVi – functions of
values of input, output and internal variables
correspondingly, ZBUFi- function of data buffers’ values
(of unit capacity). The state of the j-th data valve is
determined only by the function ZBUFj.

One can note that the values of buffered data are
included in the state of their respective function blocks
or data valves instead of being directly included to the
global network state. This is justified by the fact that a
data buffer is associated with an output variable of
function blocks.

In the following part of this Section we make some
assumptions about the execution semantic of function
blocks.

We are not specifically considering distributed
configurations. Thus, modelling of resources and devices
is beyond the scope of this paper.

The model presented in this paper uses non-
deterministic selection of function blocks. This over-
approximates the semantics of all scheduling policies in
a particular FB system implementation. The non-
deterministic selection allows exclude time from our
consideration because this mechanism supposes
examination of system functioning by all possible time
parameters. However, a clear drawback of this method is
redundancy, i.e. admission of scenarios that can never
occur in a real system.

For the time being, we limit our consideration to
"closed" networks of function blocks that do not receive
events from the environment through the service
interface function blocks (SIFB). Later on we show how
the proposed model can be extended to cover the case of
execution initiation from the environment.

This interpretation of the function block semantic is
quite consistent and relies on the assumptions that a)
function block is activated by an external event; b)
execution of every algorithm is "short".

Although real interpreters of function blocks may
have slightly different behaviour, the assumptions made
above considerably reduce the number of intermediate
states and determine the details of a legitimate
implementation. Execution of a network of function
blocks is activated by the start event that is issued only
once. The start event leads to the action op6 as described
below.

So, we can assume that a FB network transfers from
state to state as a result of model transitions:

S0[tp→S1[tq→… [tm→Sn
Note that the proposed FB model can be combined

with other state transition models such as Petri nets,
NCES [2], etc. For this purpose it would be necessary to
develop an interface for two kinds of models and rules of
its functioning.

1.2. Semantic of function blocks
The IEC61499 standard partially defines the semantic

of function block execution. In particular, the execution
control of a basic function block is determined by
Execution Control Chart, that is a kind of finite automata
interpreted according to the ECC operation state
machine shown in Figure 3.

State Operations

s0 ---
s1 Evaluate transitions
s2 Perform actions

Transition Condition Operations

t1 Invoke ECC Sample inputs
t2 No transition clears
t3 A transition clears

t2 t1

t4 t3

s0

s1

s2

t4 Actions completed
Figure 3. ECC operation state machine [1].

The standard defines only some elements of the

semantic leaving the details to the implementation. There
is a number of works outlining the semantic loopholes of
IEC 61499, in particular [14].

1.3. Types of model transitions
In the context of this paper, an ЕСC transition is

said to be primary if its condition includes an event input
(EI) variable. Otherwise, if it includes only a guard
condition, it is said to be secondary.

The proposed model is a state-transition model. The
model has five types of its state transitions (of the model,
not of a function block’s ECC!):
tran1 –firing of a primary ЕС transition;
tran2 –firing of a secondary EC transition;
tran3 –special processing of input event in an

unreceptive state of FB;
tran4 –transition of the ЕСС interpreter to the initial

state;
tran5 –working of a data valve;
The transition enabling rules are summarized in Table 1.
Type of

transition
ECC

interpreter
state

Other conditions Priority

Tran1 Idle

Tran2 Busy

1) The source state of the EC
transition is the current state
of the (parent) function block;
2) The EC transition
condition evaluates to TRUE;

3

Tran3 Idle There is a signal at the event
input (having WITH
association(-s))

4

Tran4 busy There are no enabled EC
transitions

2

Tran5 n/a This transition is enabled if
there is a signal at the event
input of the data valve

1
(highest)

Table 1. Conditions enabling the model transitions

The basic transitions determining the functioning of

function block systems are the transitions of types 1 and
2. Transitions of the first type correspond to the almost
complete cycle of ECC interpreter work (except the
interpreter transition to the initial state s0), namely the
chain s0→t1→s1→t3→s2→t4→s1.

Transitions of the second type represent the cycle
s1→t3→s2→t4→s1.

Transition of the third type corresponds to the
reaction on an incoming event and the corresponding
sampling of the associated data variable in case when the
ECC interpreter is idle, but the arrived event won't force

any ECC transition. This type of transitions corresponds
to the chain s0→t1→s1→t2→s0. Transition of the fourth
type models transition of the ECC interpreter from state
s1 to the initial state s0. Transition of the type tran5
models data sampling in a composite function block.

1.4. Compatibility and mutual exclusion of model
transitions

Within the model of one function block some
transitions are compatible (can be enabled
simultaneously) and some are mutually exclusive. Based
on the transition enabling rules introduced above we can
build the relation of their compatibility/exclusion,
presented in Table 2.

 tran1 tran2 tran3 tran4
tran1 + - + -
tran2 - + - -
tran3 + - + -
tran4 - - - -

Table 2. Table of model transitions’ compatibility.
In Table 2 the "+" symbol designates that the

transitions are compatible, while "-" shows that they are
mutually exclusive. Thus, transitions of the tran2 type
are incompatible with tran1 and tran3 as they occur in
mutually excluding states of the ECC interpreter. The
tran4 excludes any other transition by definition, and
since data sampling in the "busy" interpreter state is
impossible.

1.5. Firing transition selection rules
Firing transition selection rules define the order of
enabled transition firing. Varying the firing transition
selection rules it is possible to obtain different execute
semantics of FBs.

The employed function block execution model
combines the priority and the non-deterministic
disciplines of active objects’ selection from the set of
enabled ones.

The hierarchy of priority levels is as follows. On the
highest level is the data valve execution that has a higher
priority (1) than function block since it is assumed that
data valve's execution is by far shorter than a function
block's execution.

At the function block level we introduce the
following sublevels (in the priority descending order): 2)
tran4; 3) tran1 and tran2; 4) tran3.

A function block is said to be enabled if it has at least
one enabled transition;

The selection of a firing transition is done by the
following rules:
1. If there is a non-empty set of enabled data valves,

one data valve is selected non-deterministically;
2. If there is a non-empty set of enabled FBs, then

a. The FB to be current (i.e. active) is selected non-
deterministically;

b. Within the current FB, a transition is selected
with the highest type priority and the highest
priority within the type.

It should be noted that the priority of the third type
transitions is determined by the priority of the
corresponding EI-variable that, in turn, is determined by
the location in the FB’s textual representation (the earlier
appears – the higher priority).

1.6. Transition firing rules
The transition firing rules define the operations

executed at the transitions.
We define the following operations performed at

the execution of function block systems.
op1 – Input data sampling resulting in a transfer of the
data values to the corresponding input variables
associated with the current event input by WITH
declarations. In case of data valves the data is assigned
to the external data buffer associated with the data valve.
op2 – Reset of all EI-variables of the current FB or data
valve. This operation can be called “clearing the event
channel” that eliminates the “event latching”;
op3 - ЕСС interpreter jumps to the “busy” state;
op4 – Change of the current ECC state;
op5 – Algorithms’ execution resulting in the
modification of output and internal variables;
op6 – Transfer of signal(s) from event outputs of the
current FB resulting in setting of EI-variables of the FBs
and data valves connected to those event outputs by
event connections. Prior to that the event channels of
those recipient FBs are cleared to avoid “event latching”.
Alternatively, the events can be scheduled by sending
the corresponding request to the event scheduler of the
resource.
op7 – Transfer of output variable values (associated with
currently issued output events) to the external data
buffers.
op8 – Transition of the ECC interpreter to the “idle”
state.

In Table 3 all model transitions are represented as
sequences of some of the above defined operations (if
the operation opj, is a possible part of trani then the
corresponding table cell (i,j) is shaded.

 op1 op2 op3 op4 op5 op6 op7 op8
tran1
tran2
tran3
tran4
tran5

Table 3. The model transition operation sequences.

Each action associated with a model transition is
performed as a transaction, i.e. as an atomic non-
interrupted action consisting in a sequence of operations
executed in the pre-defined order.

In addition, to reduce the number of non-essential
intermediate states it can be accepted that:
1) Transition of type 4 can be executed in a chain with
transitions of type 1 or 2 as a single transaction;
2) Operation op6 can be extended by including in it
transmission of output signal from the FB-source to all
FB-receivers through a network of data valves (if any)

including all data sampling operations in all involved
data valves.

3. Declarative representation in Prolog

Below we consider representation of the model
transitions using specialized production rules interpreted
in Prolog. The start event is not represented by a rule,
but just participates in formation of the initial state. The
production representation reflects automata models,
algorithms and connections between FBs. States of the
networks of FBs can be effectively represented by means
of tree structures which allow inclusion of semantic
information along with structural information. Tree
structures are well represented by means of Prolog.

The representation of a state as a Prolog’s term has
both benefits and drawbacks if compared to the
traditional list-based representation. The benefits include
simplification and homogeneity of the rules and of the
rule interpreter, as well as higher effectiveness of
unification of terms than that of the list processing
procedures.

An obvious drawback is the dependency of the term-
state dimension on the number of function blocks in the
network, and on the number of their components.

The following mnemonic is used for the terms: s-
global state of the FB network, state - state of ECC, ei -
values of event input variables, vi, vo, vv - values of
input, output and internal variables, val -value of an
output variable; buff - value of the data buffer associated
with output variable.

The partial syntax of the rule-based function block
representation in Prolog is given below by means of
EBNF (Extended Backus-Naur Form):
<production rule>::=

tran(<type of model transition>,<identifier of FB-owner>, <transition
name>,<previous state pattern>,<new state pattern>)
[:- {<predicate of guard condition>[,<predicate of algorithm>]

| <predicate of algorithm>}].
<type of model transition>::= ectran | sampling | freefb | datavalve
<previous state pattern>::=<state pattern>
<new state pattern>::=<state pattern>
<state pattern>::= s(<instance state pattern> [{,<instance state pattern>}…])
<instance state pattern>::= <basic function block instance state pattern>

| <data valve instance state pattern>
<basic function block instance state pattern>::=

< function block instance name>(state(<EC state identifier>),
osm(<state of ECC interpreter>)
[, ei(<list of event input variables>)]
[, vi(<list of input variables>)]
[, vо(<list of output variables and data buffers >)]
[, vv(<list of internal variables>)])

<data valve instance state pattern>::=
<data valve instance name>(<event input variable>,bf(<list of data

buffers>))
<EC state identifier>::= <variable> | <symbolic constant>
<state of ECC interpreter>::= idle | work
<list of event input variables >::=

<event input variable >[{,<event input variable >}…]
<event input variable>::= <event input variable’s name>

(<event input variable’s value >)
<event input value >::= 0 | 1 | <variable>
<list of input variables >::= <input variable>[{,<input variable >}…]
<input variable >::= < input variable’s name>(< input variable’s value>)
<input variable’s value>::= <variable> | <constant>

<list of output variables and data buffers >::=
<output variable and data buffer >
[{,<output variable and data buffer >}…]

< output variable and data buffer >::=
<name of output variable>(val(<value of output variable>), buff(<value of
data buffer))

<value of output variable>::= <variable> | <constant>
<list of data buffers>::= <data buffer>[{,<data buffer>}…]
<data buffer>::= <data buffer’s name>(<data buffer’s value>)
<data buffer’s value>::=<variable> | <constant>
<variable>::= X<number of variable>

Note that the body of the Prolog clause tran is used
only in case of model transitions of type ectran. The
rules for model transitions of type freefb include only
action but not enabling condition. The enabling
condition is defined in rule interpreter for all transitions
of type freefb.

The element <FB owner identifier> determines a
unique alphanumeric identifier of an FB instance.

The Prolog representation of EC transition condition
is built according to the following rule: the event-
dependent part of the condition belongs to the pattern of
the previous state in the Prolog clause header. The guard
condition is represented in the Prolog clause body.

The algorithms are represented using predicates of the
following general form:
<name of algorithm predicate> (A1, A2,…,An, B1, B2,…, Bm),

where A1,A2,…,An – are input parameters of the
algorithm, B1,B2,…,Bm – output parameters of the
algorithm. Several Prolog clauses may be needed to
represent an algorithm. Predicates of condition
expressions and of algorithms are formed for function
block types, not for instances.

4. Production systems operation

Functioning of a production system in many ways is
based on the unification of terms which is used to
determine resolvability of production rules. A production
rule is enabled if 1) the term-pattern of previous state is
unified with the term of the current state; 2) the predicate
of the guard condition evaluates to true (if any).

The actions to determine new EC states, and new
values of variables (event inputs as well as input, output,
internal variables, and data buffers) in the term of the
new state can be done in three different ways:

1. By explicitly stated new values. The new state
pattern will have constants in the corresponding
places;

2. Implementing algorithms as Prolog predicates. The
predicate would compute the new values given the
corresponding values of the algorithm parameters
from the previous state. In this case the variables for
old and new values shall be different;

3. Using inheritance of the state variables. This method
is applied to the components that are not changed by
the transition. Such components can be represented
by the same variable in new and previous state
patterns.
The work of the production system can be presented

as a sequence of transactions.

An example of a simple interpreter of the production
rules for function block systems’ modelling is as
follows:

path(S,[],S).
path(S,[IdT|L],Sn):- fbinstance(IdFB), priortran(Rtype,IdFB,IdT,S,S1),
Rtype\==freefb, releasefb(Rtype,IdFB,S1,S2), rstate(NS,S),
inbase(NS,IdT,S2), path(S2,L,Sn).
priortran(Rtype,IdFB,IdT,S,S1):- tran(Rtype,IdFB,IdT,S,S1),
Rtype\==freefb,!.
releasefb(Rtype,IdFB,S1,S2):- Rtype==ectran,
\+tran(ectran,IdFB,_,S1,_), tran(freefb,IdFB,_,S1,S2),!.
releasefb(Rtype,IdFB,S1,S2):- S2=S1.
inbase(NS,T,S1):- rstate(NS1,S1),assertz(arc(NS,T,NS1)),!,fail.
inbase(NS,T,S1):- retract(count(N)),NS1 is N+1, assert(count(NS1)),
assertz(rstate(NS1,S1)), assertz(arc(NS,T,NS1)).
build_RG:-
init(S),assertz(rstate(0,S)),assert(count(0)),!,path(S,_,_),fail.

In this version of the rule interpreter the priorities of
FBs and data valves are considered to be equal.

The recursive predicate path is used to construct a
chain of model transitions, transferring system from a
source state to a target state. The database fbinstance
stores the names (unique) of all FB and data valve
instances containing in the FB system.

The predicate priortran(Rtype,IdFB,IdT,S,S1) is used
to determine the state S1, immediately reachable from
state S, as well to determine identifier IdT and type Rtype
of the model transition that caused the state change. This
change must be relevant to the function block (or data
valve) IdFB and must have the highest priority in it.
Priority of a production rule is determined by its location
in Prolog program’s text (the earlier rule is located – the
higher is the priority).

The predicate releasefb is used to implement the
model transition of type 4. It transfers the ECC
interpreter to the state “idle”, if the ECC has no more
enabled EC transitions. The predicate inbase inserts
information about a new state and a new arc of the
reachability graph to the databases rstate and arc,
respectively, and to determine if the new state duplicates
an existing state. The generated states are numbered
using a counter stored in the database count.

The predicate build_RG is used to construct the
reachability graph from the initial state.

The presented interpreter can be used as a prototype
for implementation in a more efficient way, for example,
in C/C++.

5. Example

The following example serves to illustrate the
analysis of a FB network containing all essential
attributes, such as event input and output variables as
well as input, output and internal variables. However,
many aspects of function block systems are omitted for
the sake of brevity.

Figure 4. Function block network used for the
verification trial.

 The network, presented in Figure 1, consists of two
instances alu1 and alu2 of function block type ALU. The
outputs of one block are connected to the inputs of the
other. After the initiating event the system must do the
eternal sequence of actions, consisting of the interleaving
addition and subtraction operations. The input
parameters are selected in a way ensuring that the
variable value limits are bounded. For example, if the
first block adds some number, the second block would
subtract the same number. This is intended to make the
state space of the model better observable (for the
purposes of this example).

The function block type ALU is shown in Figure 5.
The block performs two arithmetic operations: addition
res=d1+d2+n, initiated by the event input “add” and
subtraction res=d1-d2-n, initiated by the event input
“sub”, where n – is an internal variable initialized with
value 13. The output variable res is initialized with value
3.

Figure 5. Description of the function block type ALU:
interface and ECC.

The tree-structured global state of the function block net
from Figure 4 is presented in Figure 6.

The following terms are used in the tree:
• alu1 and alu2– states of function blocks alu1 и

alu2, respectively;
• init, add and sub – values of the event input

variables init, add and sub, correspondingly (0 or
1);

• d1 and d2– values of input variables d1 and d2,
correspondingly;

• res – values of the output variable res (val) and its
buffer (buff);

• n – value of internal variable n.
Leaves of the tree are numbered. The state pattern in the
form of Prolog term is as follows.

s(alu1(state(X1),osm(X2),ei(init(X3),add(X4),sub(X5)),
vi(d1(X6),d2(X7)), vo(res(val(X8), buff(X9))), vv(n(X10)),

alu2(state(X11),osm(X12),ei(init(X13),add(X14),sub(X15)),
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20))).

The initial state of the FB network is determined by
the following term:
s(alu1(state(s0),osm(idle),ei(init(1),add(0),sub(0)), vi(d1(0),d2(0)),
vo(res(val(0), buff(0))), vv(n(0))),
alu2(state(s0),osm(idle),ei(init(0),add(0),sub(0)), vi(d1(0),d2(0)),
vo(res(val(0), buff(0))), vv(n(0)))).

alu1

s

state(1) ei vi vo vv

init(3) add (4) sub (5) d1 (6) d2 (7) res

val (8) buff (9)

n (10)

alu2

state(11) ei vi vo vv

init(13) add (14) sub (15) d1 (16) d2 (17) res n (20)

val (18) buff (19)

osm(2)

osm(12)

Figure 6. Tree-structured global state of the function
block net.

Let us consider for example the transition s0->s2 in

the ECC of the block alu1. This model transition is of
type “Primary EC transition”.

The transition enabling conditions are :1)ECC of the
block alu1 is in the state s0; 2) event input signal add is
present; 3) guard condition (n=13)&(res>0) is true; 4)
ECC interpreter of block alu1 is in state idle.

The actions performed by the transition are as
follows:
1) ECC of the block alu1 changes current state from s0

to s2;
2) Reset all event inputs of the block;
3) Sampling the input variable d1 associated with the

event input add by a WITH construct. As a result of
it, input variable d1 of the block alu1 is assigned
with the value of the data buffer associated with the
output variable res of the block alu2;

4) ECC interpreter of the block alu1 goes from state
idle to state work;

5) Output variable res is assigned the value
(d1+d2+n), as determined by the algorithm
alg_alu_alg2;

6) The output event cnf is initiated, and as a result set
the event input variable sub of the block alu2;

7) The value of the output variable res is assigned to
the data buffer associated with that variable.

The Prolog production rule representing this model

transition is as follows:

tran(ectran,alu1,alu1_s0_s2,
s(alu1(state(s0), osm(idle), ei(init(0),add(1),sub(0)), vi(d1(X6),d2(X7)),
vo(res(val(X8), buff(X9))), vv(n(X10))),
alu2(state(X11), osm(X12), ei(init(X13),add(X14),sub(X15)),
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20)))),
s(alu1(state(s2), osm(work), ei(init(0),add(0),sub(0)),
vi(d1(X19),d2(X7)), vo(res(val(X8m), buff(X8m))), vv(n(X10))),
alu2(state(X11), osm(X12), ei(init(0),add(0),sub(1)),
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20))))):-
 cond_alu_s0_s2(X10,X8), alg_alu_alg2(X19,X7,X10,X8m).
cond_alu_s0_s2(P1,P2):-P1=13,P2>0.
alg_alu_alg2(A1,A2,A3,B1):- B1 is A1+A2+A3.

The reachability graph of the FB system considered

above is shown in
Figure 7.

1 2 8 3 9 10 11 16 0

17
18

25 5 7

4

23

24

22

6

19

14

15
13

12

21
20

Figure 7 Reachability graph of the FB system.

As it can be seen from the graph, there are three

deadlock states in the FB system. For example, a path to
deadlock state 24 (including only EC transitions) is as
follows: alu1(s0→s1), alu2(s0→s1), alu1(s1→s0),
alu2(s1→s0). The deadlock arises because of loss of a
short-living signal on the event input add of block alu1.
This signal is reset on the step alu1(s1→s0). If the given
FB network is executed on the one resource then it is
possible to avoid the deadlock by means of a proper
scheduling strategy. In case of multiple resources and
devices it is necessary to take into account real time
constraints and relations. The alternative way to avoid
the deadlock is to restructure the FB system.

6. Specification of Properties

Prolog can efficiently represent various queries
covering the reachability, liveness and safety of the
function block applications. For example:
1) Determine, at which event input variable values the

block alu1 will be in the state (ECC) s1, and the
alu2 – in the state s0”;

2) At which values of input variables d1 both blocks
will be in identical states?

3) Find states in which values of the variable n is
greater than some constant A

4) “Are there any input events losses?”, etc.
The properties are coded as Prolog predicates and make
queries to prove or falsify.
The proof of the properties consists in automatic
inference of a path to the state corresponding to a
condition. The path is a sequence of production rules
applied. It is automatically generated by the Prolog

engine.
It is possible to specify FB system’s properties using
branching time temporal logic CTL (Computation tree
logic) interpreted in Prolog [11]. For example, liveness
of ECC transition t is expressed by the following CTL
formula:

s0╞ALL(POT(enabled(t))).
where s0 is an initial state, ALL and POT are temporal
operators. The proposition enabled(t) is used to
determine enableness of ECC transition t. The
corresponding Prolog query is shown below:

?- init(S),all(pot(enabled(T)),S).
The interpreter of CTL formulas was developed in
Prolog for using jointly with the rule interpreter. The
Prolog program was implemented using SWI-Prolog
[15].

To automate the generation of the Prolog
representation of function blocks, a prototype converter
was developed. The converter reads XML representation
of function blocks and generates the Prolog production
rules.

7. Conclusion

The paper reports on the first steps toward creating a
powerful and flexible tool for analysis of function block
systems. Further works will deal with the following
issues:
1) The development of the corresponding intelligent

GUI, supporting query formulation and
interpretation of the results of the proof;

2) The development of structural constraints based on
the description of incorrect situations in the graph
form;

3) Adding models of service interface function blocks
4) Adding the concept of time to the modelling;
5) Use of semantic information and ontologies of

application domains for verification;
6) Modelling of distributed function block

configurations;
7) Reduction of the number of data valves and data

buffers based on the traces of data flows, aiming at
the reduction of the reachability space;

8) Experimental evaluation of resources use needed to
execute the production system in various
implementations of Prolog.

9) Implementation of the rule interpreter using
conventional programming language, e.g. C/C++.

Special attention will be directed to deal with the
integration of the developed methods and tools in the
steps of the overall engineering process based on
function blocks and special design patterns that enable us
use closed-loop models of controllers and controlled
systems.

8. References
1. Function blocks for industrial-process measurement and

control systems - Part 1: Architecture, International
Electrotechnical Commission, Geneva, 2005

2. Vyatkin V., Hanisch H.-M. “A modelling approach for
verification of IEC1499 function blocks using Net
Condition/Event Systems”, Proc. IEEE conference on
Emerging Technologies in Factory Automation (ETFA'99),
Barcelona, Spain, 1999, pp. 261—270

3. H. Wurmus, B. Wagner, “IEC 61499 konforme
Beschreibung verteilter Steuerungen mit Petri-Netzen”,
Conference Verteilte Automatisierung,, Proceedings,
Magdeburg, 2000

4. Stanica P., Gueguen H., “Using Timed Automata for the
Verification of IEC 61499 Applications”, IFAC Workshop
on Discrete Event Systems (WODES’04), Reims, France,
2004

5. Faure J.M., Lesage J.J., Schnakenbourg C., Towards IEC
61499 function blocks diagrams verification, IEEE Int.
Conference on Systems, Man and Cybernetics (SMC02),
October 6-9, Hammamet, Tunisia, 2002

6. A. Lueder, C. Schwab, M. Tangermann, and J. Peschke.
Formal models for the verification of IEC 61499 function
block based control applications, IEEE Conference on
Emerging Technologies and Factory Automation
(ETFA’2005), Proceedings, Catania, Italy, September 2005.

7. Christensen J.H., IEC 61499 architecture, engineering,
methodologies and software tools, 5th IFIP International
Conference BASYS’02, Proceedings, Cancun, Mexico,
2002

8. Bonfe M., Fantuzzi C., An Application of Object-Oriented
Modeling Tools to Design the Logic Control System of a
Packaging Machine, Proc. 2nd International Conference on
Industrial Informatics (INDIN’04), Berlin, Germany, 2004

9. Сloсksin W.F., Mellish C.S., Programming in Prolog, 2nd
edition, Berlin: Springer-Verlag, 1984.

10. Azema P., Juanole G., Sandus E., Moutbernard M.
Specification and verification of distributed systems using
Prolog interpreted Petri nets, Proc. 7th Int. Conf. Software
Eng, 1984, pp.510 - 518

11. Papapanagiotakis G., Azema P., Pradin-Chezalviel B.
Propositional branching time temporal logic in Prolog, Proc.
5th Annual Int. Phoenix. Conf. Comput. and Commun.,
1986, pp.371 - 377

12. Dubinin V. N., Zinkin S.A. Logic programming languages
for design of computer systems and networks, Penza State
University Publishers, 1997, 88 p., available in electronic
form at: http://alice.stup.ac.ru/~dvn/prolog/index.htm

13. V. Dubinin, V. Vyatkin, Formalized definition and
modelling of IEC 61499 function block systems, Letters of
Tertiary Education Institutions, Volga region, Russia, Penza
State University Publishers, 2005, N 5, pp.76-8

14. V. Dubinin, V. Vyatkin, Towards A Formal Semantics of
IEC 61499 Function Blocks, 4th IEEE Conference on
Industrial Informatics (INDIN’2006), Singapore, 2006

15. SWI-Prolog web-site: http://www.swi-prolog.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

