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Abstract  

This paper presents a new approach to modelling and 
verification of function block applications of the IEC 
61499 standard. The approach uses the language of 
logic programming Prolog to represent a model of 
function block network and to verify its properties. The 
class of properties that can be checked is extended to 
more substantial queries providing in return not only 
“yes” or “no”, but also the parameters  explaining the 
reasons. The models essentially use the topological 
properties of the function block network and allow data 
of arbitrary types (not only Boolean) be used in the 
queries. 

1. Introduction 

In IEC61499 an application is represented as a network 
of function blocks (FB) interconnected by event and data 
connections [1]. A function block is an abstract 
component encapsulating some functionality that can be 
implemented by software or even by hardware. Some 
function blocks can be executed concurrently. The 
processes encapsulated in function blocks can 
communicate with each other thus increasing the 
complexity of the overall behaviour. 

Concurrency and communication make considerable 
difficulties for behavioural analysis of function block 
systems. Traditional testing and simulation approaches 
are of limited applicability for many reasons. 
Recognizing that, a number of works appeared, for 
example [2,3,4,5,6], that suggest using formal modelling 
and verification to extend the analysis power. The 
mentioned works rely on modelling of function blocks 
with a state-transition modelling formalism, like Net 
Condition/Event Systems, Petri nets, Timed Automata, 
etc. The models are further analyzed on compliance with 
the safety or liveness properties using model-checking 
tools. For example, a typical safety property says that the 
system under control never gets to a dangerous state. A 
liveness property may assert that the system never 
deadlocks. However, the mentioned approaches are quite 
limited in providing answers to the questions like “at 
which values of parameter X parameter Y belongs to an 
interval [a, b]”.  

We have to mention that most of the modelling and 
verification approaches use open-loop models of the 

controller without a model of the behaviour of the 
controlled object. It is therefore questionable to verify 
liveness properties since they depend on the closed-loop 
behaviour of the controller together with the controlled 
system. In this paper we attempt to overcome these 
limitations by modelling of closed-loop systems of 
function blocks and by using the verification engine of 
Prolog language of logic programming, whose 
implementations contain a built-in deductive inference 
engine. Advantages of this modelling approach are 
simplicity, modularity and the ease of modifications. 

The explicit event and data links between function 
blocks provide additional means for verification if 
compared with a general purpose software code.  

We model function block systems using production 
rules [9]. A production rule has the general form of:  

 
IF <condition> THEN <action>  

This kind of models can be well implemented using 
Prolog [9] that is the most popular logic programming 
language based on the Horn’s clause logic. 

Prolog has several built-in mechanisms useful for 
verification purposes, e.g. the deductive inference 
mechanism with search and backtracking, and the 
mechanism of unification.  

Prolog has been widely applied in various application 
areas. In particular, in [12] Prolog has been used for 
modelling and verification of discrete systems, presented 
in the form of high level Petri nets [10]. This modelling 
has some similarities with the function block model of 
IEC 61499 as it will be explained further in this paper.  

Prolog queries allow formulation of complex 
specifications in terms of transitions and states, and, 
perhaps, even in terms of the application domain. Modal 
logics (such as temporal logic) can be applied on top of 
Prolog’s inference engine for further improvement of the 
Prolog’s power [11]. The verification process consists in 
the formulation of system properties in form of a Prolog 
query with subsequent evaluation of the query in the 
Prolog-based production system. 
The verification process is inherently computationally 
complex. However, a useful selection of boundary 
constraints can help a lot in reducing the dimension of 
the space of reachable states. The constraints can be 
imposed as on the range of separate variables’ values as 
well as on the combinations of values of variables, states 
and signals. 



The constraints can be expressed in the form of 
Prolog clauses and be built directly to the interpreter of 
production rules implemented in Prolog. The main 
drawback of Prolog is its high computational demands 
(both in terms of memory and time), however these are 
getting compensated by the increasing computational 
power of available computers and increased efficiency of 
Prolog implementations. So, the use of Prolog won’t add 
a qualitative raise in the resource requirements to the 
complexity of verification. 

The rest of the paper is structured as follows. Section 
2 presents a sketch of the function block semantic model. 
The model is presented in a rather informal way. It 
should be noted that the presented model has a more 
general nature than is required by the Prolog 
implementation discussed in this paper. The presented 
model specifies in more detail the semantic of function 
blocks as it is defined in the standard. In Section 3 the 
model is implemented using Prolog’s artefacts, namely 
as a set of predicates and production rules. Interpretation 
of these rules is discussed in Section 4. Section 5 
presents an illustrative example of a function block 
system modelling and verification using the developed 
model. Chapter 6 discusses the ways of properties’ 
specification by the Prolog means. In conclusion 
(Section 7) the directions of future research are 
discussed.  

2. The Function Block Model 

1.1. Common information 
In this paper we consider closed-loop networks of 

basic function blocks that correspond to the “Object-
Control” or “Model-Control” design pattern, as 
simplified from the MVC pattern introduced in [7]. The 
considered networks are assumed to be “flat”, that is: not 
include hierarchically other composite function blocks. 
Hierarchical structures of function blocks have to be 
“flattened”. For that the composite blocks have to be 
substituted by their content appended by data valves 
implementing data transfer through their interfaces.  

The idea of data valves is explained as follows. 
Composite function blocks consist of a network of 
function blocks and buffers for input/output variables. 
When translation of hierarchical composite blocks to a 
flat network is done, the data cannot just flow between 
the blocks of different hierarchical levels without taking 
into account the buffers. An illustration is provided in 
Figure 1. 

The event/data associations of composite function 
blocks FB6 and FB7 (shown in Figure 1, upper part) 
determine sampling of the data while they are passed 
from block to block. As noted in [14], the event/data 
association can be arbitrary and not following the 
connections within the composite block, so they need 
special treatment when borders of the composite block 
are removed in the process of flattening. 

 
Figure 1. The function block obtained as a result of one 
step of ‘flattening’ with data valves. 
For dealing with this problem, the concept of data 

valves with buffers was introduced in [13, 14]. The 
concept and notation of data valves are illustrated in 
Figure 2, a) and b) respectively.  

a)  b)  
Figure 2. a) The data valve idea: the data input is copied 
to the data output of the valve when the event input 
arrives; b) compact notation of data valves. 
 
Each outgoing and incoming event input (with their 

respective data associations) of a composite function 
block results in a data valve. 

For the example presented in the upper part of Figure 
1 the result of one step of the “flattening” with data 
valves implementing the “border issues” is presented in 
the lower part of the Figure 1. We do not represent the 
valves in the function block notation as we regard them 
to be a step towards a lower level implementation of 
function blocks. Also note with this respect that Figure 1 
represents an operation called “merging of composite 
FBs” in the algebra of function blocks evolved by the 
authors in [13, 14]. 

A state of a flat function block network is determined 
by a tuple S=(S1,S2,…,Sn), where Si – is the state of i-th 
(basic) FB or data valve. As defined in [14], the state of 
the i-th FB is determined as Si=(csi, osmi, ZEIi, ZVIi 

,ZVOi, ZVVi, ZBUFi), where csi is a current state of ECC 
diagram, osmi is a state of ECC operation state machine 
(ECC interpreter), ZEIi – is a function indicating values 
of event inputs, ZVIi, ZVOi and ZVVi – functions of 
values of input, output and internal variables 
correspondingly, ZBUFi- function of data buffers’ values 
(of unit capacity). The state of the j-th data valve is 
determined only by the function ZBUFj.  



One can note that the values of buffered data are 
included in the state of their respective function blocks 
or data valves instead of being directly included to the 
global network state. This is justified by the fact that a 
data buffer is associated with an output variable of 
function blocks. 

In the following part of this Section we make some 
assumptions about the execution semantic of function 
blocks. 

We are not specifically considering distributed 
configurations. Thus, modelling of resources and devices 
is beyond the scope of this paper.  

The model presented in this paper uses non-
deterministic selection of function blocks. This over-
approximates the semantics of all scheduling policies in 
a particular FB system implementation. The non-
deterministic selection allows exclude time from our 
consideration because this mechanism supposes 
examination of system functioning by all possible time 
parameters. However, a clear drawback of this method is 
redundancy, i.e. admission of scenarios that can never 
occur in a real system. 

For the time being, we limit our consideration to 
"closed" networks of function blocks that do not receive 
events from the environment through the service 
interface function blocks (SIFB). Later on we show how 
the proposed model can be extended to cover the case of 
execution initiation from the environment. 

This interpretation of the function block semantic is 
quite consistent and relies on the assumptions that a) 
function block is activated by an external event; b) 
execution of every algorithm is "short".  

Although real interpreters of function blocks may 
have slightly different behaviour, the assumptions made 
above considerably reduce the number of intermediate 
states and determine the details of a legitimate 
implementation. Execution of a network of function 
blocks is activated by the start event that is issued only 
once. The start event leads to the action op6 as described 
below.  

So, we can assume that a FB network transfers from 
state to state as a result of model transitions:  

S0[tp→S1[tq→… [tm→Sn 
Note that the proposed FB model can be combined 

with other state transition models such as Petri nets, 
NCES [2], etc. For this purpose it would be necessary to 
develop an interface for two kinds of models and rules of 
its functioning. 

1.2. Semantic of function blocks 
The IEC61499 standard partially defines the semantic 

of function block execution. In particular, the execution 
control of a basic function block is determined by 
Execution Control Chart, that is a kind of finite automata 
interpreted according to the ECC operation state 
machine shown in Figure 3. 

 

State  Operations 

s0  --- 
s1  Evaluate transitions  
s2  Perform actions 

Transition Condition Operations 

t1 Invoke ECC Sample inputs  
t2 No transition clears  
t3 A transition clears  

t2 t1

t4 t3

s0

s1

s2
 

t4 Actions completed  
Figure 3. ECC operation state machine [1]. 
 
The standard defines only some elements of the 

semantic leaving the details to the implementation. There 
is a number of works outlining the semantic loopholes of 
IEC 61499, in particular [14]. 

1.3. Types of model transitions 
In the context of this paper, an ЕСC transition is 

said to be primary if its condition includes an event input 
(EI) variable. Otherwise, if it includes only a guard 
condition, it is said to be secondary.  

The proposed model is a state-transition model. The 
model has five types of its state transitions (of the model, 
not of a function block’s ECC!):  
tran1  –firing of a primary ЕС transition; 
tran2  –firing of a secondary EC transition; 
tran3 –special processing of input event in an 

unreceptive state of FB; 
tran4 –transition of the ЕСС interpreter to the initial 

state; 
tran5 –working of a data valve; 
The transition enabling rules are summarized in Table 1. 
Type of 

transition 
ECC 

interpreter 
state 

Other conditions Priority 

Tran1 Idle 

Tran2 Busy 

1) The source state of the EC 
transition is the current state 
of the (parent) function block; 
2) The EC transition 
condition evaluates to TRUE; 

 
 
 
3 

Tran3 Idle There is a signal at the event 
input (having WITH 
association(-s)) 

4 

Tran4  busy There are no enabled EC 
transitions  

 
2 

Tran5 n/a This transition is enabled if 
there is a signal at the event 
input of the data valve 

1 
(highest) 

Table 1. Conditions enabling the model transitions 
 
The basic transitions determining the functioning of 

function block systems are the transitions of types 1 and 
2. Transitions of the first type correspond to the almost 
complete cycle of ECC interpreter work (except the 
interpreter transition to the initial state s0), namely the 
chain s0→t1→s1→t3→s2→t4→s1.  

Transitions of the second type represent the cycle 
s1→t3→s2→t4→s1.  

Transition of the third type corresponds to the 
reaction on an incoming event and the corresponding 
sampling of the associated data variable in case when the 
ECC interpreter is idle, but the arrived event won't force 



any ECC transition. This type of transitions corresponds 
to the chain s0→t1→s1→t2→s0. Transition of the fourth 
type models transition of the ECC interpreter from state 
s1 to the initial state s0. Transition of the type tran5 
models data sampling in a composite function block. 

1.4. Compatibility and mutual exclusion of model 
transitions 

Within the model of one function block some 
transitions are compatible (can be enabled 
simultaneously) and some are mutually exclusive. Based 
on the transition enabling rules introduced above we can 
build the relation of their compatibility/exclusion, 
presented in Table 2. 

 tran1 tran2 tran3 tran4 
tran1 + - + - 
tran2 - + - - 
tran3 + - + - 
tran4 - - - - 

Table 2. Table of model transitions’ compatibility. 
In Table 2 the "+" symbol designates that the 

transitions are compatible, while "-" shows that they are 
mutually exclusive. Thus, transitions of the tran2 type 
are incompatible with tran1 and tran3 as they occur in 
mutually excluding states of the ECC interpreter. The 
tran4 excludes any other transition by definition, and 
since data sampling in the "busy" interpreter state is 
impossible. 

1.5.  Firing transition selection rules 
Firing transition selection rules define the order of 
enabled transition firing. Varying the firing transition 
selection rules it is possible to obtain different execute 
semantics of FBs. 

The employed function block execution model 
combines the priority and the non-deterministic 
disciplines of active objects’ selection from the set of 
enabled ones. 

The hierarchy of priority levels is as follows. On the 
highest level is the data valve execution that has a higher 
priority (1) than function block since it is assumed that 
data valve's execution is by far shorter than a function 
block's execution. 

At the function block level we introduce the 
following sublevels (in the priority descending order): 2) 
tran4; 3) tran1 and tran2; 4) tran3. 

A function block is said to be enabled if it has at least 
one enabled transition; 

The selection of a firing transition is done by the 
following rules: 
1. If there is a non-empty set of enabled data valves, 

one data valve is selected non-deterministically; 
2. If there is a non-empty set of enabled FBs, then  

a. The FB to be current (i.e. active) is selected non-
deterministically; 

b. Within the current FB, a transition is selected 
with the highest type priority and the highest 
priority within the type. 

It should be noted that the priority of the third type 
transitions is determined by the priority of the 
corresponding EI-variable that, in turn, is determined by 
the location in the FB’s textual representation (the earlier 
appears – the higher priority). 

1.6. Transition firing rules 
The transition firing rules define the operations 

executed at the transitions.  
We define the following operations performed at 

the execution of function block systems. 
op1 – Input data sampling resulting in a transfer of the 
data values to the corresponding input variables 
associated with the current event input by WITH 
declarations. In case of data valves the data is assigned 
to the external data buffer associated with the data valve.  
op2 – Reset of all EI-variables of the current FB or data 
valve. This operation can be called “clearing the event 
channel” that eliminates the “event latching”; 
op3 - ЕСС interpreter jumps to the “busy” state; 
op4 – Change of the current ECC state; 
op5 – Algorithms’ execution resulting in the 
modification of output and internal variables;  
op6 – Transfer of signal(s) from event outputs of the 
current FB resulting in setting of EI-variables of the FBs 
and data valves connected to those event outputs by 
event connections. Prior to that the event channels of 
those recipient FBs are cleared to avoid “event latching”. 
Alternatively, the events can be scheduled by sending 
the corresponding request to the event scheduler of the 
resource. 
op7 – Transfer of output variable values (associated with 
currently issued output events) to the external data 
buffers. 
op8 – Transition of the ECC interpreter to the “idle” 
state. 

In Table 3 all model transitions are represented as 
sequences of some of the above defined operations (if 
the operation opj, is a possible part of trani then the 
corresponding table cell (i,j) is shaded.  

 op1 op2 op3 op4 op5 op6 op7 op8 
tran1         
tran2         
tran3         
tran4         
tran5         

Table 3. The model transition operation sequences. 
 

Each action associated with a model transition is 
performed as a transaction, i.e. as an atomic non-
interrupted action consisting in a sequence of operations 
executed in the pre-defined order.  

In addition, to reduce the number of non-essential 
intermediate states it can be accepted that: 
1) Transition of type 4 can be executed in a chain with 
transitions of type 1 or 2 as a single transaction;  
2) Operation op6 can be extended by including in it 
transmission of output signal from the FB-source to all 
FB-receivers through a network of data valves (if any) 



including all data sampling operations in all involved 
data valves. 

3. Declarative representation in Prolog 

Below we consider representation of the model 
transitions using specialized production rules interpreted 
in Prolog. The start event is not represented by a rule, 
but just participates in formation of the initial state. The 
production representation reflects automata models, 
algorithms and connections between FBs. States of the 
networks of FBs can be effectively represented by means 
of tree structures which allow inclusion of semantic 
information along with structural information. Tree 
structures are well represented by means of Prolog. 

The representation of a state as a Prolog’s term has 
both benefits and drawbacks if compared to the 
traditional list-based representation. The benefits include 
simplification and homogeneity of the rules and of the 
rule interpreter, as well as higher effectiveness of 
unification of terms than that of the list processing 
procedures. 

An obvious drawback is the dependency of the term-
state dimension on the number of function blocks in the 
network, and on the number of their components. 

The following mnemonic is used for the terms: s- 
global state of the FB network, state - state of ECC, ei - 
values of event input variables, vi, vo, vv - values of 
input, output and internal variables, val -value of an 
output variable; buff - value of the data buffer associated 
with output variable. 

The partial syntax of the rule-based function block 
representation in Prolog is given below by means of 
EBNF (Extended Backus-Naur Form): 
<production rule>::= 

tran(<type of model transition>,<identifier of FB-owner>, <transition 
name>,<previous state pattern>,<new state pattern>) 
[:- {<predicate of guard condition>[,<predicate of algorithm>] 

| <predicate of algorithm>}].  
<type of model transition>::= ectran | sampling | freefb | datavalve 
<previous state pattern>::=<state pattern> 
<new state pattern>::=<state pattern> 
<state pattern>::= s(<instance state pattern> [{,<instance state pattern>}…]) 
<instance state pattern>::= <basic function block instance state pattern>  

| <data valve instance state pattern> 
<basic function block instance state pattern>::= 

< function block instance name>(state(<EC state identifier>), 
osm(<state of ECC interpreter>) 
[, ei(<list of event input variables>)]  
[, vi(<list of  input variables>)]  
[, vо(<list of output variables and data buffers >)]  
[, vv(<list of internal variables>)]) 

<data valve instance state pattern>::= 
<data valve instance name>(<event input variable>,bf(<list of data 

buffers>)) 
<EC state identifier>::= <variable> | <symbolic constant> 
<state of ECC interpreter>::= idle | work 
<list of event input variables >::=  

<event input variable >[{,<event input variable >}…] 
<event input variable>::= <event input variable’s name> 

(<event input variable’s value >) 
<event input value >::= 0 | 1 | <variable> 
<list of input variables >::= <input variable>[{,<input variable >}…] 
<input variable >::= < input variable’s name>(< input variable’s value>) 
<input variable’s value>::= <variable> | <constant> 

<list of output variables and data buffers >::=  
<output variable and data buffer > 
[{,<output variable and data buffer >}…] 

< output variable and data buffer >::=  
<name of output variable>(val(<value of output variable>), buff(<value of 
data buffer)) 

<value of output variable>::= <variable> | <constant> 
<list of data buffers>::= <data buffer>[{,<data buffer>}…] 
<data buffer>::= <data buffer’s name>(<data buffer’s value>) 
<data buffer’s value>::=<variable> | <constant> 
<variable>::= X<number of variable> 

Note that the body of the Prolog clause tran is used 
only in case of model transitions of type ectran. The 
rules for model transitions of type freefb include only 
action but not enabling condition. The enabling 
condition is defined in rule interpreter for all transitions 
of type freefb. 

The element <FB owner identifier> determines a 
unique alphanumeric identifier of an FB instance.  

The Prolog representation of EC transition condition 
is built according to the following rule: the event-
dependent part of the condition belongs to the pattern of 
the previous state in the Prolog clause header. The guard 
condition is represented in the Prolog clause body.  

The algorithms are represented using predicates of the 
following general form: 
<name of algorithm predicate> (A1, A2,…,An, B1, B2,…, Bm), 

where A1,A2,…,An – are input parameters of the 
algorithm, B1,B2,…,Bm – output parameters of the 
algorithm. Several Prolog clauses may be needed to 
represent an algorithm. Predicates of condition 
expressions and of algorithms are formed for function 
block types, not for instances.  

4.  Production systems operation 

Functioning of a production system in many ways is 
based on the unification of terms which is used to 
determine resolvability of production rules. A production 
rule is enabled if 1) the term-pattern of previous state is 
unified with the term of the current state; 2) the predicate 
of the guard condition evaluates to true (if any). 

The actions to determine new EC states, and new 
values of variables (event inputs as well as input, output, 
internal variables, and data buffers) in the term of the 
new state can be done in three different ways: 

1. By explicitly stated new values. The new state 
pattern will have constants in the corresponding 
places;  

2. Implementing algorithms as Prolog predicates. The 
predicate would compute the new values given the 
corresponding values of the algorithm parameters 
from the previous state. In this case the variables for 
old and new values shall be different;  

3. Using inheritance of the state variables. This method 
is applied to the components that are not changed by 
the transition. Such components can be represented 
by the same variable in new and previous state 
patterns. 
The work of the production system can be presented 

as a sequence of transactions.  



An example of a simple interpreter of the production 
rules for function block systems’ modelling is as 
follows: 

 
path(S,[],S). 
path(S,[IdT|L],Sn):- fbinstance(IdFB), priortran(Rtype,IdFB,IdT,S,S1), 
Rtype\==freefb, releasefb(Rtype,IdFB,S1,S2), rstate(NS,S), 
inbase(NS,IdT,S2), path(S2,L,Sn). 
priortran(Rtype,IdFB,IdT,S,S1):- tran(Rtype,IdFB,IdT,S,S1), 
Rtype\==freefb,!. 
releasefb(Rtype,IdFB,S1,S2):- Rtype==ectran, 
\+tran(ectran,IdFB,_,S1,_), tran(freefb,IdFB,_,S1,S2),!. 
releasefb(Rtype,IdFB,S1,S2):- S2=S1. 
inbase(NS,T,S1):-   rstate(NS1,S1),assertz(arc(NS,T,NS1)),!,fail. 
inbase(NS,T,S1):-  retract(count(N)),NS1 is N+1, assert(count(NS1)), 
assertz(rstate(NS1,S1)), assertz(arc(NS,T,NS1)). 
build_RG:- 
init(S),assertz(rstate(0,S)),assert(count(0)),!,path(S,_,_),fail. 
 

In this version of the rule interpreter the priorities of 
FBs and data valves are considered to be equal. 

The recursive predicate path is used to construct a 
chain of model transitions, transferring system from a 
source state to a target state. The database fbinstance 
stores the names (unique) of all FB and data valve 
instances containing in the FB system. 

The predicate priortran(Rtype,IdFB,IdT,S,S1) is used 
to determine the state S1, immediately reachable from 
state S, as well to determine identifier IdT and type Rtype 
of the model transition that caused the state change. This 
change must be relevant to the function block (or data 
valve) IdFB and must have the highest priority in it. 
Priority of a production rule is determined by its location 
in Prolog program’s text (the earlier rule is located – the 
higher is the priority).  

The predicate releasefb is used to implement the 
model transition of type 4. It transfers the ECC 
interpreter to the state “idle”, if the ECC has no more 
enabled EC transitions. The predicate inbase inserts 
information about a new state and a new arc of the 
reachability graph to the databases rstate and arc, 
respectively, and to determine if the new state duplicates 
an existing state. The generated states are numbered 
using a counter stored in the database count. 

The predicate build_RG is used to construct the 
reachability graph from the initial state. 

The presented interpreter can be used as a prototype 
for implementation in a more efficient way, for example, 
in C/C++. 

5. Example 

The following example serves to illustrate the 
analysis of a FB network containing all essential 
attributes, such as event input and output variables as 
well as input, output and internal variables. However, 
many aspects of function block systems are omitted for 
the sake of brevity.  

 
Figure 4. Function block network used for the 
verification trial. 

 The network, presented in Figure 1, consists of two 
instances alu1 and alu2 of function block type ALU. The 
outputs of one block are connected to the inputs of the 
other. After the initiating event the system must do the 
eternal sequence of actions, consisting of the interleaving 
addition and subtraction operations. The input 
parameters are selected in a way ensuring that the 
variable value limits are bounded. For example, if the 
first block adds some number, the second block would 
subtract the same number. This is intended to make the 
state space of the model better observable (for the 
purposes of this example).  

The function block type ALU is shown in Figure 5. 
The block performs two arithmetic operations: addition 
res=d1+d2+n, initiated by the event input “add” and 
subtraction res=d1-d2-n, initiated by the event input 
“sub”, where n – is an internal variable initialized with 
value 13. The output variable res is initialized with value 
3. 

 
Figure 5. Description of the function block type ALU: 
interface and ECC. 

 
The tree-structured global state of the function block net 
from Figure 4 is presented in Figure 6.  

The following terms are used in the tree: 
• alu1 and  alu2– states of function blocks alu1 и 

alu2, respectively; 
• init, add and sub – values of the event input 

variables init, add and sub, correspondingly (0 or 
1); 

• d1 and d2– values of input variables d1 and d2, 
correspondingly; 

• res – values of the output variable res (val) and its 
buffer (buff); 

• n – value of internal variable n. 
Leaves of the tree are numbered. The state pattern in the 
form of Prolog term is as follows. 

s(alu1(state(X1),osm(X2),ei(init(X3),add(X4),sub(X5)), 
vi(d1(X6),d2(X7)), vo(res(val(X8), buff(X9))), vv(n(X10)), 



alu2(state(X11),osm(X12),ei(init(X13),add(X14),sub(X15)), 
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20))). 

The initial state of the FB network is determined by 
the following term:  
s(alu1(state(s0),osm(idle),ei(init(1),add(0),sub(0)), vi(d1(0),d2(0)), 
vo(res(val(0), buff(0))), vv(n(0))), 
alu2(state(s0),osm(idle),ei(init(0),add(0),sub(0)), vi(d1(0),d2(0)), 
vo(res(val(0), buff(0))), vv(n(0)))). 

alu1 

s 

state(1) ei vi vo vv 

init(3) add (4) sub (5) d1 (6) d2 (7) res 

val (8) buff (9)

n (10)

alu2 

state(11) ei vi vo vv 

init(13) add (14) sub (15) d1 (16) d2 (17) res n (20)

val (18) buff (19)

osm(2) 

osm(12) 

 
Figure 6. Tree-structured global state of the function 
block net. 
 
Let us consider for example the transition s0->s2 in 

the ECC of the block alu1. This model transition is of 
type “Primary EC transition”. 

The transition enabling conditions are :1)ECC of the 
block alu1 is in the state s0; 2) event input signal add is 
present; 3) guard condition (n=13)&(res>0) is true; 4) 
ECC interpreter of block alu1 is in state idle. 

The actions performed by the transition are as 
follows: 
1) ECC of the block alu1 changes current state from s0 

to s2;  
2) Reset all event inputs of the block;  
3)  Sampling the input variable d1 associated with the 

event input add by a WITH construct. As a result of 
it, input variable d1 of the block alu1 is assigned 
with the value of the data buffer associated with the 
output variable res of the block alu2; 

4)  ECC interpreter of the block alu1 goes from state 
idle to state work; 

5) Output variable res is assigned the value 
(d1+d2+n), as determined by the algorithm 
alg_alu_alg2;  

6) The output event cnf is initiated, and as a result set 
the event input variable sub of the block alu2; 

7) The value of the output variable res is assigned to 
the data buffer associated with that variable. 

 
The Prolog production rule representing this model 

transition is as follows: 

 
tran(ectran,alu1,alu1_s0_s2, 
s(alu1(state(s0), osm(idle), ei(init(0),add(1),sub(0)), vi(d1(X6),d2(X7)), 
vo(res(val(X8), buff(X9))), vv(n(X10))), 
alu2(state(X11), osm(X12), ei(init(X13),add(X14),sub(X15)), 
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20)))), 
s(alu1(state(s2), osm(work), ei(init(0),add(0),sub(0)), 
vi(d1(X19),d2(X7)), vo(res(val(X8m), buff(X8m))), vv(n(X10))), 
alu2(state(X11), osm(X12), ei(init(0),add(0),sub(1)), 
vi(d1(X16),d2(X17)), vo(res(val(X18), buff(X19))), vv(n(X20))))):- 
 cond_alu_s0_s2(X10,X8), alg_alu_alg2(X19,X7,X10,X8m). 
cond_alu_s0_s2(P1,P2):-P1=13,P2>0. 
alg_alu_alg2(A1,A2,A3,B1):- B1 is A1+A2+A3. 

 
The reachability graph of the FB system considered 

above is shown in  
Figure 7. 
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Figure 7 Reachability graph of the FB system. 
 
As it can be seen from the graph, there are three 

deadlock states in the FB system. For example, a path to 
deadlock state 24 (including only EC transitions) is as 
follows: alu1(s0→s1), alu2(s0→s1), alu1(s1→s0), 
alu2(s1→s0). The deadlock arises because of loss of a 
short-living signal on the event input add of block alu1. 
This signal is reset on the step alu1(s1→s0). If the given 
FB network is executed on the one resource then it is 
possible to avoid the deadlock by means of a proper 
scheduling strategy. In case of multiple resources and 
devices it is necessary to take into account real time 
constraints and relations. The alternative way to avoid 
the deadlock is to restructure the FB system.  

6. Specification of Properties 

Prolog can efficiently represent various queries 
covering the reachability, liveness and safety of the 
function block applications. For example:  
1) Determine, at which event input variable values the 

block alu1 will be in the state (ECC) s1, and the 
alu2 – in the state s0”;  

2) At which values of input variables d1 both blocks 
will be in identical states? 

3) Find states in which values of the variable n is 
greater than some constant A 

4) “Are there any input events losses?”, etc.   
The properties are coded as Prolog predicates and make 
queries to prove or falsify.  
The proof of the properties consists in automatic 
inference of a path to the state corresponding to a 
condition. The path is a sequence of production rules 
applied. It is automatically generated by the Prolog 



engine. 
It is possible to specify FB system’s properties using 
branching time temporal logic CTL (Computation tree 
logic) interpreted in Prolog [11]. For example, liveness 
of ECC transition t is expressed by the following CTL 
formula: 

s0╞ALL(POT(enabled(t))). 
where s0 is an initial state, ALL and POT are temporal 
operators. The proposition enabled(t) is used to 
determine enableness of ECC transition t. The 
corresponding Prolog query is shown below: 

?- init(S),all(pot(enabled(T)),S). 
The interpreter of CTL formulas was developed in 
Prolog for using jointly with the rule interpreter. The 
Prolog program was implemented using SWI-Prolog 
[15]. 

To automate the generation of the Prolog 
representation of function blocks, a prototype converter 
was developed. The converter reads XML representation 
of function blocks and generates the Prolog production 
rules.  

7. Conclusion 

The paper reports on the first steps toward creating a 
powerful and flexible tool for analysis of function block 
systems. Further works will deal with the following 
issues: 
1) The development of the corresponding intelligent 

GUI, supporting query formulation and 
interpretation of the results of the proof; 

2) The development of structural constraints based on 
the description of incorrect situations in the graph 
form; 

3) Adding models of service interface function blocks 
4) Adding the concept of time to the modelling; 
5) Use of semantic information and ontologies of 

application domains for verification; 
6) Modelling of distributed function block 

configurations; 
7) Reduction of the number of data valves and data 

buffers based on the traces of data flows, aiming at 
the reduction of the reachability space; 

8) Experimental evaluation of resources use needed to 
execute the production system in various 
implementations of Prolog. 

9) Implementation of the rule interpreter using 
conventional programming language, e.g. C/C++. 

Special attention will be directed to deal with the 
integration of the developed methods and tools in the 
steps of the overall engineering process based on 
function blocks and special design patterns that enable us 
use closed-loop models of controllers and controlled 
systems. 

8. References 
1. Function blocks for industrial-process measurement and 

control systems - Part 1: Architecture, International 
Electrotechnical Commission, Geneva, 2005 

2. Vyatkin V., Hanisch H.-M. “A modelling approach for 
verification of IEC1499 function blocks using Net 
Condition/Event Systems”, Proc. IEEE conference on 
Emerging Technologies in Factory Automation (ETFA'99), 
Barcelona, Spain, 1999, pp. 261—270 

3. H. Wurmus, B. Wagner, “IEC 61499 konforme 
Beschreibung verteilter Steuerungen mit Petri-Netzen”, 
Conference Verteilte Automatisierung,, Proceedings, 
Magdeburg, 2000 

4. Stanica P., Gueguen H., “Using Timed Automata for the 
Verification of IEC 61499 Applications”, IFAC Workshop 
on Discrete Event Systems (WODES’04), Reims, France, 
2004 

5. Faure J.M., Lesage J.J., Schnakenbourg C., Towards IEC 
61499 function blocks diagrams verification, IEEE Int. 
Conference on Systems, Man and Cybernetics (SMC02), 
October 6-9, Hammamet, Tunisia, 2002 

6. A. Lueder, C. Schwab, M. Tangermann, and J. Peschke. 
Formal models for the verification of IEC 61499 function 
block based control applications, IEEE Conference on 
Emerging Technologies and Factory Automation 
(ETFA’2005), Proceedings, Catania, Italy, September 2005. 

7. Christensen J.H., IEC 61499 architecture, engineering, 
methodologies and software tools, 5th IFIP International 
Conference BASYS’02, Proceedings, Cancun, Mexico, 
2002  

8. Bonfe M., Fantuzzi C., An Application of Object-Oriented 
Modeling Tools to Design the Logic Control System of a 
Packaging Machine, Proc. 2nd International Conference on 
Industrial Informatics (INDIN’04), Berlin, Germany, 2004 

9. Сloсksin W.F., Mellish C.S., Programming in Prolog, 2nd 
edition, Berlin: Springer-Verlag, 1984. 

10. Azema P., Juanole G., Sandus E., Moutbernard M. 
Specification and verification of distributed systems using 
Prolog interpreted Petri nets, Proc. 7th Int. Conf. Software 
Eng, 1984, pp.510 - 518 

11. Papapanagiotakis G., Azema P., Pradin-Chezalviel B. 
Propositional branching time temporal logic in Prolog, Proc. 
5th Annual  Int. Phoenix. Conf. Comput. and Commun., 
1986, pp.371 - 377 

12. Dubinin V. N., Zinkin S.A. Logic programming languages 
for design of computer systems and networks, Penza State 
University Publishers, 1997, 88 p., available in electronic 
form at: http://alice.stup.ac.ru/~dvn/prolog/index.htm 

13. V. Dubinin, V. Vyatkin, Formalized definition and 
modelling of IEC 61499 function block systems, Letters of 
Tertiary Education Institutions, Volga region, Russia, Penza 
State University Publishers, 2005, N 5, pp.76-8 

14. V. Dubinin, V. Vyatkin, Towards A Formal Semantics of 
IEC 61499 Function Blocks, 4th IEEE Conference on 
Industrial Informatics (INDIN’2006), Singapore, 2006 

15. SWI-Prolog web-site: http://www.swi-prolog.org/ 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


