
Systematic Design and Implementation of Distributed Controllers 
in Industrial Automation 

 
Valeriy Vyatkin 

 
The University of Auckland,  

New Zealand 
v.vyatkin@auckland.ac.nz 

Martin Hirsch and Hans-Michael Hanisch 
  

Martin Luther University of Halle-Wittenberg, 
Halle, Germany 

Martin.Hirsch@informatik.uni-halle.de 
Hans-Michael.Hanisch@informatik.uni-halle.de 

 
 

Abstract 
This paper discusses systematic approaches to the 

design of distributed controllers in industrial automation 
systems. Several design approaches are compared that 
lead to the distributed control of manufacturing 
machines and their parts. In particular, a decentralized 
control method is introduced that does not require a 
master controller.  

The implementation frameworks of IEC 61131-3 and 
IEC 61499 are checked on their fitness to the distributed 
control. A migration method from a PLC-based control 
to IEC 61499 is illustrated. A layered architecture for 
distributed controllers is introduced and tested on 
examples. 

1. Introduction 

The growing complexity of distributed automation 
systems raises the question: to which extent 
decentralized control is useful if compared with usual 
centralized, PLC (programmable logic controller) based 
control? Although, the distributed control topic is 
addressed in the literature from different angles (good 
examples are the works [1] and [2]), some issues remain 
not sufficiently clear. 

There are a few reasons that made distributed 
automation a hot issue in the last decade. The 
manufacturing systems are becoming more agile to meet 
the requirements of ever changing markets. The 
machines, in turn are becoming more autonomous and 
intelligent, implementing various functional features, 
like human-machine interfaces, communications, 
diagnostics, and control. Thus the control of such 
systems is naturally distributed, so the methodology of 
distributed control design is important.  

Some motivations explaining the need for distributed 
control design are as follows: 

1.1. Performance 
When the performance of a controller is not 

sufficient, often it is a good idea to divide the control 
program to several pieces and run them in different 
devices. In general, the response time of a PLC can be 
taken as linearly dependent on the size of the program, 
so such a splitting may bring an immediate gain in the 

productivity. Such decomposition requires explicit 
definition of a message passing protocol or the use of the 
shared data model. 

1.2. Spatial distribution 
For the objects that are spatially distributed, reading 

of the input values and delivery of the output values are 
usually implemented using field area networks 
(fieldbuses in automation jargon). This can impose 
considerable delays between input events and 
controller’s reaction. The solution is obvious: delegate 
the decision making to the microcontrollers located 
closer to the object. 

1.3. Ease of integration and re-use 
In many cases industrial production systems are built 

from mechatronic components already having some 
degree of embedded automation achieved by means of 
an embedded microprocessor device, or just by means of 
some software components executed on a controller, 
“shared” between several mechatronic components. 

Thus, the component-oriented approach to the design 
implies autonomous control to be developed and to be 
provided with each mechatronic component.  

From the said above, we can conclude that, there are 
two essentially different approaches leading to the 
distributed control systems: decomposition of a 
centralized controller onto several communicating 
distributed controllers and integration of predefined 
controllers of components to the control of a system.  

Another question concerns the implementation of 
distributed controllers. The claim of the newly emerging 
standard IEC 61499 [3] is to be a reference architecture 
for distributed measurement and control systems.  The 
questions are: 

1. How bad are the existing frameworks, such as 
programmable logic controllers (PLCs) and IEC 61131 
[4], and  

2. How good is the new standard specifically for the 
implementation of distributed controllers? 

In this paper we are going to address both issues of 
systematic design of distributed controllers and of their 
programming implementation.  

In this paper we are not directly touching upon the 
exciting research issue of the automatic design of 
distributed controllers using formal methods. However, 



we suggest some standardized interfaces for such 
controllers that can be potentially useful also for that 
purpose.  

2. Description of testbed 

For illustration we will use a simple model of a 
manufacturing system called “Distribution Station” 
(Figure 1) that consists of two mechatronic units: a 
feeder unit with a magazine of workpieces and a pusher; 
and a simple manipulator (transfer unit) that takes 
workpieces from the feeder (left position) and brings 
them to the opposite position (called next position or 
right position), where they are supposed to be taken by 
other automated machines.  

 
Figure 1. Mechatronic system for work piece storage and 
transfer [11]. 

The “Distribution Station” is a part of a bigger 
manufacturing system model, which is a chain of several 
stations representing different stages of a manufacturing 
process. 

 
Figure 2. State chart of the centralized controller. 

In addition to the mechatronic models of machines, 
the station includes a small panel with buttons RESET, 
START, STOP, and ACK(nowledge). The buttons have 
no memory, so each button generates a logical one 
(TRUE) value as long as it is pressed and zero otherwise. 
Thus, a short push on a button generates a pulse. The 
buttons are lit underneath by LEDs that also can be 
controlled, i.e. set by the control device as needed. The 
highlighted status of buttons may indicate that they are 
enabled. 
State chart of a (centralized) controller of the distribution 
station is shown in Figure 2. The state chart can be quite 
trivially converted to executable code in one of the 
standard programming languages of programmable logic 
controllers, such as ladder logic or sequential function 
charts.  
However, in this work we are looking for control 
architectures in which each of the mechatronic units has 
their own controller communicating with controllers of 
other units. The controllers can be created from scratch, 
or can be originated in an existing centralized controller. 
The latter can be given in some abstract form, like state 
chart, or as PLC code, for instance, represented in the 
ladder logic language. The important problem of 
migration from PLC-based control to distributed 
controllers will be addressed in Section 6.  

3. Architecture for distributed control  

There are many possible approaches to the design of 
distributed controllers. Obviously a controller of a 
mechatronic unit that collaborates with other units (and 
their controllers) needs to combine pure control 
sequences (as any local controller) and communication 
with other controllers. The communication can be 
implemented using a custom-made proprietary protocol 
or using services of an existing one.  
It is not very difficult to create distributed control for a 
concrete system of limited complexity. Our intention, 
however, is to investigate the approaches that would 
allow more flexibility in building system from 
mechatronic units like from blocks with autonomous 
control. For that we propose using of a layered 
architecture with three layers, as illustrated in Figure 3. 
 

 
Figure 3. Layers of the distributed control architecture. 

The layers have the following functions:  
 



1. The application layer can include sequential 
centralized or local decentralized controllers, 
implementations of intelligent (agent) algorithms, etc. 
2. The operations layer implements set of operations 
defined for mechatronic units along with their 
implementation sequences.  
3. The sensors/actuators layer – provides direct access 
to sensors and actuators of the physical object.  

Functions of a layer use services of the layer located 
directly below in the hierarchy. Some implementations 
can mix functions of the layers, e.g. an operations layer 
controller can also encapsulate functions of the 
sensor/actuator layer.  

4. From centralized to distributed  

Some of the scenarios presented in the introduction 
may require re-implementation of an existing automation 
system with centralized control by a system with 
distributed control. Depending on the available input, the 
proposed solution can be essentially different. 

The behaviour of our sample object is captured in 
form of the process activity diagram in Figure 4.  

 

 
Figure 4. Process activity diagram. 

The process includes well separatable sequences of 
actions of the feeder and of the transfer units. The 
sequences are partially concurrent (e.g. RETRACT and 
TO_MAG).  

As applied to our example, the idea of distribution 
consists in “splitting” of the centralized control state 
chart, and adding synchronisation of the processes. We 
suggest a simple inter-object interface and protocol that 
is as follows.  
Each distributed controller is designed so that it attempts 
to perform operations as soon as they are not blocked by 
the controllers of other objects. This implies that the 
controllers have to be at least “aware” of the presence of 
other objects around and of the operations they perform. 
The interface is based on the mutually exclusive access 
to the areas where mechanical parts can clash. In our 
example such an area is the "End position" of the 
FEEDER unit where the workpiece is picked up by the 
TRANSFER unit. 
Access to such shared areas can be implemented by 
standard mutual exclusion algorithms, such as 
semaphore-based central algorithm, or distributed Ricart 
and Agrawala algorithm [5]. In this paper, for the sake of 

simplicity, we are using Boolean variables passed from 
one controller to the other.  

 
Figure 5. Signal interface of distributed controllers in the 
external blocking approach. 

The distributed controllers interface each other as 
illustrated in Figure 5 using the implementation of the 
protocol as follows.  
Some actions of each mechatronic unit have guard 
conditions “allowed by left or right neighbour” (LEFT 
OK/RIGHT OK). The guard conditions are set by the 
corresponding mechatronic units located on the right/left 
(if any). This approach assumes a linear order of 
connections of mechatronic units in the production 
process, but it can be easily extended for the general case 
of multiple connections (where mechatronic units are in 
the nodes of an arbitrary graph).  
As seen from Figure 5 this approach fits well to the 
hierarchical structure of mechatronic systems. Our 
sample system (called as a whole “Station Distribution”) 
has a right neighbour “Sorting Station”. The stations 
interface each other exactly in the same way as their 
components, i.e. using permissions from the left or right 
neighbour. In Figure 5 the permission from the right 
neighbour is passed down to the component controller of 
the transfer station, which is physically interacting with 
the Sorting Station. If no neighbour station is present, 
then the permission is set to the constant “TRUE” as it is 
the case in our example for the left neighbour of the 
distribution station and the Feeder unit. 
The detailed implementation of the Distribution Station 
controller that consists of FEEDER and TRANSFER 
controllers communicating via common Boolean 
variables is presented in form of concurrent state charts 
in Figure 7.  Confronting the controllers from Figure 7  
with the layers description in Figure 3, one sees that the 
controllers implement the application layer functionality 
directly interacting with the sensor/actuator layer.  

5. Function block implementation 

The Function Block standard IEC 61499 aims at the 
distributed control as the main application area. The 
standard provides several structures for encapsulation of 
distributed controllers and design of distributed systems. 
The detailed description of the standard is far beyond the 
scope of this paper and we refer the reader to [8].  



 
Figure 6. Decentralized control of the object. 

 
In particular a Basic Function Block of IEC 61499 is 

a component model that is specified by its input/output 
interface, execution control chart (ECC), algorithms 
associated with the states of ECC and internal variables. 
The ECC is a state machine with a semantic similar to 
that of Harel state charts. The ECC semantic seems to fit 
well to representation of state charts of controllers like 
shown in Figure 2 and in Figure 7.  

The decentralized controller can be implemented in 
IEC 61499 function blocks with minor modifications as 
shown in Figure 6. The features specific to the function 
block implementation, if compared to the state charts, 
are as follows: 
1. The inter-controller communication is implemented 

via passing event and data signals. Thus, the event 
output OUT_CMD of the FEEDER controller is 

connected to the event input IN_CMD of the 
TRANSFER controller and vice versa.  

2. The data inputs LEFT_OK, RIGHT_OK are 
associated with event IN_CMD, and the data outputs 
ALLOW_LEFT, ALLOW_RIGHT are associated 
with the event OUT_CMD. The output event needs 
to be issued every time one controller changes the 
block/permit variables.  

3. The controllers’ State Charts are implemented as 
ECCs of the corresponding function blocks (shown in 
Figure 8 and Figure 9).  

 
Figure 8. Sequential controller of the FEEDER.  

 
4. Values of the variables are assigned in the 

algorithms, most of which set/reset just one variable. 
The algorithms have self-explanatory names, for 
example the algorithm TO_MGZ1 consists of one 

 
Figure 7. Distributed algorithm that uses the permit/lock protocol via common variables. 



operator: TO_MGZ:=true; and TO_MGZ0 of: 
TO_MGZ:=false; 

The controllers receive the values from the sensors in the 
event-driven manner through the service interface 
function block INPUTS of type nm_inputs and send the 
output values to the function block OUTPUTS of type 
nm_outputs.  

The function block INPUTS issues the event output 
CHG at any change of the input bits. This event output is 
connected to the event inputs SENS of feeder and 
transfer controllers. Thus, the controllers will be 
activated at any input change. The buttons are also 
connected to Boolean input signals, however they are 
converted to events by means of function block 
E_R_TRIG, that detects “rising edge” of a Boolean 
variable and issues the corresponding output event. 

 
Figure 9. Sequential controller of the TRANSFER unit.  

6. Other implementation ideas 

6.1. Distributed Control with Master Controller 
Although the example shown above proves the 

possibility of decentralized autonomous control without 
any external coordination, in many real situations the use 
of a master controller is unavoidable.  

In our architecture the master controller belongs to the 
application layer and uses services provided by the 
controllers of mechatronic units implemented on the 
“Operations” layer.  

Such controllers have standardized event inputs 
corresponding to their operations and the outputs named 
according to their ECC states. They are quite different 
from the controllers shown in Figure 7 . 

The master controller encapsulates the desired 
sequence of operations of the lower level controllers. It 
sends events to the local “operations” implementing 
function blocks, when a certain operation needs to be 
executed.  

The Function Block network in Figure 10 implements 
the master controller approach divided on the application 

layer (MASTER) and the operation layer (CTL_FEED 
and CTL_TRANS).  

 
Figure 10. Distributed control following the master-
controller approach and implemented in IEC 61499.  

6.2. Multi-layered distributed controlles 
The “no-master controller” pattern with Boolean 

locks, discussed in the previous section, can be re-
designed in the similar Application-Operations manner 
as illustrated in Figure 11. Function blocks 
FEEDCTL_H and TRANSCTL_H are the application 
layer controllers of feeder and transfer respectively. 
CTL_FEED and CTL_TRANS are their operation layer 
controllers. 

 
Figure 11. FB implementation of distributed control with 
functionality split across the application and operations 
layers 

Note that the connection between FEEDCTL_H and 
TRANSCTL_H is implemented by adapter connection 
based on the adapter type BLOCK shown in Figure 12. 

 

Figure 12. Adapter BLOCK used as a communication 
interface between controllers of neighbouring objects. 



6.3. Migration from PLC - IEC6113 
The problem of development of distributed 

controllers in IEC 61499 equivalent to the existing PLCs 
has great practical importance for the successful 
deployment of the new standard.  

The migration of PLC controllers to IEC 61499 has 
been already addressed, in particular by Hussain and 
Frey in [7]. That work, however focuses on the 
migration of centralized controllers to IEC61499. 
Besides, it assumes that the abstract controller 
description in form of Signal Interpreted Petri Nets 
(SIPN) is given for the whole plant as a source for the 
migration. This assumption simplifies the task and 
allows for designing of Function Blocks implementing 
the sequential logic captured in SIPN. The coordination 
of the distributed processes was done yet in the central 
controller for the whole plant, under some assumptions 
about rigid sequencing between some processes.  

In some situations, however only the PLC code is 
given and no higher level description exists. In addition, 
if a distribution is desired, one can assume to be 
provided with the division of inputs and outputs between 
the distributed parts of the plant. In such a case the best 
would be to re-engineer the state chart of the controller 
given its PLC code. How to do that was shown by Krogh 
and Falcione in [6] for ladder logic diagrams. However 
no one guarantees that the re-engineered state chart 
would be as useful and descriptive as the original state 
chart.  

Another migration idea will be discussed in the next 
section.  

6.4.  “Straightforward” ladder to FB transformation 
To illustrate the idea of “straightforward” migration 
from PLC code (say, ladder logic) of the centralized 
controller to a distributed function block application.  

 
Figure 13. Fragment of the ladder diagram 

representing the controller of the model. 

Controller of the “Distribution station” in ladder diagram 
language is shown in Figure 13 (the figure shows only a 
part of the controller). Pure ladder diagrams are 
equivalent to Boolean functions and can be easily 
represented by a combinatorial logic circuit. The 
diagrams used in the logic control usually are a mix of 
pure ladder elements and functional elements such as 
triggers, timers, etc. This is also the case in the controller 
shown in Figure 13.  
The equivalent solution in terms of IEC 61499 Function 
Blocks can be done in a variety of ways. The way shown 
below might look quite strange, but it has some practical 
benefits that will be discussed further. 

 
Figure 14. Straightforward implementation of Boolean 
logic by an event-driven Function Block network. 

The idea of the method is to make a network of function 
blocks equivalent to the ladder circuit and activated by 
an external event issued at each update of the inputs. Part 
of the function block network equivalent to the ladder 
circuit is shown in Figure 14. The function blocks 
E_AND, E_OR are equivalent to the logic gates AND, 
OR. The only difference with the usual logic gate blocks 
is that they have event input REQ, activating the 
operation. The block SR_TRIG implements a trigger 
whose switching is also driven by the event input REQ.  
The function block IO represents an interface to the 
input and output process data. When the inputs are 
updated it issues the event CNF that activates the 
execution of the function block network. The IO block 
can be implemented as a composite function block that 
encapsulates previously used nm_inputs and 
nm_outputs Function Blocks.  
Once the function block network as in Figure 14 is 
created, it can be easily mapped on a distributed 
topology of devices following the idea from [8] 
illustrated in Figure 15.  



 
Figure 15. Mapping of a function block network to 
distributed devices: execution semantic preserved 
thanks to the event-based communication [8]. 

For example, we will separate out the controller of the 
HMI pannel and move it to another device. The first step 
in the distribution is to separate the inputs and outputs of 
the panel as shown in Figure 16 where the input/output 
function block IO was substituted by two blocks IO1 and 
IO2 corresponding to one byte of inputs and one byte of 
outputs each.  

 

Figure 16. First step of the distribution process is 
separation of inputs and outputs. 

Then, the function blocks of the application have to 
be mapped to the corresponding devices starting from 
IO1 and IO2 and the communication function blocks 
have to be inserted in the points where the connections 
cross the borders of devices.  

The reader may wonder why such a low-level 
representation of Boolean logic as in Figure 14 may be 
practical when ladder logic diagram can be easily 
encapsulated to a Basic function block’s algorithm?  

The reason is as follows:  
One of the most popular function block 

implementations is Function Block Development Kit of 

Holobloc Inc. [9]. This tool compiles function block 
types to Java classes. Thus, if it is used in conjunction 
with an embedded control device, like Netmaster [10], 
every change in a basic function blocks requires to 
upload the re-compiled class file to the embedded 
device. Since the run-time part of FBDK does not 
support dynamic class upload, it leads not only to the 
need to shut down the current process, but also to the 
need to substitute the whole run-time library of function 
blocks (FBRT). The procedure is too complex to be 
performed at the factory floor. 

However, system configurations in FBDK do not 
need to be re-compiled. For example, the system 
configuration from Figure 14 can be modified in the FB 
editor running on a PC and then remotely re-started in 
the embedded devices without any re-compilation. So, 
the maintenance personnel would be able to modify the 
program and immediately test it on a real physical 
system.  

7. Conclusion 

The design of distributed controllers has many 
similarities with the design of distributed computer 
applications. When the communication between the 
controllers is concerned, three approaches are possible:  
- Design a proprietary application-layer protocol; 
- Implement (and possibly modify) an existing 

protocol; 
- Use services of an existing protocol implementation; 
In this paper we have addressed two first approaches.  
We have illustrated that the concept of Basic Function 
Blocks of IEC 61499 was specifically designed to 
implement certain separation of concerns: the protocol 
issues are implemented in ECC, while the atomic control 
actions are implemented in algorithms. Thus, the 
Function Block applications provide sufficient means for 
implementation of distributed controllers. 
The work will be continued towards the development of 
more formalized design methodologies and supporting 
tools that would allow easy distribution of centralized 
control algorithms and their implementation by means of 
IEC 61499 Function Blocks.  

8. References 

[1] Sunder, C.; Zoitl, A.; Strasser, T.; Favre-Bulle, B. Intuitive 
control engineering for mechatronic components in 
distributed automation systems based on the reference 
model of IEC 61499,; Industrial Informatics, 2005. INDIN 
'05. 2005 3rd IEEE International Conference on 10-12 
Aug. 2005 Page(s):50 - 55  

[2] Ferrarini, L.; Veber, C.; Lorentz, K.; A case study for 
modelling and design of distributed automation systems, 
Advanced Intelligent Mechatronics, 2003. AIM 2003. 



Proceedings. 2003 IEEE/ASME International Conference 
on Volume 2, 20-24 July 2003 Page(s):1043 - 1048 vol.2 

[3] IEC61499 - Function blocks for industrial-process 
measurement and control systems - Part 1: Architecture, 
International Electrotechnical Commission, Geneva, 2005 

[4] IEC61131 - International Standard IEC 1131-3, 
Programmable Controllers - Part 3, International 
Electrotechnical Commission, 1993, Geneva, Switzerland  

[5] Couloris G., J. Dollimore, T. Kindberg, Distributed 
System: Concept and Design, Addison-Wesley, 2005 

[6] Falcione, A., and Krogh, B., Design recovery for relay 
ladder logic,  IEEE Control Systems, 13(2):90—98, 1993. 

[7] Hussain T. and Frey G.: Migration of a PLC Controller to 
an IEC 61499 Compliant Distributed Control System: 
Hands-on Experiences, IEEE Conference on Robotics and 
Automation (ICRA 2005), Barcelona, April, 2005 

[8] Hanisch H.-M. and Vyatkin V.: Achieving 
Reconfigurability of Automation Systems by Using the New 
International Standard IEC 61499: A Developer’s View, 
The Industrial Information Technology Handbook, CRC 
Press, October 2004 

[9] Function Block Development Kit,  www.holobloc.com  
[10] Netmaster controllers, Elsist s.r.l., www.elsist.it  
[11] Vyatkin V., IEC 61499 Function Blocks for Embedded and 

Distributed Control Systems Design, 264 p., ISA, USA, 
2006 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


