
ON INTEGRATION OF MODEL-BASED VALIDATION IN
SOFTWARE ENGINEERING

OF INDUSTRIAL AUTOMATION SYSTEMS

Valeriy Vyatkin

Department of Electrical and Computer Engineering
The University of Auckland

Auckland, New Zealand
 v.vyatkin@auckland.ac.nz

Sirko Karras, Thomas Pfeiffer and Hans-Michael Hanisch

Martin Luther University of Halle-Wittenberg,
Dept. of Engineering Sciences

D-06099 Halle, Germany
{Sirko.Karras, Thomas.Pfeiffer, Hans-Michael.Hanisch}@iw.uni-halle.de

ABSTRACT
This paper introduces idea of a system architecture for
industrial automation software systems which integrates
the formal background of modular place transition models
with the ideas of the upcoming IEC61499 standard for
component based distributed measurement and control
systems. Goal of the architecture is to support simulation
and formal verification as a natural part of the engineering
process in industrial automation.

KEY WORDS
Industrial automation, modeling, formal verification,
architecture, intelligent control

1 Introduction
The automation technology is an engineering discipline
that covers subjects like manufacturing and process
systems, electrical and computer engineering, and
computer science. The major responsibility of an
automation engineer is to design and implement a control
system that interacts with the object of control in a closed
loop and that ensures that the controlled object behaves
safely and efficiently. Although automation technology is
deeply influenced by information technology in that sense
that the control system itself is an information processing
system, automation technology is not identical with
information technology. The major point of concern in
automation technology is the object that is controlled, and
the control system serves only as a means to reach the
goals coming from the controlled object.

Formal verification is an important means for validation
of software intensive flexible automation systems ([1-4]).
To do the verification one needs formal model of the
system under study. As the automation systems consist of
machinery and of their controllers, both the object
dynamics and the control logic have to be modeled in the
closed loop. Therefore, any scientific methodology for
design and verification of control systems must take into
consideration the behavior of the controlled object, along
with its distributed and hierarchical structure. Having only
a model of the controller is in general not sufficient to
prove the correctness of the specifications.

Special focus of our past research work has been on
precise modeling of behavior of automation systems and
their validation through simulation and formal verification
(e.g. [1-2,5-11]). A number of methods and tools have
been developed that are united by the approach to
modeling that includes closed-loop representation of the
control system and modular hierarchical organization of
both control and object parts of the model. These tools
and methods form the framework for formal methods
application graphically represented in Figure 1. The figure
shows several possible scenarios, for instance: model-
based system design with subsequent code generation, or
system analysis that starts with the ready code and
generates its model, and is conducted using simulation or
model checking, etc. The figure indicates presence of
several entry points and several scenarios that is possible
to conduct within the framework.

From these experiences we have realized the importance
of systematic approach to modeling that should produce
models of systems as an integral part of engineering
process. Otherwise, if the user is required to develop the

models from scratch, it diminishes drastically the benefits
of the approach.

However, the current practice of control engineering is
not much aligned with this idea. Re-use of the models is
not easy, since there is no systematic way to compose
models of complex systems from simpler ones is
provided. As a result the modeling every time has to be
conducted from scratch that makes questionable the
feasibility of practical application of the closed-loop
modeling for systems’ validation.

Figure 1. The framework for the formal methods application in industrial

automation.

The goal of the recently started research project VAIAS -
Validatable Architectures for Industrial Automation
Systems (funded by German Ministry for Education and
Research and by the industrial partners) is the
development of an architecture that attempts to combine:

- an approach to software (and system) engineering
following the structure of the original system (object-

based engineering), and

- inherited validatability, that means facilitated
application of formal analysis methods through the
architecture.

The validatability of the architecture is seen to be reached
by:

- the use of formal methods for specification of
behavioral and structural properties of the architecture,
and

- in particular, by providing the room for the behavioral
models of single equipment units, prototype models of
controllers and other relevant software components
tightly connected to the software components within a
single integral architecture.

This way VAIAS intends to meet the new challenges of
the automation world providing new software architecture
that could better fit to the decentralized reconfigurable
nature of automation systems of new generation, will have
a higher inherited level of robustness, and will be
“friendlier” to formal analysis and synthesis.

There is a number of works on mechatronic architectures
and mechatronic ontologies appeared recently. What the
majority of these works have in common is the
understanding of heterogeneous nature of mechatronic
knowledge. Thus, our idea to develop a successful
approach to validation of automation systems is to rely on
the existing mechatronic architecture, e.g. [12-14], (and
tools supporting it) and extend it as needed. This approach
could save efforts on handling geometrical, hydraulic,
electric, and other kinds of information, and focus on the
issues of behavior modeling, embedded control, execution
run-time and simulation.

There are dozen of research groups worldwide which
work in the direction of object-oriented system
engineering in industrial automation, using UML,

function blocks, Java as basic ideas ([15-19]).
There is also extensive literature on formal
methods used in industrial automation, in
particular of formal verification. However,
less attention has been paid to the
combination of both these techniques.

The paper is structured as follows. Section 2
presents a short overview of past relevant
works. Section 3 contains informal discussion
of some of VAIAS ideas, and Section 4
illustrates these on an example. The issues of
formal verification and implementation are
not touched, we discussing only the
descriptive features of the being developed
architecture.

2 Architecture building blocks
The combination of simulation, verification
and execution is considered in VAIAS as the
Figure 2. Structural diagram representing hierarchy of automation object components
and interaction of their embedded controllers.

key facilitator of control system engineering, eventually
leading to faster development of better quality systems.
This combination is enabled by the idea of embedded
modeling as well as the idea of a single source for models.

The basic building blocks of VAIAS are Automation
Objects (AO), which can be basic or composite.
Description of a basic block type does not include
references to other AO types. The architecture will be
based on the standard IEC61499 architecture at the
execution level, and will employ some ideas of UML at
the design level.

The VAIAS architecture will consider the model
development as an integral part reference component-
based architecture for industrial automation systems
standardized by the IEC611499 standard. The latter
allows definition of device-independent distributed
applications and their mapping onto different topologies
of hardware devices having different low-level run-time
platforms. of system engineering. The models will allow
simulation with adjustable precision, formal verification
and code development or generation.

VAIAS intends to occupy an intermediate place between
the domain-specific architectures, like the mechatronic
architectures described in [12], and the general purpose
executable distributed component architecture of
IEC61499. The engineering process in VAIAS is seen as
a gradual refinement of informal requirements until they
take the formal shape of executable code that satisfies
specifications. Similar to the classic UML-based system
engineering, graphic diagrams are used in VAIAS to
structure, formalize and specify the requirements.

This process may include the use of model and code
generators, as well as of formal validation tools. However,
the tool framework of VAIAS will allow
manual interaction at each stage of the process.
In particular, the following descriptive means
will be used:

- Basic automation objects will be described
in a multi-layer way, where a layer may
correspond to a particular functional
characteristic of the object. It is assumed
that each automation object may have
models of its internal dynamics and models
(or program implementations) of the
corresponding functionality (e.g. control,
visualization, communication, diagnostics,
etc.).

- Models of internal dynamics of basic
objects can be originally specified as
hybrid state charts; The other modeling
forms can be derived from this form either
manually or automatically.

- Complex automation objects could be
described also in multi-layer form, where
each layer is specified by means of block

diagrams (Modular View). The overall structure of the
object (its structural skeleton) can be presented as an
object diagram or as a class diagram. Interactions
between the constituent objects can be specified by
means of sequence diagrams which can be a source of
modular view diagrams.

- The geometrical layout of a composite automation
object requires the corresponding data structure,
maybe similar to the suggested in [12]. The layout
data can be further used as a source data for the
components implementing visualization.

Quite natural understanding of the object-oriented system
engineering in industrial automation consists in designing
software structures whose structure follows the structure
of the mechanical units.

In this section this idea will be illustrated on example that
is a simple automation system that includes two
intelligent mechatronic actors: an automated storage of
workpieces, and a manipulator that extracts the workpices
from the storage and passes them to other processing
units. The word “intelligent” here means that the
corresponding objects have some pre-programmed
functionality.

Figure 2 shows the hierarchical structure of this system.
Each of the mechatronic actors, in fact, is also complex.
Thus, the storage of workpieces consists of a workpiece
magazine and of a feeder that shifts forward a workpiece
from the lower position of the magazine to the position
from where it can be picked by the manipulator. After the
feeder returns to its initial position the pile of workpieces
in the magazine falls down and thus the lower place again
becomes occupied.

Figure 3. Three application scenarios of the VAIAS framework.

The diagrams like the one in Figure 2 represent the
structure of complex automation objects. The complex
AOs are composed from other complex or basic objects.
The basic AOs are those located in the leaves of the tree.
For example, a pneumatic cylinder is a basic object as it
does not include any others.

The concept of the Automation Object is not yet formally
defined. There is ongoing work by International
Electrotechnical Commission [21] which follows the
standards [22, 23, 24]. Here we assume that an AO is a
capsule to embody the data and software components
relevant to a mechatronic unit (e.g. those implementing its
different functions Operation Control, Safety control,
Diagnostics, Visualization, etc.). In particular we are
considering a layered structure of both complex and basic
AOs, where a layer is specified by its functionality (e.g.
Control, Interface, Model, Layout, View, etc.). A layer
may contain elements of different types, for instance, the
modelling layer may contain a generic model in form of
hybrid state chart, a simplified discrete model in form of
Petri nets, and program implementation of the state chart
model in form of source code, say complying with
IEC61499 standard [23-25].

The control of each mechatronic actor interacts with the
controllers of the included components as it is shown in
Figure 2. In turn, it provides some interface for the higher
levels of control.

3 Application Scenarios
Achieving better “validability” of automation software
requires performing of simulation and formal verification
procedures through the engineering cycle, probably in a
repetitive manner.

The application scenarios provided by VAIAS
architecture are supported by the tool framework as
presented in Figure 3.

At first the system is being composed from the constituent
“automated mechatronic objects”. Engineering tools allow
description of the system’s structure, geometrical
positioning of the components, and their interaction with

each other. As a result, the engineering tool produces a
number of data files containing the described dynamic
and static properties of the system. The most suitable data
format for the result of the engineering process seems to
be XML/XMI.

This data will form the input of the three subsequent
scenarios:

Executable system configuration. The intermediate XMI
format is converted into function block executable
specification following IEC61499 standard. This form is
precise enough but still independent from a particular
hardware architecture. The structure of the executable
spec follows the MVA/CDA approach (model-view-
adapters)/(control-diagnostics-adapters). Further
translation to machine-executable form is performed by
the corresponding tools, such as the function block
development kit (FBDK) or new generation of the iConL
tool that will be able of importing the XML function
block specifications.

System configuration with simulated plant. This
configuration is also described by means of function
blocks of IEC61499 standard and is different from the
former one only in the block standing for the mechatronic
components. The simulation can be conducted using the
same distributed function block run-time platform as the
former configuration, with some add-ons, such us
statistics gathering. In Figure 3 the execution is illustrated
by means of FBRT – Function Block Run-Time of
Rockwell Automation [FBDK], that is a distributed Java-
based platform.

System configuration with discrete state model of the
plant good for formal verification. This is a modular
object-oriented model of the executable system, where the
modules corresponding to the object are inserted from the
corresponding Automation Object repository, and the
models of the software components (such as controller,
diagnostics, supervisor, etc.) are generated using the
corresponding model-generators.

Figure 5. Data representation in VAIAS.
Figure 4. VAIAS engineering tool that allows description of the system
by picking components and placing them together in the CAD-like tool.

The internal organization of a composite
automation object is illustrated in Figure
5. Control of the object can be
represented as a sketch in a number of
supported model forms (e.g. state charts)
or more precisely in a programming
language out of those traditionally used
in automation. The latter form can be
derived automatically from the sketch
using thee model-based code generation
software tools.

Figure 6 shows the structure that is good
for both executable and simulation
software configurations for this system.
The corresponding function blocks,
selected from the respective Automation
Object repositories STORAGE and MANIPULATOR,
are placed together and connected to each other according
to the required signal exchange between their respective
mechatronic actors. Note, that the Figure does not use the
traditional mnemonic of IEC61499 function blocks,
instead normal block diagram mnemonic is used.

Figure 6. Block diagram of the executable system configuration.

The configuration implements control, visualization and
human-machine interface of the system. The connection
between function blocks are simplified by the use of
adapter interface mechanism of IEC61499 that allows
representation of multiple bi-directional connections by
just one line, like in a multi-wire cable. The main
advantage of the presented solution is the simplicity of
system integration/reconfiguration as the software
structure follows the structure of the mechatronic part.
What is left to system engineer is just wire/rewire the pre-
programmed software blocks.

The idea of smooth integration of independent software
components is well visible for visualization part of the
system. As shown in Figure 6 the function block “Arm
View” is responsible for drawing of only a part of the
visualization screen (manipulator), while the magazine’s
image is rendered by the block “Magazine View”. The
direct interface components, such as “Magazine”, “Arm”
and “HMI Panel” can be substituted by simulation model
function block that will convert the control application to
the simulation application.

The example illustrates the engineering using the
Automation Object. The software of the composed system
was created by wiring of pre-programmed function blocks
supplied for each of the mechatronic actors. The
reconfiguration of the mechatronic part of the system (say
substitution of the manipulator by a similar one of another
vendor) would result in substituting some of the function
blocks by their counterparts taken from another
“Automation Object” and by rewiring them with
connection arcs.

4 Acknowledgements
This work was supported in part by the cooperative
project VAIAS funded by the German Ministry for
Education and Research (BMBF) and by the University of
Auckland.

5 References
1. H.-M. Hanisch: Closed-Loop Modeling and Related

Problems of Embedded Control Systems in
Engineering, 2004, in Abstract State Machines 2004,
LNCS 3052

2. Vyatkin V., Hanisch H.-M. Bringing the model-based
verification of distributed control systems to the
engineering practice, in book Intelligent
Manufacturing Systems 2001, Elsevier Science,
pp.152-157, November 2001

3. Vyatkin V., Hanisch H.-M.: Verification of
Distributed Control Systems in Intelligent
Manufacturing, Journal of Intelligent Manufacturing,
special issue on Internet Based Modeling in
Intelligent Manufacturing, vol.14, N.1, 2003, pp.123-
136

4. Bani Younis, M.; Frey, G.: Formalization of Existing
PLC Programs: A Survey. Proceedings of CESA
2003, Lille (France), Paper No. S2-R-00-0239, July
2003.

5. M. Stanica, H. Guéguen: A Timed Automata Model of
IEC 61499 Basic Function Blocks Semantic,
ECRTS'03 Euromicro European Conference on Real-
Time Systems, Porto, Portugal, July 2003

6. V. Vyatkin, H.-M. Hanisch, G. Bouzon: Open
Object-oriented validation framework for modular
industrial automation systems, INCOM’2004,
Proceedings, Salvador, Brazil, April, 2004

7. Vyatkin V., Hanisch H.-M., Pfeiffer T.: Modular
typed formalism for systematic modeling of
automation systems, 1st IEEE Conference on

Industrial Informatics (INDIN’03), Proceedings,
Banff, Canada, August 2003

8. H.-M. Hanisch and V. Vyatkin: Achieving
Reconfigurability of Automation Systems by Using
the New International Standard IEC 61499: A
Developer’s View, The Industrial Information
Technology Handbook, CRC Press, November, 2004

9. Hanisch, H.-M. and A. Lüder: Modular modeling of
closed-loop systems, Colloquium on Petri Net
Technologies for Modeling Communication Based
Systems, Proceedings, pp.103—126, Berlin,
Germany, 2000

10. Vyatkin V.: Intelligent Mechatronic Components:
Control System Engineering using an Open
Distributed Architecture, IEEE Conference on
Emerging Technologies in Factory Automation
(ETFA'03), Proceedings, Lisbon, Portugal,
September 2003

11. V. Vyatkin, C. Peniche: How the IEC61499
architecture fits to the requirements of intelligent
automation systems?, 2nd IEEE Conference
INDIN’2004, Berlin

12. Jose L. Martinez Lastra, Reference Mechatronic
Architectures for Actor-based Assembly systems,
Thesis for degree of Doctor of Technology, Tampere
University of Technology, 2004, ISBN 952-15-1210-
5

13. K. Feldmann, W. Wolf, M. Weber: Development of
an Open, Event-based and Platform Independent
Architecture for Distributed and Intelligent Control
Systems, INDIN’04, Proceedings, pp. 560-566

14. Vyatkin V., J. LM Lastra: Architectural Foundations
for Reconfigurable Manufacturing Systems, 3rd
International Symposium on Open Control Systems
SoftSympo’03, Helsinki, September, 2003

15. M. Bonfe, C. Fantuzzi: Design and Verification of
Mechatronic Object-Oriented Models for Industrial
Control Systems, IEEE Conference ETFA’2003,
Lisbon, 2003, Proceedings, vol. II, pp.253-260

16. K. Thramboulidis, Development of Distributed
Industrial Control Applications: The CORFU
Framework, 4th IEEE International Workshop on
Factory Communication Systems, Sweden, 2002,
Proceedings.

17. Thramboulidis K.S. Using UML in Control and
Automation: A Model Driven Approach, 2nd
international Conference on Industrial Informatics
INDIN’04, 24-26 June 2004, Berlin, Germany

18. W. Zhang, Ch. Diedrich. Relations between Function
Block and object-oriented automation application
design, Private communication, 2003

19. Bonfe M., Fantuzzi C. An Application of Object-
Oriented Modeling Tools to Design the Logic

Control System of a Packaging Machine, 2nd
international Conference on Industrial Informatics
INDIN’04, 24-26 June 2004, Berlin, Germany

20. W. Zhang, Ch. Diedrich. Comparison between FB-
oriented and Object-oriented designs in control,
Private communication, 2003

21. Automation Objects for industrial-process
measurement and control systems - IEC SB3/TC 65,
Working draft, 2002

22. International Standard IEC 1131-3, Programmable
Controllers - Part 3, International Electrotechnical
Commission, 1993, Geneva, Switzerland

23. Function blocks for industrial-process measurement
and control systems - Part 1: Architecture,
International Electrotechnical Commission, Geneva,
2005.

24. Function blocks for industrial-process measurement
and control systems - Part 2: Software tools
requirements, International Electrotechnical
Commission, Geneva, 2001

25. J. H. Christensen: IEC 61499 ARCHITECTURE,
ENGINEERING, METHODOLOGIES AND
SOFTWARE TOOLS, 5th IFIP International
Conference on Information Technology for
BALANCED AUTOMATION SYSTEMS In
Manufacturing and Services, Proceedings, Cancun,
Mexico, September, 2002

26. Function Block Development Kit, downloadable
from Hwww.holobloc.comH

	ABSTRACT
	Introduction
	Architecture building blocks
	Application Scenarios
	Acknowledgements
	References

