
Analysing Signal-Net Systems

Peter H. Starke, Stephan Roch
Humboldt-Universität zu Berlin

Institut für Informatik
Unter den Linden 6, D-10099 Berlin

{starke,roch}@informatik.hu-berlin.de

September 2002

This report reflects the state of the art in the analysis of signal-net
systems. It is intended to serve as a reference manual for all those
interested in this new type of nets. Although the main problems are
undecidable, analysis is possible.

Authors

Peter H. Starke, Stephan Roch
Humboldt-Universität zu Berlin
Institut für Informatik
Unter den Linden 6, D-10099 Berlin
{starke,roch}@informatik.hu-berlin.de

Karsten Schmidt, Adrianna Alexander, Paul Berthold
Humboldt-Universität zu Berlin
Institut für Informatik
Unter den Linden 6, D-10099 Berlin
{kschmidt,foremnia,berthold}@informatik.hu-berlin.de

This work was supported by the Deutsche Forschungsgemeinschaft under the Reference
STA 450/4-2 and published as Informatik–Bericht 162, Humboldt-Universität zu Berlin,
Institut für Informatik, September 2002.

Introduction

Modular modeling of systems is based on a concept of interaction for modules. If the
modules are described by (classical) Petri nets, the only concepts for interaction available
in net theory so far are token reading (by test arcs) and token passing (from module to
module).

Hanisch and Rausch [Rau96, RH95] introduced a concept of one-sided synchroniza-
tion of modules, where a signal-event from one module forces a simultaneous action in a
second module, but only if that action is enabled. In this report, we resume the devel-
opment of this approach on the Petri net level, i.e. recall the corresponding type of net,
which we call signal-net system.

Extending Petri nets by incoming and outgoing signals is by no means new. Some
classical concepts from Petri net application to discrete event controller design use such
signal extensions, as, for example, the concept of König and Quäck [KQ88], and Graphcet
[DA92]. These extensions, however, do not provide means for interconnecting several
separate Petri nets with incoming and outgoing signals to a new model which has the
same characteristics. The idea of condition/event systems provided by Sreenivas and
Krogh [SK91] guided Hanisch and Rausch to a model based on Petri net representation
of the dynamic behavior of basic modules of the system which has to be modeled and
some extensions by incoming and outgoing signals which are used to connect the basic
modules to a complete system model. Since the basic model form is derived from Petri
nets and the signal concept is based on condition signals and event signals, they call their
models net condition/event systems (NCES). In the case of autonomous systems (these
are systems with no external inputs), analysis is possible. We call such autonomous
systems signal-net systems. Different names for different variants have been used in the
past [Sta97,SH97].

This report is structured as follows: In the first part we introduce the basic concepts
of signal-net systems, show their syntax and dynamics and extend them with timing
constraints on arcs and with colours.

In the second part we investigate dynamic properties. First, and unfortunately, the
computational power of signal-net systems turns out to be that of a Turing-machine,
so most important problems like reachability are undecidable. But, at least if the net
is bounded, we can compute a reachability graph. We have investigated an on-the-fly
test for boundedness, and different state space reduction techniques. We have adopted
the stubborn set method and are able to use symmetries. In combination with the
newly defined diamond reduction, efficient state space reduction of signal-net systems is
possible.

The third part is about model checking. We recall the definition of CTL, a branch-
ing time temporal logic, and extend this logic with transition formulae and timing con-
straints. This part is merely a reference manual for the use of a model checker. The
complete syntax can be found in the appendix.

The fourth part presents methods which are based on structural properties, namely
deadlocks and traps and investigates free choice properties and compositions. The last
part is about state, place, transition and step invariants.

We close this report with additional material in the appendix, e.g. bibliography, in-
dex, and SESA documentation. SESA is, like INA [RS98], a net analyzing tool without
graphical interface [SR00]. We have implemented some of the algorithms presented in
this report. The main focus lies on efficient (reduced) state space analysis and model
checking. Please visit http://www.informatik.hu-berlin.de/lehrstuehle/automaten/sesa/
for more information.

If you are interested in modeling aspects and practical applications, then we suggest
to have a closer look on publications written by our partners from the engineering de-
partment of Martin-Luther-Universität Halle-Merseburg [LH00,HPP+99,HKL99,Kar99,
PPH98,Pan98,Sch97,VHSR00,VH99]. They use our tool SESA for the analysis of con-
trol devices and the verification of some aspects of the execution control of function
blocks following the draft standard IEC 1499 which is currently under preparation.

Berlin, September 2002

Peter H. Starke and Stephan Roch

Contents

I. Preliminaries 1

1. Basic Definitions 3

2. Time Constraints on Arcs 8

3. Colours 11

II. Dynamic Properties 13

4. Analysis 15

5. Reachability Graphs 18

6. Boundedness 19

7. Diamond Reduction 21

8. Stubborn Sets 27

9. Symmetries 37

10. Conflicts 44

III. Model Checking 47

11. Computation Tree Logic 49

12. Extended Computation Tree Logic 53

13. Timed Computation Tree Logic 62

IV. Structural Properties 65

14. Static Deadlocks and Traps 67

15. Free Choice and Extended Simple Properties 72

16. Composition 79

V. Invariants 89

17. State Invariants 91

18. Place Invariants 93

19. Transition Invariants and Step Invariants 95

Appendix 101

SESA Tool Description 103

References 121

Index 127

I. Preliminaries

1. Basic Definitions Peter H. Starke, Stephan Roch 3

1. Basic Definitions

Signal-net systems are generalizations of Petri nets in that they allow a one-sided syn-
chronization of transitions by means of signals. In the sequel, we first give the math-
ematics of the basic model, avoiding the complications induced by colours and time
constraints.

Let P be an arbitrary non-empty set. A mapping m : P → N0 is called a marking
of P (or a multiset over P , BAG(P) is the set of all multisets over P). For p ∈ P , the
number m(p) ∈ N0 often is referred to as the number of tokens on p or as the multiplicity
of p in m.

For markings m and m′ (of the same set) we define the sum m+m′, the difference
m − m′ and the relation m ≤ m′ pointwise. Moreover, reminding that markings are
multisets, we define the union m ∪m′ and the intersection m ∩m′ by

m ∪m′(p) := max(m(p),m′(p)),
m ∩m′(p) := min(m(p),m′(p)).

An (integer valued) mapping v : A→ Z is called an A-vector. The operations +, − and
the relation ≤ for A-vectors are defined pointwise.

The set of all finite sequences (or words) over an alphabet A is denoted by A∗. For
a relation R ⊆ X × Y we define complement R, inverse R−1, and reflexive transitive
closure R∗ as usual.

1.1. Structure

N = [P, T, F, V,B,W, S,M,m0] is a signal-net system (SNS for short) iff:

1. P is a non-empty finite set (of places),

2. T is a non-empty finite set (of transitions), disjoint with P ,

3. F is a subset of (P × T) ∪ (T × P) (the flow relation, the set of flow arcs),

4. V is a mapping which attaches a positive integer to every arc (the arc weight,
V : F → N),

5. B is a subset of P × T (the set of condition arcs),

6. W is a mapping which attaches a positive integer to every condition arc (the
condition arc weight, W : B → N),

7. S is a subset of (T × T) \ idT , the irreflexive signal (flow) relation,

8. M is a mapping which attaches a (signal-processing) mode to every transition
(M : T → { ∧ , ∨ }), and, finally,

9. m0 is a marking of P called the initial marking or the initial state of N .

4 1. Basic Definitions Peter H. Starke, Stephan Roch

The sets P , T and F , and the mappings V and m0 are interpreted in the usual way.
Nevertheless, in general the tuplet [P, T, F, V,m0] is not a Petri net in the classical sense
(i.e. [P, T, F] is not a net) because we allow places and transitions to be isolated with
respect to token-flow. With other words, we drop the condition

dom(F) ∪ cod(F) = P ∪ T,

which is assumed for Petri nets. This is necessary in our context since a place may
serve as a condition and the firing of a transition can have an effect without changing
the marking itself. Since some properties of signal-net systems can be concluded from
properties of [P, T, F, V,m0] we shall call this tuplet the underlying Petri net, but, if we
want to use a result from Petri net theory for the underlying Petri net we have to check
whether it holds true if isolated places or transitions are present.

If [p, t] is an element of B then we say that p is a (or serves as) condition of t, i.e.,
in order to fire t it is necessary that p is marked with at least W (p, t) tokens. Figure 1.1
shows the graphical representation of the condition arc [p, t]. We consider condition

������ �� tp

Figure 1.1: Graphical representation of the condition arc [p, t]

arcs [p, t] as leading a piecewise constant signal which informs about the token load of
the place p, i.e. the marking of p. From the firing rule (see below), one can see that
a condition arc with multiplicity W (p, t) between t and p has, in general, not the same
effect as two flow arcs [p, t] and [t, p] of the same multiplicity.

If a pair [t, t′] of transitions is an element of the signal relation S, then we say that
a signal arc leads from t to t′, which means that firing the transition t sends a signal-
event to the transition t′. We assume the signal relation to be irreflexive since it is
not meaningful for a transition to send to itself a signal-event. Figure 1.2 shows the
graphical representation of a signal arc [t, t′]. Signal-events reflect the second type of

t′t

Figure 1.2: Graphical representation of the signal arc [t, t′]

signals needed to connect the modules of a control device, the impulse type. They are
described by time functions which have non-zero values only for isolated time points.

For any transition t the mode M(t) determines the processing of the incoming signal-
events. Consider a transition t which is the target of signal arcs coming from transitions
t1, . . . , tn, i.e. [t1, t], . . . , [tn, t] ∈ S. If M(t) = ∨ then to fire t it is necessary that at
least one signal arc [ti, t] leads a signal-event, i.e. ti is just firing. If, otherwise, M(t) = ∧
then to fire t it is necessary that all signal arcs leading to t lead a signal-event.

If a transition t has no incoming signal arcs, i.e., the set

St := {t′
∣∣ [t′, t] ∈ S}

1. Basic Definitions Peter H. Starke, Stephan Roch 5

is empty, then the transition t is called spontaneous, otherwise forced . By Spont we
denote the set of all spontaneous transitions of N , by Forc the set of all forced transitions.

For any transition t we define the markings t−, t+, t̂ as follows:

t−(p) :=
{
V (p, t), if [p, t] ∈ F
0, else

,

t+(p) :=
{
V (t, p), if [t, p] ∈ F
0, else.

and

t̂(p) :=
{
W (p, t), if [p, t] ∈ B
0, else.

For any subset s ⊆ T the markings s− resp. s+ are the sum of the markings t− resp. t+

for t ∈ s, and, ŝ is the union of the markings t̂ for t ∈ s.

1.2. Dynamics

SNS are executed in steps, i.e. sets of transitions are fired simultaneously. The firing rule
says, roughly speaking, that executable steps are formed by first picking up a nonempty
set of enabled spontaneous transitions and then adding as many as possible of those
transitions that are forced to fire by signal-events produced by transitions in the step.
This implies that in every non-dead SNS there exists a spontaneous transition. To make
this more precise we define the signal-completeness of transition sets inductively:

Basis: Every subset s ⊆ Spont is signal-complete.

Step: If s ⊆ T is signal-complete, t ∈ Forc and

M(t) = ∨ and St ∩ s 6= ∅

or

M(t) = ∧ and St ⊆ s

then s ∪ {t} is signal-complete.

Obviously, the empty set is signal-complete and ∅ is the only signal-complete set con-
taining no spontaneous transition. A signal-complete set of transitions may fire simul-
taneously as far as signal-events are concerned.

A transition t ∈ Forc is said to be forced by the set s iff t 6∈ s and s ∪ {t} is signal-
complete.

A subset s ⊆ T is said to be a step of N iff

6 1. Basic Definitions Peter H. Starke, Stephan Roch

1. s ∩ Spont 6= ∅
(s is signal-founded, i.e. there is at least one spontaneous transition in s), and

2. s is signal-complete

(i.e. all necessary signal-events will occur).

A step s of N is called enabled at the marking m iff

3. s− ≤ m
(s has token-concession, i.e. the transitions in s are concurrently enabled w.r.t.
tokens), and

4. ŝ ≤ m
(i.e. the conditions of all t ∈ s are satisfied).

A step s of N is said to be executable at the marking m iff s is enabled at m and

5. there is no forced transition t ∈ Forc such that s ∪ {t} also satisfies 1-4

(s is signal-closed, i.e. maximal with respect to inclusion of forced transitions.)

A forced transition t with M(t) = ∧ appears in an enabled step only if it receives
signals from all its signal sources. Otherwise, a forced transition t with M(t) = ∨
appears in an enabled step if it receives a signal from at least one of its signal sources.

If s is an executable step at m, then s may fire, which leads to a new state of N ,
i.e. the marking m′ := m− s− + s+. This is abbreviated as m s−→ m′. The reachability
relation is defined as usual; let RN (m) denote the set of all markings m′ such that
a finite sequence of executable steps leads from m to m′. The state or reachability
graph is a structure [RN (m0), E] where E is the set of edges such that (m,m′) ∈ E iff
m,m′ ∈ RN (m0) and there is a step s with m

s−→ m′.

1.3. Step Computation and Options

The computation of the list of all executable steps at a given state is implemented in
SESA as follows:

1. Compute the set En of all enabled spontaneous transitions.

2. Compute the list Sub of all nonempty subsets s of En which are concurrently
enabled at the given state.

3. For every element s of the list Sub compute the list of all executable steps s′ such
that s = Spont ∩ s′ (i.e. include into s in all possible ways and as much as possible
enabled forced transitions).

4. Form the union of the lists computed in step 3.

1. Basic Definitions Peter H. Starke, Stephan Roch 7

In this way the list of executable steps (the steplist) is computed under the (default)
options:
- firing rule: N (arbitrary maximal steps)
- synchros : N (not to be used)
- greediness : N (not to be used)
- priorities : N (not to be used).
Any different setting of the options leads to the exclusion of some steps from the default
list. We are going to discuss the details now.
If the firing rule is set to
- firing rule: S (maximal single spontaneous transition steps)

then all steps will disappear from the steplist which contain more than one spontaneous
transition. In this case, computation step 2 will compute the list of all singletons of
elements of En.
If the firing should be guided by synchronisation sets, i.e. the option
- synchros: Y (to be used)

is set, then we will be asked for a nonempty synchro-list of pairwise disjoint sets of
spontaneous transitions such that different sets have no preplaces in common (no static
conflicts). The transitions in the same synchronisation set should fire simultaneously
as much as possible. Therefore, a step s is deleted from the steplist, if there exist a
synchronisation set Q in the synchro-list such that s ∩ Q is not empty and a step s′ in
the steplist such that s∩Q is a proper subset of s′ ∩Q. In this case, the step s′ contains
more transitions to synchronise. If the synchro-list contains the set Spont as its only
element then only those steps remain which contain a (w.r.t. set inclusion) maximal set
of spontaneous transitions. The synchro option can be set only under the normal firing
rule: N (arbitrary maximal steps).
If the firing should favour greedy transitions, i.e. the option
- greediness: Y (to be used)

is set, then some spontaneous transitions (by means of the editor) have to be designated
as greedy. If at the current state greedy transitions are enabled, then only steps contain-
ing at least one greedy (spontaneous) transition are executed, i.e. the other steps are
deleted from the steplist. The greediness option can not be set under the firing rule:
S (maximal single spontaneous transition steps).
If the firing should follow priorities, i.e. the option
- priorities: Y (to be used)
is set, then to every (spontaneous) transition (by means of the editor) a natural number

(its priority) must be attached (the default value is zero). Priorities of forced transitions
will be ignored. Under the priority option from the set En of all enabled spontaneous
transitions all transitions are removed which do not have the greatest occurring priority.
Hence, during the computation of executable steps only the step 1 is changed: the set En
contains only enabled spontaneous transitions of the highest occurring priority. If, e.g.
the transition t1 with priority 1, t2 and t3 with priority 2 are enabled at the given state
then only t2 and t3 will be in En. Notice, that not all enabled spontaneous transitions
of highest priority (if there are two or more) are forced to fire in the same (executable)
step but that it is impossible to fire a spontaneous transition of lower priority.

8 2. Time Constraints on Arcs Peter H. Starke, Stephan Roch

2. Time Constraints on Arcs

In this section we consider SNS under time constraints applied to the input arcs of
transitions [Han93]: to every pre-arc [p, t] ∈ F we attach an interval [eft(p, t), lft(p, t)]
of natural numbers with 0 ≤ eft(p, t) ≤ lft(p, t) ≤ ω.

The interpretation is as follows. Every place p bears a clock which is running iff the
place is marked and switched off otherwise. All running clocks run at the same speed
measuring the time the token status of its place has not been changed, i.e. the clock on a
marked place p shows the age of the youngest token on p. If a firing transition t removes
a token from the place p or adds a token to p then the clock of p is turned back to 0. A
transition t is able to remove tokens from its pre-places (i.e. to fire) only if for any pre-
place p of t the clock at place p shows a time u(p) such that eft(p, t) ≤ u(p) ≤ lft(p, t).
Hence, the firing of transitions is restricted by the clock positions.

Definition 2.1
Let N = [P, T, F, V,B,W, S,M] be an SNS , eft a mapping from F ∩ (P ×T) to N0 and,
lft a mapping from F ∩ (P ×T) to N0 ∪{ω} such that always eft(p, t) ≤ lft(p, t) holds.
Then TN = [N, eft, lft] is an arc-timed signal-net system.

A state of TN is given by a pair [m,u] where m is a marking of P , and u is the P -vector
of the clock positions. We assume that a clock which is switched off shows the time
0, and, that the time-scale used is integer. Therefore u is a marking too, and for any
(realizable) state it holds: If u(p) > 0 then m(p) > 0.

The initial state [m0, u0] of TN in general (but not necessarily) consists of the initial
marking of N and the zero time vector.

Arc-timed signal-net systems are executed in steps too. The execution of a step does
not take time. Let [m,u] be a state. A step s of N is said to be enabled at the state
[m,u] of TN (compare this to section 1.2) iff

3. s− ≤ m and for every pre-place p of a transition t ∈ s it holds eft(p, t) ≤ u(p) ≤
lft(p, t)

(i.e. s has token-concession and the clocks are between eft and lft), and

4. ŝ ≤ m

Obviously, a step s may be enabled at the marking m in N , but not enabled at the state
[m,u] of TN because some clocks have not reached the earliest firing time eft or have
passed already the latest firing time lft .

The state [m,u] of an arc-timed signal-net system may change not only by execution
of a step but also by elapsing of one time unit to [m,u′] where

u′(p) :=
{
u(p) + 1, if m(p) > 0,
0, else.

If a state [m,u] of TN is such that no step is enabled or can become enabled by elapsing
of time then this state is called dead. Otherwise, the minimal number of time units after

2. Time Constraints on Arcs Peter H. Starke, Stephan Roch 9

which at least one step becomes enabled is called the delay D(m,u) of the state [m,u].
Hence, the delay is defined only for non-dead states.

Since every executable step has to contain a spontaneous transition the delay of a
non-dead state is the minimal number of time units after which at least one spontaneous
transition becomes enabled. This number obviously may be zero.

Let [m,u] be a non-dead state. Following the weak earliest firing rule we call a step
s to be executable at the state [m,u] iff s is enabled after elapsing of D(m,u) time units.

Given a non-dead state [m,u] we first compute the delay D(m,u) and elapse D(m,u)
time units resulting in the state [m,u′]. Next the set E of all spontaneous transitions
enabled at [m,u′] is computed. Then we proceed with E like the normal firing rule does,
resulting in a list of executable steps. These steps are considered as executable at the
original state [m,u] (they all have the delay D(m,u)).

The execution of an executable step s at the state [m,u] then is done by first elapsing
D(m,u) time units and then firing s. The state [m′, u′] reached by the execution of s is
determined by

m′ = m− s− + s+,

u′(p) :=
{
u(p) +D(m,u), if m(p) > 0 ∧m′(p) > 0 ∧ p /∈ (Fs ∪ sF),
0, else.

During the computation of the list of executable steps synchronisation sets and/or
greediness may be applied. If we put the set of all spontaneous transitions as the only
synchronisation set we arrive at the (strict) earliest firing rule where a step s is executable
at the state [m,u] iff s is enabled after elapsing of D(m,u) time units and

5. s is not contained properly in a step s′ which is enabled after elapsing of D(m,u)
time units.

Remark. The earliest firing rule is often used in Petri nets under time constraints. It
imposes force to fire to the system dynamics: an enabled transition which is not in
conflict with another enabled transition must fire at once. In our setting steps s1, s2

which are simultaneously fireable in the sense of Section 7 may be executable. After
execution of s1 we arrive at a state where the delay is zero und s2 is executable, i.e. in
some sense this state is transient. If one is not interested in such states one should switch
to the (strict) earliest firing rule by setting the synchro option as described above.

Definition 2.2
For any place p we define the clock stop position of p as

csp(p) :=


1 +max{lft(p, t) | t ∈ pF ∧ lft(p, t) 6= ω}, if this set is

not empty,

max{eft(p, t) | t ∈ pF}, else.

Consider two (reachable) states [m,u], [m,u′] which differ only in the clock positions u,
u′ in the following way: If u(p) 6= u′(p) then u(p), u′(p) ≥ csp(p). Then both states are

10 2. Time Constraints on Arcs Peter H. Starke, Stephan Roch

indistinguishable in the sense that the same sequences of steps can be fired. Therefore, in
our implementation, we stop every clock at their clock stop time, i.e. the clock position
will not be increased by elapsing a time unit, although the clock is ”running”. In this
way states of the above described kind will be identified.

3. Colours Peter H. Starke, Karsten Schmidt, Stephan Roch 11

3. Colours

As signal-net systems are Petri nets with additives, coloured signal-net systems will
turn out to be coloured Petri nets [Jen92,Jen94] with additives. We therefore recall the
definition of coloured Petri nets:

Definition 3.1
CPN = [P, T, F,C, V,m0] is a coloured Petri net iff

1. P is a non-empty finite set (of places),

2. T is a non-empty finite set (of transitions), disjoint with P ,

3. F is a subset of (P × T) ∪ (T × P) (the flow relation, the set of arcs),

4. C is a mapping which attaches a non-empty finite set C(x) of colours to every
node x ∈ P ∪ T ,

5. V is a mapping defined on the set F of all arcs such that, for f = [p, t] ∈ F (resp.
f = [t, p] ∈ F), the value V (f) is a mapping from C(t) into BAG(C(p)),

6. m0 is the initial marking of CPN , i.e. a mapping which attaches a multiset m0(p)
from BAG(C(p)) with every p ∈ P .

Let p ∈ P , c ∈ C(p), t ∈ T , d ∈ C(t). Then m0(p)[c] is the number of tokens of colour c
that the place p holds initially and V (p, t)[d][c] is the number of tokens of colour c that
a firing of the transition t under colour d will take from the place p.
Let

Pf := {[p, c]
∣∣ p ∈ P ∧ c ∈ C(p)},

T f := {[t, d]
∣∣ t ∈ T ∧ d ∈ C(t)}.

Definition 3.2
CN = [P, T, F,C, V,B,W, S, Z,M,m0] is a coloured signal-net system (CSNS) iff

1. [P, T, F,C, V,m0] is a coloured Petri net,

2. B is a subset of T × P ,

3. W is a mapping defined on the set B of all condition arcs such that, for b = [t, p] ∈
B, the value W (b) is a mapping from C(t) into BAG(C(p)),

4. S ⊆ T × T ,

5. Z is a mapping defined on the set S of all signal arcs such that, for s = [t, t′] ∈ S,
the value Z(s) is a mapping from C(t) into 2C(t′),

6. M is a mapping which attaches a mode to every colour of a transition (M : Tf →
{ ∧ , ∨ }).

12 3. Colours Peter H. Starke, Karsten Schmidt, Stephan Roch

Let b = [t, p] ∈ B and i = W (b)[d, c] > 0. Then, to fire the transition t under colour d,
it is necessary that the place p holds at least i tokens of colour c. If the pair s = [t, t′]
is in S, then the firing of transition t under its colour c forces the transition t′ to fire
under colour c′ ∈ Z(s)[c].

Definition 3.3
Let CN be a CSNS . The semantics of CN is given by an SNS N called the unfolding
of CN , denoted by Unf (CN):

Unf (CN) := [Pf, Tf, Ff, V f,B,W, S,M,mf0],

where Pf , Tf , B, W , S and M are as above,

Ff := { [[p, c], [t, d]]
∣∣ V (p, t)(d)[c] > 0 }

∪ { [[t, d], [p, c]]
∣∣ V (t, p)(d)[c] > 0 },

V f([p, c], [t, d]) := V (p, t)(d)[c],
V f([t, d], [p, c]) := V (t, p)(d)[c],

mf0([p, c]) := m0(p)[c].

The dynamic behaviour of CN is defined to be the dynamic behaviour of Unf (CN).
This means e.g. that a set s ⊆ Tf of transition colours of CN is an executable step at
the marking m iff s is an executable step of Unf (CN) at the corresponding marking mf .

II. Dynamic Properties

4. Analysis Peter H. Starke 15

4. Analysis

Analysis of a model is understood as the derivation of assertions on the behaviour of
the model by means of algorithms. There has been considerable progress in this field
for Petri nets of different types, and a variety of tools is available. Therefore, the first
question should be whether and to what extent these tools can be used for our purposes.
Unfortunately, the answer is negative:

Theorem 4.1
Any Turing-machine can be simulated by an SNS.

The proof uses the well-known fact that Petri nets — under the firing rule requiring
that only maximal sets of concurrently enabled transitions be executed — can simulate
counter machines (which are Turing-equivalent). Take any Petri net N , introduce a new
transition t to N , and a signal arc from t to any old transition of N . The resulting SNS
contains exactly one spontaneous transition, namely t. Any executable step consists of
t and a maximal set of concurrently enabled old transitions. Hence, SNS can simulate
Petri nets under the maximal firing rule, which, in their turn, can simulate counter
machines.

As a consequence of Theorem 4.1, we have that all nontrivial problems for SNS , e.g.
boundedness, liveness, are undecidable: these problems can be reduced to the halting
problem for counter machines. This has the consequence that it is not possible to
simulate SNS by Petri nets (under the single transition firing rule), which restricts the
useability of Petri net tools.

Our proof shows that already SNS without condition arcs are Turing- equivalent.
This raises the question whether SNS can be simulated by SNS without condition arcs
by a local construction. The answer is affirmative:

Theorem 4.2
Any SNS can be simulated by an SNS without condition arcs.

Proof. Without loss of generality, we may confine ourselfs to SNS where every place
p serves as a condition for at most one transition. If this is not the case, say, p has
condition arcs to n ≥ 2 transitions t1, . . . , tn, then we replace p by n parallel places
p1, . . . , pn, which, initially, each hold the same number of tokens as p. Since they are
parallel, this property is preserved during the execution of the net. Then we draw (for
i = 1, . . . , n) a condition arc from pi to ti with the multiplicity of the original condition
arc from p to ti.

Now, consider an SNS where every place p serves as a condition for at most one
transition. The idea of the simulation is to replace the execution of a step in the original
system by the execution of three steps in the new system which will be triggered by two
additional spontaneous transitions start and resume.

In the first substep for any place p, which serves as condition for the transition t,
a new transition tp,1 checks whether p is marked with at least as many tokens as the
multiplicity W (p, t) of the condition arc from p to t is, and, in that case, puts one

16 4. Analysis Peter H. Starke

token to an auxiliary place ph, which is initially clean. The place ph loops around t
(with multiplicity 1). Figure 4.1 shows the replacement of a single condition arc and the
interconnection of newly introduced net elements.

The second substep simulates a step of the original system and, in the third substep,
the new place ph will be cleaned by the new transition tp,2.

Let n be the number of spontaneous transitions in the original system. The sequence
of the substeps is forced by three new places a, b, c and two new spontaneous transitions
start and resume. Place a is initially marked with one token, b and c are clean. The
transition start takes the token from a and sends n tokens to place b whilst sending
signal-events to (i.e. forcing) all the new transitions tp,1. Place b has a flow arc with
multiplicity 1 to every spontaneous original transition and to n− 1 cleaning transitions
c1, . . . , cn−1. These transitions are connected by signal arcs to form a chain: [c1, c2] ∈ S,
. . . , [cn−2, cn−1] ∈ S. Every original spontaneous transition sends a signal-event to c1

which processes signal-events disjunctively. Figure 4.2 shows the interconnection of the
additional net elements we have introduced.

Now, after the first substep, any executable step s of the original system containing
k ≥ 1 spontaneous transitions is simulated by the executable step s′ = s∪{c1, . . . , cn−k}.

Every original spontaneous transition and every cleaning transition ci obtains a flow
arc of multiplicity 1 to the place c, so that after the second substep we have n tokens
on place c. Place c has a flow arc of multiplicity n to the transition resume. The
transition resume then puts one run token back to place a, sending signal-events to all
new transitions tp,2. thus cleaning the new places ph.

The last theorem is only of theoretical interest showing that the signal arcs are the only
essential new ingredients of SNS . Maybe this knowledge can be used in proving some
properties for SNS by proving that these properties hold for SNS without condition arcs.

Finally we investigate the relation between the set of reachable markings of an SNS
N = [P, T, F, V,B,W, S,M,m0] and its underlying Petri net PN = [P, T, F, V,m0]. Since
any transition t from a step s executable at m in N is enabled at m in PN , we have
(under any setting of the options):

Proposition 4.3
For any marking m, RN (m) ⊆ RPN(m).

Hence, every marking reachable in N is reachable in the underlying Petri net PN as
well. Sometimes we will use this fact for the analysis of SNS .

4. Analysis Peter H. Starke 17

��m
bp,t

p
t

p
m

bp,t

bp,t

tp,1

ph
tp,2

resumetstart

Figure 4.1: Local replacement of a condition arc

���
���
���
���

signal arcs
from ci to ci+1

a

signal arcs to every signal arcs to every

cb

.

tp,1 tp,2

resumestart

c1

. . .

...
...

to and from

every spontaneous

flow arcs

transition

signal arcs
from every

spontaneous
transition

to c1

...
...

flow arcs from b
to every ci

flow arcs from
every ci to c

n n

cn−1

...

Figure 4.2: Additional places a, b and c and transitions start , resume and n−1 cleaning
transitions ci for the simulation

18 5. Reachability Graphs Peter H. Starke, Stephan Roch

5. Reachability Graphs

Once we know that an SNS is bounded, we can (at least in principle) decide all further
questions by construction of the reachability graph. But the state explosion problem
urges us to look for methods which, depending on the question at hand, avoid unneces-
sary computations, i.e. which compute only a subgraph of the reachability graph:

• restrict the depth of the computed graph (applicable in the unbounded case too),

• use a ”bad” predicate: only states (markings) not satisfying the predicate will be
developed further while states satisfying the predicate will be included as dead
states into the computed graph,

• use a CTL-formula: compute only that part of the reachability graph needed to
check the formula,

• reduce the number of arcs by avoiding simultaneous firing of steps (see section 7),

• use the stubborn set method to compute a reduced reachability graph (see sec-
tion 8),

• use symmetries of the net (see section 9).

6. Boundedness Peter H. Starke 19

6. Boundedness

A net is said to be bounded (at its initial marking) iff it has only finitely many states;
it is called structurally bounded, iff it is bounded at any initial marking. Boundedness
of SNS is an undecidable property because the boundedness problem of SNS can be
reduced to the halting problem of counter machines.

Therefore, we have to look for decidable sufficient conditions for the boundedness
or unboundedness of SNS . Clearly, by Proposition 4.3, the boundedness of an SNS N
is implied by the boundedness of the underlying Petri net PN (and, consequently, by
all conditions that imply the boundedness of PN , e.g. structural boundedness of PN ,
existence of a covering place invariant).

Theorem 6.1
Let N = [P, T, F, V,B,W, S,M,m0] be a SNS and m0

∗−→ m1
s1−→ m2 . . .

sk−−→ mk+1 a
firing sequence such that m1 ≤ mk+1 and m1 6= mk+1. Moreover, let

Q := {p
∣∣ m1(p) < mk+1(p)}.

Then if each transition t ∈ T which is a post-transition of a place from Q or has a
condition in Q is spontaneous, N is unbounded.

Proof. We shall show that the sequence s1 . . . sk of steps can be executed at the marking
mk+1 again. This would lead to a marking m2k+1 6= mk+1 such that m2k+1 ≥ mk+1 and
{p
∣∣ mk+1(p) < m2k+1(p)} = Q. Hence, the places in Q are (simultaneously) unbounded.
Suppose s1 is not executable at mk+1. Since s1 is executable at m1 ≤ mk+1, there

exists a step s′, executable at mk+1, such that s1 ⊂ s′, ∅ 6= s′ − s1 ⊆ {t
∣∣ St 6= ∅}.

The step s′ contains the same spontaneous transitions as s1 but more transitions forced
by spontaneous transitions. Consider a (forced) transition t ∈ s′ − s1. Since t 6∈ s1, a
condition p0 from Bt is not fulfilled at m1 (i.e. m1(p0) < W (p0, t)), or a preplace p1 of
t does not contain enough tokens (i.e. m1(p1) < V (p1, t)). Since t ∈ s′, we obtain in the
first case mk+1(p0) ≥ W (p0, t) > m1(p0), i.e. p0 ∈ Q, and in the second case we obtain
mk+1(p1) ≥ V (p1, t) > m1(p1), i.e. p1 ∈ Q. Hence, t has a condition in Q or a pre-place
in Q, which implies that t is spontaneous, contradicting t ∈ {t

∣∣ St 6= ∅}.
Thus, s1 is executable at mk+1. Let mk+1

s1−→ mk+2. Then

mk+2 ≥ m2, mk+2 6= m2 and mk+2 −m2 = mk+1 −m1.

Therefore, {p
∣∣ m2(p) < mk+2(p)} = Q. By induction it follows that s2 is an executable

step at mk+2(p), . . .

The converse of Theorem 6.1 is not true; there exist unbounded SNS which do not fulfill
the conditions (see Figure 6.1).

The assumptions of Theorem 6.1 can be used during the generation of the reachability
graph of N to rule out some unbounded SNS (where the reachability graph is infinite).
Safeness and k-boundedness are obviously trivial problems in the above sense: they are
decidable.

20 6. Boundedness Peter H. Starke

���
�

t t’
p

2

Figure 6.1: Counterexample to the converse of Theorem 6.1

If the underlying Petri net PN turns out to be unbounded there is still some hope that
N may be bounded, but the only possibility to find out is to compute the reachability
graph with on-the-fly checks accordings to Theorem 6.1. On the other hand, experience
with unbounded SNS shows that unboundedness of N is in many cases shown much
faster by this method than by deciding the unboundedness of the underlying Petri net
PN . This is because PN has many more states than N .

7. Diamond Reduction Stephan Roch 21

7. Diamond Reduction

State space generation for signal-net systems is complicated, since sets of transitions
have to be handled. This section describes techniques to reduce the number of steps
needed for the reachability graph computation.

7.1. Simultaneous Execution

The normal (default) firing rule for SNS allows the simultaneous firing of steps: If two
disjoint steps s1, s2 can be executed simultaneously in m. i.e. s−1 + s−2 ≤ m, then the
union s1 ∪ s2 (or a proper superset) is also executable in m according to the normal
firing rule.

In Petri nets we normally don’t consider simultaneous firing of transitions in steps.
We can see Petri nets in our setting as signal-net systems without condition- and signal-
arcs, i.e. B = S = ∅; their firing rule is then equivalent to our firing rule maximal single
spontaneous transition steps, since every transition of a Petri net is spontaneous
in our sense. The generation of reachability graphs of Petri nets by firing only single
transitions is justified by the fact that the set of all reachable markings is exactly the
set, reached by pure interleaving.

If we consider the simultaneous firing of two or more steps in signal-net systems, we
notice, that a signal-net system can reach markings, which are not reachable by pure
interleaving of these steps.

In Fig. 7.1 and 7.2 we have for both signal-net systems that t1 and t2 are both
executable in the initial marking (shown on the left). The same is true for the union
{t1, t2}, but firing t1 and t2 simultaneously leads to markings, which are otherwise not
reachable.

t3

t1

t4

t2

t3

t1

t4

t2

Figure 7.1: Simultaneous execution of t1 and t2 produces two tokens

This is a well known fact for so called contextual nets [MR95], e.g. Petri nets with
read-arcs (we can see them as signal-net systems without signal-arcs; in our setting read-
arcs can be noted as condition arcs), and for Petri nets with inhibitor-arcs [JK91b,JK95,
MR95], if we allow the simultaneous firing of transitions [JK91a,JK93].

22 7. Diamond Reduction Stephan Roch

p1

p2p2

p1

t1 t2t2t1

Figure 7.2: Simultaneous execution of t1 and t2 produces empty marking

7.2. Diamond Reduction

In many situations we have to execute a set of steps which have no influence on each
other. According to the normal firing rule for signal-net systems we additionally have
to take the union of all subsets of such a set into consideration. The reachability graph
usually contains structures like in Fig. 7.3. This may lead to an exponential overhead,
without generating any new marking, since normal interleaving of the steps would suffice.
Our aim is to introduce a reduction technique which avoids such overhead.

m1

m

m′

m2

s2s1

s1s2

s

Figure 7.3: Diamond in the reachability graph for independent steps with s = s1 ∪ s2

The next definition characterizes situations in which we can omit the firing of a step,
which can be divided into two disjoint steps, without missing reachable markings.

Definition 7.1 (Diamond reduction)
A step s which is executable in m is reducible in m iff s is the disjoint union of two steps,
i.e. s = s1 ∪ s2 and s1 ∩ s2 = ∅, and a sequence (interleaving) of s1 and s2 is executable
in m, i.e. m s1 s2−−−→ .

Proposition 7.2
If we construct a reduced reachability graph by considering only irreducible steps, then
this diamond reduced graph has the same set of reachable markings as the full graph.
Furthermore boundedness, liveness and resetability (reversability) and the truth value of
CTL formulae (see section 11) build with the temporal operators AG and EF only are
preserved by the reduction. If an A-CTL-formulae is true in the full graph, then it is

7. Diamond Reduction Stephan Roch 23

true in the reduced graph. If an E-CTL-formulae is true in the reduced graph, then it is
true in the full graph.

Proof. It is obvious that the diamond reduction preserves reachability of states (not
minimal paths and distances) and boundedness. Preservation of liveness, resetability
(reversability) and the truth value of formulae build with AG and EF only follows
from the fact that the reduction preserves the strongly connected components (and the
reachablity between them) of the full graph.

Since the reduced graph is simulated by the full graph, the truth of CTL-formulae
build with A quantification only transfers from the full to the reduced and with E
quantification the other way round only.

7.3. Diamond Reduction based on Strongly Connected Sets

The semantic definition given above does not give structural criteria for an efficient im-
plementation. Our main idea is the following: We introduce a relation J for spontaneous
transitions and show that only strongly connected sets of spontaneous transitions with
respect to J need to be considered in reachability analysis. Strongly connected sets are
like strongly connected components of a directed graph, i.e. every node is transitively
connected with each other, but are not necessarily maximal with respect to set inclusion.

Definition 7.3 (Relation C for transitions)
Two transitions t1, t2 ∈ T are in relation C iff one of the following conditions holds true:
(D1) Bt1 ∩ Ft2 6= ∅

p

t1 t2

(D2) t1 forces t and (Bt ∪ Ft) ∩ t2F 6= ∅

p

or t2

t1

t

(D3) t2 forces t and Ft1 ∩ Ft 6= ∅

p

t1

t2

t

24 7. Diamond Reduction Stephan Roch

(D4) a transition t is forced by t1 and t2

Note that the first two conditions in this definition are the two cases we considered in
Definition 3.2 and Theorem 3.1 of [Roc00a].

Definition 7.4 (Relation J for spontaneous transitions)
Two spontaneous transitions t′1, t

′
2 ∈ Spont are in relation J iff there are transitions

t1, t2 ∈ T such that t1C t2, t1 is transitively forced by t′1, and t2 is transitively forced by
t′2.
Summarized we have

J := S∗ ◦

(B ◦ F)︸ ︷︷ ︸
D1

∪ (S ◦ (B ∪ F) ◦ F−1)︸ ︷︷ ︸
D2

∪ (F−1 ◦ F ◦ S−1)︸ ︷︷ ︸
D3

∪ (S ◦ S−1)︸ ︷︷ ︸
D4

 ◦ (S−1)∗

Theorem 7.5
If a step s is executable in a marking m leading to a marking m′, i.e. m s−→ m′, and
the set of spontaneous transitions in s, i.e. s ∩ Spont, is not a strongly connected set of
(Spont,J) then s is reducible in m, i.e. m′ is reachable by an interleaving of two disjoint
steps s1 and s2.

Proof. Since s∩ Spont is not a strongly connected set of (Spont ,J) there is at least one
strongly connected component s′1 ⊆ s∩Spont such that s′1 6J s′2 for s′2 := (s∩Spont)\s′1.
It is clear that s′1 6= ∅ 6= s′2 and we will show that s′1 and s′2 are sets of spontaneous
transitions of two steps s1 := s′1S

∗ ∩ s and s2 := s′2S
∗ ∩ s such that

1. s1 ∪ s2 = s

2. s1 ∩ s2 = ∅

3. m s2−→

4. m s2 s1−−−→ m′.

ad 1. Check the construction of s1 and s2.

s1 ∪ s2 = (s′1S
∗ ∩ s) ∪ (s′2S

∗ ∩ s)
= (s′1S

∗ ∪ s′2S∗) ∩ s
= (s′1 ∪ s′2)S∗ ∩ s
= (s ∩ Spont)S∗ ∩ s
= s

ad 2. Assume there is t ∈ s1 ∩ s2. Since s′1 ∩ s′2 = ∅ we have t /∈ Spont and t must
be transitively forced by s′1 and s′2, i.e. we have t ∈ s′1S∗ and t ∈ s′2S∗, but this
contradicts the assumption s′1 6J s′2 (see D4).

ad 3. We will show that s2 is executable in m.

7. Diamond Reduction Stephan Roch 25

i. s2 contains spontaneous transitions, since s′2 6= ∅
ii. s−2 ≤ m, since m s−→ and s2 ⊆ s
iii. ŝ2 ≤ m holds for the same reason
iv. s2 is signal-complete since s is signal-complete and every transition t in s2

does not receive signals from transitions in s1, otherwise we get the same
contradiction as in 2

v. s2 is signal-closed
Assume there is a forced transition t 6∈ s2 such that s2 ∪ {t} fulfills i–iv, i.e.
s−2 + t− ≤ m and t̂ ≤ m and t is forced by s2. With t ∈ s′2S∗ we can conclude
that t 6∈ s (otherwise we have t ∈ s2) and that s− + t− 6≤ m (conditions can
not prevent t from firing together with s since t̂ ≤ m). This implies that
there must be a pre-place p ∈ Fs ∩ Ft such that s−(p) + t−(p) > m(p), with
s−2 + t− ≤ m and s− = s−1 + s−2 we can conclude that p ∈ Fs1, but this
contradicts the assumption s′1 6J s′2 (see D3).

ad 4. Since m′ = m − s− + s+ = m − s−1 + s+
1 − s

−
2 + s+

2 and m
s2−→, we just have to

show, that s1 is executable after firing s2 in m. Set m′′ := m− s−2 + s+
2 .

i. s1 contains spontaneous transitions, since s′1 6= ∅
ii. s−1 ≤ m′′, since m s−→ implies s−1 + s−2 ≤ m and obviously s−1 + s−2 ≤ m+ s+

2

iii. ŝ1 ≤ m′′

Assume there is a condition p ∈ Bs1 such that ŝ1(p) > m′′(p) Since m s−→
implies ŝ1(p) ≤ m(p) we have p ∈ Fs2, but this contradicts the assumption
s′1 6J s′2 (see D1)

iv. s1 is signal-complete since s is signal-complete and every transition t in s1

does not receive signals from transitions in s2, otherwise we get the same
contradiction as in 2

v. s1 is signal-closed
Assume there is a forced transition t 6∈ s1 such that s1 ∪ {t} fulfills i–iv, i.e.
s−1 +t− ≤ m′′ and t̂ ≤ m′′ and t is forced by s1. With t ∈ s′1S∗ we can conclude
that t 6∈ s (otherwise we have t ∈ s1) and that s− + t− 6≤ m or t̂ 6≤ m, i.e.
there is a place p ∈ Bt ∪ Ft such that t̂(p) > m(p) or s−(p) + t−(p) > m(p).
With s− = s−1 + s+ 2− we conclude s−1 (p) + t−(p) > m(p)− s−2 (p) and since
s1 ∪ {t} is enabled in m′′(p) = m− s−2 (p) + s+

2 (p) we have p ∈ s2F , but this
contradicts the assumption s′1 6J s′2 (see D2).

Altogether we can conclude that s1 is executable after firing s2 in m, i.e. we have m s2 s1−−−→
m′ and thus s is reducible in m.

Corollary 7.6
We can construct a reduced reachability graph which contains the same reachable mark-
ings as the unreduced graph if we modify condition 1 of the step definition by

1’ s contains a strongly connected set of (Spont,J).

26 7. Diamond Reduction Stephan Roch

7.4. Final Remarks

The diamond reduction is implemented in SESA for the normal firing rule. Use -diamond
to select it. The given criterion is sufficient but not necessary to detect situations,
where simultaneous firing of steps can lead to markings that are not reachable by pure
interleaving.

Notice that some properties change if the reachability graph computed under the
normal firing rule is compared with the reachability graph with diamond reduction:
distances, length of shortest paths and some CTL formulae. The model checker in SESA
warns if a diamond reduced graph was generated and the truth value of a CTL formula in
the complete graph is not deducible from the reduced graph. Due to reducible steps, you
will only get an upper bound of the minimal length for paths to target states, although
you will get exact results for minimal values. Diamond reduction is not available for
nets with timing constraints, synchronisation sets, and priorities. You can also compute
the diamond reduced firing list in the simulator of SESA.

This section was influenced by [Vog97, VSY98], where we first saw the need for
considering something like our relation, but Vogler et. al. draw other consequences, be-
cause they have something other in mind. The notion of positive and negative contexts
in [MR95] helps us, to understand and analyze the behavior of signal-net systems, al-
though we do follow the view of concurrency as stated by Janicki and Koutny in [JK91a,
JK91b, JK93, JK95]. The results were published in [Roc99b, Roc99a, Roc00a, Roc01].
Properties of the diamond reduced reachability graph were investigated in [Ber02].

8. Stubborn Sets Stephan Roch 27

8. Stubborn Sets

State space analysis is a powerful formal method for the verification of concurrent and
distributed systems. Unfortunately, this method is limited by the state space explosion
problem: the number of states tends to be very large even for small systems.

The stubborn set method is one of the techniques that try to alleviate the state space
explosion problem: It takes advantage of concurrency by detecting situations where
actions can occur in arbitrary order and tries to reduce the set of action sequences to
be computed. This is done by executing only a subset of the set of all enabled actions
in a state. The basic method preserves all terminal states (deadlocks) and the existence
of nontermination [Val91,Var93,Val94]. More elaborated versions can handle even more
properties, see e.g. [Sch99, KV00]. For an overview on state space reduction methods
see [Val98]. Stubbornness for signal-net systems was first presented in [Roc98a,Roc98b].

8.1. Dynamic Stubbornness

The principles of stubborn sets can be defined for any modeling formalism in which
actions depend on local states. A stubborn set is a subset of all possible actions. In
signal-net systems local states are described by the marking of the places. The active
parts are the steps. Consequently, a stubborn set Stub(m) in a marking m of a signal-net
system is a set of steps. Dynamic stubbornness in signal-net systems can then be defined
on the base of the following two principles.

Definition 8.1 (Principle SD1)
A set Stub(m) of steps fulfills the first principle of dynamic stubbornness (SD1 for short)
iff no step disabled at m in Stub(m) can become enabled as a result of firing steps outside
Stub(m):

∀s ∈ Stub(m) : ¬m s−→ ⇒ ∀σ ∈
(

Stub(m)
)∗

: m σ−→⇒ ¬m σs−−→ .

m m1-

σ

?

s SD1
=⇒

m m1-

σ

?

s
?

s

Definition 8.2 (Principle SD2)
A set Stub(m) of steps fulfills the second principle of dynamic stubbornness (SD2 for
short) iff all enabled steps at m in the stubborn set do accord with all steps outside

28 8. Stubborn Sets Stephan Roch

Stub(m):

∀s ∈ Stub(m) ∀s′ /∈ Stub(m) ∀σ ∈
(

Stub(m)
)∗
∀m′ :

(m s−→ ∧m σ−→ m′ ∧m′ s−→ ∧m′ s′−→) ⇒ (m′ ss′−−→ ∧m′ s′s−−→),

m -

σ

?

s

m′ m1-

s′

m2

?

s SD2
=⇒

m′ m1-

s′

m2

?

s

m3

?

s

-

s′

Additionally, dynamic stubborn sets need to contain an enabled step:

Definition 8.3 (Dynamic stubbornness)
A set Stub(m) of steps is said to be a strongly dynamic stubborn set at m iff Stub(m)
fulfills SD1 and SD2 and ∃s ∈ Stub(m) : m s−→.

Applying the stubborn set method when generating a reachability graph means to fire,
in every state, only the enabled actions that belong to a given (or computed) stubborn
set at that state. The principles presented above are sufficient for weaker definitions of
(dynamic) stubborn sets. Dynamic stubbornness does not seem to lead to a practical
algorithm for computing stubborn sets.

8.2. Static Stubbornness for single spontaneous transition steps

To compute stubborn sets at a given marking, structural criteria are needed. These
criteria for so-called static (or true) stubbornness should be based only on the current
marking and on structural properties of the net.

This leads to no good reduction if the normal firing rule is assumed, since in this
case the union of two concurrently enabled steps is also enabled and the unified step is
always in a conflict with its two substeps. But unfortunately criteria for stubbornness
are sensitive to such conflicts. Therefore we limit ourself only to the firing rule “single
spontaneous transition”.
In the sequel, we will apply the term step to a subset s ⊆ T only if

1. s contains exactly one spontaneous transition and

2. s is signal-complete.

We use the notion of markup- and markdown-sets.

8. Stubborn Sets Stephan Roch 29

Definition 8.4 (Markup- and markdown-sets)
Let N be a SNS , p a place and m a marking of N . Then

Markup(p,m) :=
{
s
∣∣ ∆s(p) > 0 ∧ s−(p) ≤ m(p) ∧ ŝ(p) ≤ m(p)

}
and

Markdown(p,m) :=
{
s
∣∣ ∆s(p) < 0

}
.

are the markup- and markdown-set of p at m, respectively.

Intuitively, Markup(p,m) is the set of steps that could increase the number of tokens
in p and are not disabled by p at m. Correspondingly, Markdown(p,m) is the set of
steps that could decrease the number of tokens in p. Note that in the implementation
in SESA we have implemented Markup(p,m) marking independent, i.e. we have skipped
the condition s−(p) ≤ m(p)∧ ŝ(p) ≤ m(p). This has no consequences for the theory, but
makes the implementation much easier.

It is obvious that a step s is executable at a marking m only if s both has token-
concession and is condition enabled and is also maximal at m. Consequently, static
criteria for stubbornness must take all of these into account. We start with two criteria
for principle SD1.

Definition 8.5 (Criterion C1a)
If s1 ∈ Stub(m) and

∃ p
(
p ∈ P ∧

(
s−1 (p) > m(p) ∨ ŝ1(p) > m(p)

))
.

then s1 is disabled due to a so called scapegoat place p and Stub(m) must contain the
markup-set Markup(p,m) of one of these p.

Lemma 8.6
If a set Stub(m) fulfills criterion C1a, then Stub(m) fulfills the principle SD1 with respect
to token-concession and condition enabling of steps.

Proof. We will show that the following is true: For a disabled step s1 ∈ Stub(m) with
a scapegoat place p is m′(p) ≤ m(p) in all reachable markings m′ with m

σ−→ m′ and

σ ∈
(

Stub(m)
)∗

.
We use induction on σ. The claim holds trivially when restricted to σ = ε. Our

induction hypothesis is that the claim holds when restricted to any σ. Let σ′ = σs2

with s2 /∈ Stub(m) and m
σ−→ m1

s2−→ m′1. s2 /∈ Stub(m) implies s2 /∈ Markup(p,m).
This implies either s2 is not enabled with respect to the pre-place or condition p, i.e.
s−2 > m(p) or ŝ2(p) > m(p), or ∆s2(p) ≤ 0. The first case contradicts our assumption
m1(p) s2−→ because we have m1(p) ≤ m(p) by induction hypothesis. In the second case
we conclude m′(p) ≤ m1(p) and using the induction hypothesis we get m′1(p) ≤ m(p).

Thus we conclude that s1 can not become enabled by firing only steps from the
complement of Stub(m) because p remains to be a scapegoat.

30 8. Stubborn Sets Stephan Roch

Definition 8.5 is an extension of the criterion given in [Val91] for Petri nets.

Definition 8.7 (Criterion C1b)
If s1 ∈ Stub(m) and

∃ t
(
t ∈ T ∧ t forced by s1

⇒ ∀ p
(
p ∈ Ft ∪Bt∧

(
t−(p) ≤ m(p)− s−1 (p) ∧ t̂(p) ≤ m(p)

)))
,

then s1 is not maximal due to a so called sufficiently marked transition t with sufficiently
marked places p and Stub(m) must include the markdown-sets Markdown(p,m) of all
these p of one such t.

Lemma 8.8
If a set Stub(m) fulfills criterion C1b, then Stub(m) fulfills the principle SD1 with respect
to maximality of steps.

Proof. We will show that the following is true: For a non-maximal step s1 ∈ Stub(m)
with a sufficiently marked transition t having sufficiently marked places p ism′(p) ≥ m(p)

in all reachable markings m′ with m
σ−→ m′ and σ ∈

(
Stub(m)

)∗
.

We use induction on σ. The claim holds trivially when restricted to σ = ε. Our
induction hypothesis is that the claim holds when restricted to any σ. Let σ′ = σs2 with
s2 /∈ Stub(m) and m

σ−→ m1
s2−→ m′1. s2 /∈ Stub(m) implies s2 /∈ Markdown(p,m). This

implies ∆s2(p) ≥ 0. We conclude m′(p) ≥ m1(p) and using the induction hypothesis we
get m′1(p) ≥ m(p).

Thus we conclude that s1 can not become enabled by firing only steps from the
complement of Stub(m) because p remains to be a sufficiently marked place of t and
thus t remains to be a sufficiently marked transition.

Now we define three static criteria for the second principle of dynamic stubbornness
SD2.

Definition 8.9 (Criterion C2a)

If s1 ∈ Stub(m) and m
s1−→ then{

s2

∣∣ ∃ p (p ∈ P ∧min
(
s+

1 (p), s+
2 (p)

)
< min

(
s−1 (p), s−2 (p)

) }
⊆ Stub(m).

Lemma 8.10
If a set Stub(m) fulfills criterion C2a, then Stub(m) fulfills the principle SD2 with respect
to token-concession of steps.

Proof. [Val91] states the same criterion for Petri nets. A simple case analysis shows
that steps inside and outside Stub(m) commute in every marking m′.

Definition 8.11 (Criterion C2b)

If s1 ∈ Stub(m) and m
s1−→ then{

s2

∣∣ ∃ p ((p ∈ Bs1 ∧ s+
2 (p) < ŝ1(p) ∧ s−2 (p) > 0)∨

(p ∈ Bs2 ∧ s+
1 (p) < ŝ2(p) ∧ s−1 (p) > 0)

) }
⊆ Stub(m).

8. Stubborn Sets Stephan Roch 31

Lemma 8.12
If a set Stub(m) fulfills criterion C2b, then Stub(m) fulfills the principle SD2 with respect
to conditions of steps.

Proof. Similar to the previous proof [Val91] for pre-places. We show that for every m′

we have m′ s1s2−−−→ and m′ s2s2−−−→ with respect to conditions under the assumption m′ s2−→
and m′

s2−→ for s1 ∈ Stub(m) and s2 /∈ Stub(m).
We start with m′

s2s1−−−→. Fix a place p. Since s2 /∈ Stub(m), we have either p /∈ Bs1,
i.e. p has no influence on condition enabling of s1 at all, or s+

2 (p) ≥ ŝ1(p), i.e. p contains
at least ŝ1(p) tokens after execution of s2, or s−2 (p) = 0, i.e. s1 remains to be condition
enabled after s1. The same holds true for m′ s1s2−−−→ due to symmetrie in the criteria.

Definition 8.13 (Criterion C2c)

If s1 ∈ Stub(m) and m
s1−→ and

∀ t
(
t ∈ T ∧ t forced by s1

⇒ ∃p
(
p ∈ Ft ∪Bt⇒

(
t−(p) ≥ m(p)− s−1 (p) ∨ t̂(p) ≥ m(p)

)))
.

then every such t is a blocked transition having a blocked place p and Stub(m) must
include for every such t the markup-set Markup(p,m) of one corresponding p.
Furthermore{

s2

∣∣ ∃ t (t ∈ T ∧ t forced by s2 ∧ ∃p
(
p ∈ Ft ∪Bt

∧
(
t−(p) + s−2 (p) > [min](p) ∨ t̂(p) > [min](p)

)
∧∆s1(p) > 0

)) }
⊆ Stub(m),

with

[min](p) := max
(
s−1 (p), s−2 (p), ŝ1(p), ŝ2(p)

)
where [min](p) is the minimal marking needed for the enabling of both s1 and s2 with
respect to pre-places and conditions p.

Lemma 8.14
If a set Stub(m) fulfills criterion C2c, then Stub(m) fulfills the principle SD2 with respect
to maximality of steps.

Proof. First we have to show that s1 is maximal after firing of s2 in every marking
m′ which is reachable from m only by steps from the complement of Stub(m). This
can be done by induction like in the proof for criterion C1b. Since Markup(p,m) is
included in Stub(m), every blocked, i.e. disabled forced transition t remains disabled in
m′ with respect to a blocked place p and this is also also true after firing s2 in m′ since
s2 /∈ Markup(p,m).

Now we have to show that s2 is maximal after firing of s1 in every marking m′ in
which s1 and s2 are enabled. We have to show that every t forced by s2 remains to be
a blocked transition with respect to a blocked place p because s1 does not increase the
marking of p. We observe that [min](p) is the minimal marking of p in m′ for the enabling

32 8. Stubborn Sets Stephan Roch

of s1 and s2. If t−(p) + s−2 (p) ≤ m′(p) and t̂(p) ≤ m′(p) then s2 would not be maximal
in m′, i.e. we have at least one p ∈ Ft ∪Bt such that t−(p) + s−2 (p) > m′(p) ≥ [min](p)
or t̂(p) > m′(p) ≥ [min](p). In this case we get ∆s1(p) ≤ 0 since s2 6∈ Stub(m), i.e. s2

remains to be maximal after firing s1 in m′.

Putting all things together we have:

Definition 8.15 (Static stubbornness)
A set Stub(m) of steps is said to be a static stubborn set at m iff for all s ∈ Stub(m)
either s is not executable in m

then criterion C1a or C1b must be fulfilled

or m s−→

then criteria C2a, C2b and C2c must be fulfilled.

Theorem 8.16
If a set Stub(m) of steps contains an enabled step and is static stubborn at m, then
Stub(m) is a strongly dynamic stubborn set at m.

8.3. Static Stubbornness for normal steps

In principle it is possible to combine the diamond reduction presented in Section 7 with
the stubborn set method if we consider steps with spontaneous transitions forming a
strongly connected set of J instead of single spontaneous transition steps, i.e. if we
apply the term step to a subset s ⊆ T only if

1’. s contains a strongly connected set of (Spont ,J) and

2. s is signal-complete.

All dynamic principles and static criteria defined before still hold, but the practical
computation is much more complex, because larger and more transition sets have to be
handled during the calculation of stubborn sets.

8.3.1. Step approximation and simpler static criteria

We concentrate on the spontaneous transitions of a step to cut down the number of
transition sets during the stubborn set calculation, i.e. we treat all steps with the same
set of spontaneous transitions equal. Additionally we use stronger static criteria.

Let N be a SNS , Spont the set of spontaneous transitions of N and J the relation
defined in section 7. Then

StrConS :=
{
s
∣∣ s is a strongly connected set of (Spont ,J)

}
.

Throughout the rest of this section we will use unprimed variables s, s1, s2 for sets of
spontaneous transitions from StrConS , and primed variables s′, s′1, s

′
2 for steps build

from such sets by inclusion of (transitively) forced transitions.

8. Stubborn Sets Stephan Roch 33

Definition 8.17 (Criterion A1)
If s1 ∈ ApproxStub(m) for s1 ∈ StrConS and

∃ p
(
p ∈ P ∧

(
s−1 (p) > m(p) ∨ ŝ1(p) > m(p)

))
.

then s1 is disabled due to a so called scapegoat place p and ApproxStub(m) must contain
s2 ∈ StrConS for a fixed scapegoat place p iff p ∈ s′2F for s′2 := s2S

∗.

Definition 8.18 (Criterion A2)
If s1 ∈ ApproxStub(m) for s1 ∈ StrConS , s−1 ≤ m, and ŝ1 ≤ m, i.e. s1 is enabled, then
ApproxStub(m) must contain s2 ∈ StrConS iff one of the following conditions holds true
for s′1 := s1S

∗ and s′2 := s2S
∗:

(A2a) Fs′1 ∩ Fs′2 6= ∅
or
(A2b) Bs′1 ∩ Fs′2 6= ∅
or
(A2c) Fs′1 ∩Bs′2 6= ∅
or there exists a forced transition t /∈ Spont with
(A2d) t ∈ s′1 and (Bt ∪ Ft) ∩ s′2F 6= ∅
or
(A2e) t ∈ s′2 and s′1F ∩ (Bt ∪ Ft) 6= ∅.

Definition 8.19 (Approximative static stubbornness)
A set ApproxStub(m) of strongly connected sets of (Spont ,J) is said to be an approxi-
mative static stubborn set at m iff ApproxStub(m) fulfills criteria A1 and A2.

Theorem 8.20
If ApproxStub(m) is an approximative static stubborn set at m, and

Stub(m) := { s′
∣∣∣ s′ ⊆ sS∗ such that s′ is a step with s ⊆ s′ for s ∈ Stub(m) }

contains an enabled step, then Stub(m) is a strongly dynamic stubborn set at m.

Proof. Let s′1 ∈ Stub(m) and s1 := s′1 ∩ Spont . First we show that SD1 holds true, i.e.
we assume that s′1 is not fireable in m.

If s1 is not enabled, i.e. there is a scapegoat place p for s1 (see criterion A1), then
p is a scapegoat place for s′1, too. Induction proofs that s′1 can not become enabled by
firing only steps from the complement of Stub(m) because p remains to be a scapegoat
place (same argumentation as in the proof for criterion C1a).

If s1 is enabled, then there may be a scapegoat place p for s′1. Due to criterion A2d
(there is a transition t ∈ s′1 with t /∈ Spont) every step containing a pre-transition of such
a p is included in Stub(m) and p remains to be a scapegoat place (same argumentation
as before).

If s′1 has token-concession and is condition enabled, then s′1 may not be maximal
due to a sufficiently marked transition t (see criterion C1b). Due to condition A2a and

34 8. Stubborn Sets Stephan Roch

A2b t remains to be enabled in every marking reachable by firing only steps from the
complement of Stub(m) (same argumentation as in the proof for criterion C1b).

Now we assume that s′1 is fireable in m and show that SD2 holds true. Due to A2a,
A2b and A2c s′1 and s′2 /∈ Stub(m) commute in every marking with respect to token-
concession and conditions (see C2a and C2b). It remains to show SD2 with respect to
maximality.

Every blocked transition t forced by s′1 remains to be disabled due to criterion A2d
(see proof of the first part of criterion C2c), i.e. s′1 remains to be maximal after firing
s′2 /∈ Stub(m) in m. The same holds for s′2 /∈ Stub(m) after firing s′1 due to condition
A2e. Together we conclude that SD2 holds true and Stub(m) is a static stubborn set at
m.

Remark. For Petri nets, where StrConS contains only singleton sets, only the criteria
A1 and A2a need to be considered. They match very simple static criteria which ignore
arc weights and which can be found in literature and in implementations [Val94].

8.3.2. Reduction of disabled steps

Still the number of steps in StrConS is the limiting factor in the stubborn set compu-
tation. Without deeper analysis of J the number of nontrivial strongly connected sets
tends to be very large for practical nets. Such a set is nontrivial if it contains more
than one spontaneous transition. In this section we will provide a theorem, which allows
to reduce the number of disabled steps need to be considered during the stubborn set
computation.

We start with an observation.

Proposition 8.21
If s1 J s2, s1 ∈ ApproxStub(m), and s1 is enabled in m, then s2 ∈ ApproxStub(m) or a
transition is transitively forced by s1 and s2, i.e. s1S

∗ ∩ s2S
∗ 6= ∅.

Proof. Check the cases D1, D2, D3, and D4 in the definition of J. They match (in order)
the conditions A2b, A2d, and A2a or the additional case mentioned in this proposition
(transition transitively forced by both steps).

Definition 8.22 (Criterion A2 revised)
We modify A2 defined in 8.18 and add the following case:
(A2f) s′1 ∩ s′2 6= ∅ i.e. a transition is transitively forced by s1 and s2.

Now we are ready to define and justify a new criterion.

Definition 8.23 (Criterion A3)
Do not add s ∈ StrConS to ApproxStub(m) by criterion A1 or A2 iff the following is
true: s contains more than one spontaneous transition and at least one transition t ∈ s
is not enabled in m, i.e. there is at least one scapegoat place p such that t−(p) > m(p)
or t̂(p) > m(p).

8. Stubborn Sets Stephan Roch 35

Theorem 8.24
If we obey criterion A2f then it is not necessary to further investigate any nontrivial s
which is prevented from inclusion in ApproxStub(m) according to criterion A3.

Proof. Due to the scapegoat place p of t, the nontrivial step s is not enabled in m. Thus,
according to the principle SD1 we have to ensure that s is not enabled in every marking
reachable only by steps build by spontaneous transition sets from the complement of
ApproxStub(m). This is done with criterion A1 by ensuring that ApproxStub(m) contains
a step s2 ∈ StrConS iff p ∈ s′2F for s′2 := s2S

∗ and a scapegoat place p.
We will show the following: If we obey A2f and A3 and skip s from further investi-

gation during the stubborn set calculation, then s is automatically not enabled in every
marking reachable by firing only steps build by spontaneous transition sets from the
complement of ApproxStub(m). Fix m, s and t ∈ s which is not enabled in m.

First we concentrate on the moment were we (without A3) had to include s and show
that a nonempty subset si ⊂ s is in ApproxStub(m). Check the conditions in A1 and A2
to see that at least one single spontaneous transition ti is the reason for the inclusion of s
and therefore si, i.e. we have shown that there is at least ti ∈ si and si ∈ ApproxStub(m).
It is clear that either t ∈ si or t ∈ sd with sd := s \ si. Since s contains more than one
spontaneous transition, sd is nonempty.

If t ∈ si then si has not enough tokens in m and A1 prevents si from firing. Since
si ⊂ s this automatically also prevents s from becoming enabled, i.e. we do not have to
consider s for the stubborn set computation.

In the second case with t ∈ sd, it remains to show that sd is in ApproxStub(m).
Since s ∈ StrConS we have si J sd. Obviously A2f is the additional case mentioned in
Proposition 8.21 (transition transitively forced by both steps). Since si ∈ ApproxStub(m)
is enabled in m we can apply 8.21 and conclude that sd ∈ ApproxStub(m). Now we can
use the same argumentation as before to show that again s is automatically prevented
from firing due to A1 and sd ⊂ s.

8.4. Final Remarks

The basic stubborn set method preserving deadlocks and infinite paths is implemented
in our tool SESA. The stubborn set method combined with the attractor set tech-
nique described in [Sch99] without the improvements of [KV00] is available for deciding
reachability and the computation of paths to (partial) markings or to markings fulfill-
ing a given state predicate. Note that the computed path has not necessarily minimal
length if stubborn reduction is applied for the normal firing rule: you will only get an
upper bound of the minimal length, due to reducible steps. If you use single sponta-
neous transition steps or are interested in minimal values only, you will get exact results.
For single spontaneous transition steps you can choose between step approximation and
the non-approximative computation of stubborn sets (use -noapprox). For the normal
firing rule the approximative approach together with the reduction of disabled steps
is implemented in SESA. In either case use -stubborn to select stubborn set reduced
reachability. You can also check the stubborn set computation in the simulator of SESA.

36 8. Stubborn Sets Stephan Roch

Stubborn reduction is only available for nets without timing constraints, greedy transi-
tions, synchronisation sets, and priorities. Deduction of truth values of CTL formulae
from stubborn reduced graphs is not implemented in the SESA model checker.

9. Symmetries Karsten Schmidt, Peter H. Starke 37

9. Symmetries

Many systems are composed of many identical subsystem. Thus, the global system has
a symmetric structure. Symmetric structure yields symmetric behavior. Knowing the
symmetries, only parts of the system behavior need to be explored explicitly. In this
section, we discuss the technology of symmetrically reduced reachability graphs. First,
we define symmetries on the system structure. Then, the relation between symmetric
structure and symmetric behavior is established. We define symmetrically reduced reach-
ability graphs and study the derivation of properties from the reduced graph. Finally,
we discuss briefly the availability of algorithms for the generation and interpretation of
symmetrically reduced graphs.

A symmetry is a mapping of the system onto itself that preserves the system struc-
ture. For signal-net systems, a symmetry is a bijection of the nodes (i.e. places and
transitions) that preserves the node type and the connecting arcs. Characteristics of in-
scriptions (for instance, the mode of transitions with respect to incoming signals) must
be preserved, too. For arc-timed signal-net systems, symmetries respect additionally the
time annotations of the pre-arcs.

Definition 9.1
A bijection σ of P ∪ T is a symmetry of the SNS N = [P, T, F, V,B,W, S,M,m0] iff

1. σ(P) = P , σ(T) = T (σ respects the node type);

2. for all x, y ∈ P ∪ T and i ∈ N, if [x, y] ∈ F and V ([x, y]) = i then [σ(x), σ(y)] ∈ F
and V ([σ(x), σ(y)]) = i (σ respects the flow-arcs and their weight);

3. for all p ∈ P, t ∈ T, i ∈ N, if [p, t] ∈ B and W ([p, t]) = i then [σ(p), σ(t)] ∈ B and
W ([σ(p), σ(t)]) = i (σ respects the condition arcs and their weight);

4. for all t, t′ ∈ T , [t, t′] ∈ S iff [σ(t), σ(t′)] ∈ S (σ respects the signal arcs);

5. for all t ∈ T , M(t) = M(σ(t)) (σ respects the signal processing mode).

σ is a symmetry of an arc-timed signal-net system iff, additionally, for all all pre-arcs
[p, t] ∈ F , eft(p, t) = eft(σ(p), σ(t)) and lft(p, t) = lft(σ(p), σ(t)) (i.e. σ respects the
arc-time intervals).

If σ1 and σ2 are symmetries then so are σ1 ◦ σ2 and σ−1
1 . Thereby σ1 ◦ σ2(x) =

σ2(σ1(x)). σ−1 is defined by the relation σ−1(x) = y iff σ(y) = x. Consequently, the
set of all symmetries (denoted by ΣN) with the concatenation ◦ and the inversion −1

forms a subgroup of the group of all bijections of P ∪T . Every subgroup of ΣN is called
symmetry group.

Let Σ be a symmetry group. Σ induces a relation between nodes and a relation
between markings. For nodes x, y, let x ∼Σ y iff there is a σ ∈ Σ such that σ(x) = y.
For a marking m, let σ(m) be the mapping satisfying σ(m)(σ(p)) = m(p) for all p ∈ P .
This mapping reflects the ”movement” of tokens according to the mapping of nodes. If
an arc-timed SNS is considered, for clock positions u σ(u) is defined in this way (since

38 9. Symmetries Karsten Schmidt, Peter H. Starke

u is a marking). Let m ∼Σ m′ iff there is a σ ∈ Σ such that σ(m) = m′. Both relations
∼Σ are equivalence relations. Denote the equivalence class of a node or marking z by
[z]Σ.

A marking m is called symmetric with respect to Σ iff [m] = {m}. A node x ∈ P ∪T
is called fixed point of Σ iff [x]Σ = {x}.

The concepts for nodes can be generalized to steps. For a step s, let σ(s) = {σ(t) | t ∈
s}. Since any symmetry σ respects the signal arcs, one verifies easily that σ(Spont) =
Spont and σ(Forc) = Forc, and, that σ(s) is signal–complete if s is signal-complete.
Hence, σ maps steps to steps (preserving the number of spontaneous transitions). A
step s is a fixed point of Σ iff, for all σ ∈ Σ, σ(s) = s.

Obviously, any symmetry σ of an SNS N is a symmetry of the underlying Petri net
PN . The converse does not hold.

The relation between symmetric structure and symmetric behavior is reflected by
the following theorem.

Theorem 9.2 (Symmetric behavior)
Let N be a signal-net system, m,m′ markings, and s a step. Let σ be a symmetry (i.e.

σ ∈ ΣN). Then m
s−→ m′ if and only if σ(m)

σ(s)−−−→ σ(m′).

Proof. First, we show that σ(s) is executable at σ(m). For this purpose, we follow the
definition of executable steps.

ad 1. We have to show that σ(s)∩Spont is not empty. This is clear because s∩Spont
is not empty and σ maps spontaneous transitions to spontaneous transitions.

ad 2. We have to show that σ(s) is signal-complete. Let t ∈ σ(s) and [t′, t] ∈ S.
Thus, σ−1(t) ∈ s. According to the fourth item of Definition 9.1, [σ−1(t′), σ−1(t)] ∈ S.
Since s is signal–complete, we get σ−1(t′) ∈ s (for at least one t′ if M(t) = ∨, for all t′ if
M(t) = ∧). Consequently, t′ ∈ σ(s). Finally, M(σ(t)) = M(t) (by 5th item of Def. 9.1).
Consequently, σ(s) is signal–complete.

ad 3. Due to the second item of Definition 9.1, we have σ(s)−(p) =
∑

t∈σ(s) V (p, t) =∑
t∈s V (p, σ(t)) =

∑
t∈T V (σ−1(p), t). Since s is executable at m, we have V (σ−1(p), t) ≤

m(σ−1(p)). Thus, σ(s)−(p) ≤ m(σ−1(p)) = σ(m)(p). Hence, σ(s) has token-concession
at σ(m).

ad 4. Let t ∈ σ(s), i.e. σ−1(t) ∈ s. We show that t̂ ≤ σ(m), i.e. for all p ∈ Bt
it holds W (p, t) ≤ σ(m)(p). From [p, t] ∈ B we have [σ−1(p), σ−1(t)] ∈ B, since σ
respects the condition arcs. Since s is enabled at m and σ−1(t) ∈ s, we obtain W (p, t) =
W (σ−1(p), σ−1(t)) ≤ m(σ−1(p)) = σ(m)(p).

ad 5. Assume there is a s∗ such that s∗ ⊃ σ(s) and s∗ is enabled at σ(m). By 1, . . . , 4,
σ−1(s∗) is enabled at m. Furthermore, σ−1(s∗) ⊃ s. This contradicts the executablity
of s at m. Thus, σ(s) is executable at σ(m).

It remains to show that firing σ(s) at σ(m) yields σ(m′). Let p ∈ P . We have
σ(m)(p)− σ(s)−(p) + σ(s)+(p) =

= m(σ−1(p))−
∑

t∈σ(s) V (p, t) +
∑

t∈σ(s) V (t, p) =
= m(σ−1(p))−

∑
t∈s V (σ−1(p), t) +

∑
t∈s V (σ−1(p), t) =

9. Symmetries Karsten Schmidt, Peter H. Starke 39

= m′(σ−1(p)) = σ(m′)(p).

Corollary 9.3 (Reachability)
A marking m′ is reachable from another marking m if and only if σ(m′) is reachable
from σ(m). If m is symmetric, then m′ is reachable from m if and only if σ(m′) is
reachable from m.

Symmetrically reduced reachability graphs store equivalence classes of states instead of
single markings. An equivalence class is represented by one of its elements. Dependent on
the algorithm to generate the reduced graph, the representative can either be the member
of the class that has been reached first, or the least member of the class with respect to
some (lexicographical) order. The general outline of the reduced graph generation is (Σ
is the used symmetry group):

VAR Processed, Unprocessed: SET OF Marking;
VAR Edges: SET OF Marking × Step × Marking;
VAR m,m′,m′′: Marking;
VAR σ: Symmetry;
VAR s: Step;

BEGIN
Processed := ∅;
Unprocessed := {m0};
Edges := ∅;
WHILE Unprocessed 6= ∅ DO

m := any element of Unprocessed;
Unprocessed := Unprocessed \{m};
Processed := Processed ∪ {m};
FOR ALL s,m′ : m s−→ m′ DO

IF ∃σ ∈ Σ ∃m′′ ∈ Unprocessed ∪ Processed: σ(m′) = m′′ THEN
Edges := (Edges ∪ {[m, s,m′′]});

ELSE
Unprocessed = Unprocessed ∪ {m′};
Edges := Edges ∪ {[m, s,m′]};

END;
END;

END;
RΣ := Processed; EΣ := Edges;

END.

Obviously, the constructed graph [RΣ, EΣ] is determined only up to symmetries from Σ;
if Σ is the identity group then it coincides with the reachability graph.

Corollary 9.4 (Boundedness)
The symmetrically reduced graph [RΣ, EΣ] is finite if and only if the signal-net system is
bounded.

40 9. Symmetries Karsten Schmidt, Peter H. Starke

Corollary 9.5 (Equivalence)
1. m0 ∈ RΣ ⊂ RN (m0).
2. For every m ∈ RN (m0) there exists exactly one m′ ∈ RΣ such that m′ ∼ m.

From the construction it is clear that there is at most one m′ with m ∼ m′ ∈ RΣ. To
show that there is at least one m′ we prove by induction on i that for all i and all
sequences m0

s0−→ m1
s1−→ . . .

si−1−−−→ mi there exists a m′ such that mi ∼ m′ ∈ RΣ. This
is trivial for i = 0 by m0 ∈ RΣ. Let mi ∼ m′ ∈ RΣ, mi

si−→ mi+1 and σ ∈ Σ such that
σ(mi) = m′. Then by Theorem 9.2 σ(si) is an executable step at σ(mi) = m′, thus,
there exists an edge [m′, σ(si),m′′] ∈ EΣ. Obviously, mi+1 ∼ m′′ ∈ RΣ.

In the sequel, let eq(m) be the marking from RΣ which is equivalent with m ∈
RN (m0). Obviously, eq(m0) = m0.

With Theorem 9.2 and Corollary 9.3, we obtain

Corollary 9.6 (Reachability II)
1. If for some marking m, an equivalent one is not contained in RΣ, then m is not
reachable from m0.
2. If m is contained in RΣ, then m is reachable.
3. If m0 is symmetric with respect to the symmetry group Σ used, then m is reachable
from m0 if and only if a marking equivalent to m is contained in RΣ.

Consider the case where m is not contained in the reduced graph but a marking m′

equivalent to m is. Then Corollary 9.3 states that m is reachable from σ(m0). σ(m0) is
not necessarily a reachable marking. Therefore, we cannot derive the reachability of m.
If, however, m0 is symmetric, we have σ(m0) = m0 and we can assert the reachability
of m. The stronger deduction rules for reachability justify the use of a non–maximal
symmetry group when m0 is symmetric with respect to the smaller group.

A SNS N is said to be deadlock-free iff no dead marking is reachable in N . If
m ∈ RN (m0) is dead then eq(m) is a leaf in [RΣ, EΣ] and vice versa:

Corollary 9.7 (Deadlock-freedom)
The signal-net system N is deadlock-free iff [RΣ, EΣ] contains no node where no edge
emerges.

For m′,m′′ ∈ RΣ we write m′ ∗∗−−→ m′′ iff there is a path in [RΣ, EΣ] leading from m′

to m′′, i.e. there is a finite sequence ([mi, si,mi+1])i=1,... ,k of adjacent edges such that
m′ = m1 and m′′ = mk.

Lemma 9.8
If m ∈ RN (m0) and m ∗−→ m′ then eq(m) ∗∗−−→ eq(m′).

Proof. Let s1 . . . sk be a sequence of steps such that m s1−→ m1
s2−→ m2 . . .mk−1

sk−−→ m′,

and, σ ∈ Σ with σ(m) = eq(m). Then eq(m) = σ(m)
σ(s1)−−−→ σ(m1), i.e. σ(s1) is an

executable step at eq(m), thus, there exists an edge [eq(m), σ(s1),m′1] ∈ EΣ. We have
m′1 ∼ σ(m1) ∼ m1 and eq(m1) = m′1, i.e.

9. Symmetries Karsten Schmidt, Peter H. Starke 41

eq(m) ∗∗−−→ eq(m1). By induction we obtain eq(m) ∗∗−−→ eq(m′).

A SNS N is called reversible or resetable iff its reachability graph is strongly connected,
i.e. the initial marking m0 is reachable from every reachable marking.

Theorem 9.9 (Resetability)
The signal-net system N is resetable iff [RΣ, EΣ] is strongly connected.

Proof. Let N be resetable, m′ ∈ RΣ. We have to show that m′ ∗∗−−→ m0, i.e. there is a
path from m′ to m0 along edges from EΣ. By RΣ ⊆ RN (m0) and the resetability of N
we have m ∗−→ m0, from which we obtain eq(m′) ∗∗−−→ eq(m0). Since eq(m′) = m′ and
eq(m0) = m0 we are ready.

To derive the resetability of N from the strong connectivity of the symmetrically
reduced graph we need the following assertion:

If m0 ∼ m ∈ RN (m0), then m0 ∈ RN (m).
Let w be a sequence of steps with m0

w−→ m and σ ∈ Σ such that σ(m0) = m. Then

m = σ(m0)
σ(w)−−−→ σ(m) = σ2(m0). Hence, for all i ≥ 2 there is a path in the reachability

graph from m to σi(m0). Since Σ is a finite group there exists a number j ≥ 1 such
that σi is the identity. If j = 1 the σ itself is the identity, hence, m = m0 ∈ RN (m),
otherwise m0 = σj(m0) ∈ RN (m).

Now, let m be reachable from m0 and m′ := eq(m) ∈ RΣ. If m′ = m0 then m0 ∼ m
and m0 ∈ RN (m) follows from the assertion.

Otherwise, m′ 6= m0. Let [m′, s1,m
′
1], . . . be a path in [RΣ, EΣ] leading from m′ to

m0 and σ1 such that σ1(m′) = m. Since s1 is executable at m′, σ1(s1) is executable
at m. Let m1 be the marking reached when σ1(s1) is executed at m. Then m1 ∼ m′1.
Proceeding in this way we arrive at a path in the reachability graph which leads from
m to a certain marking mk ∼ m0. By our assertion we obtain m0 ∈ RN (m).

Let SΣ denote the union of all steps s such that there is an edge [m′, s,m′′] ∈ EΣ.

Theorem 9.10 (Dead transitions)
For all transitions t ∈ T it holds:
1. If [t] ∩ SΣ = ∅, then t is dead in N .
2. If m0 is symmetric and t is dead in N , then [t] ∩ SΣ = ∅.

Proof. Ad 1. If t is not dead in N , there exist a reachable marking m and a step
s such that m s−→ and t ∈ s. Hence, eq(m) ∈ RΣ and there exists a σ ∈ Σ with
σ(m) = eq(m). Thus, σ(s) is an executable step at eq(m) and for some m′ we obtain
[eq(m), σ(s),m′] ∈ EΣ. Hence, σ(s) ⊆ SΣ and for t′ := σ(t) it holds t′ ∈ [t] ∩ SΣ.
Ad 2. Assume for contradiction that [t] ∩ SΣ 6= ∅, i.e. that there is a t′ ∼ t and an edge
[m′, s,m′′] ∈ EΣ with t′ ∈ s. We have m0

∗−→ m′
s−→. Let σ ∈ Σ such that σ(t′) = t.

Then, by the symmetry of m0, we obtain m0 = σ(m0
∗−→ σ(m′)

σ(s)−−−→. Now, t ∈ σ(s)
contradicts that t is dead at m0.

42 9. Symmetries Karsten Schmidt, Peter H. Starke

A set U of transitions is said to be collectively live at m0 iff from every reachable marking
m ∈ RN (m0) there is reachable a marking m′ ∈ RN (m) such that a step s with s∩U 6= ∅
is executable at m′.

Obviously, a transition t from a collectively live set U is not necessarily live, but it
holds:

Corollary 9.11
1. A transition t is live at m iff {t} is collectively live at m.
2. If U is collectively live at m, then U 6= ∅ and every superset U ′ ⊇ U is collectively
live at m.
3. N is deadlock-free iff T is collectively live at m0.

For m′ ∈ RΣ let SΣ(m′) be the union of all steps s such that there is a vertex
m′′ ∈ RΣ with m′

∗∗−−→ m′′ and an edge [m′′, s,m′′′] ∈ EΣ. Obviously, SΣ = SΣ(m0).

Theorem 9.12 (Collective liveness)
For every t ∈ T , the equivalence class [t] is collectively live at m0 iff for all m′ ∈ RΣ it
holds [t] ∩ SΣ(m′) 6= ∅.

Proof. Let [t] be collectively live at m0 and m′ ∈ RΣ. We have to show that there is a
path in [RΣ, EΣ] leading from m′ to a vertex m′′ where an edge [m′′, s,m′′′] starts with
s ∩ [t] 6= ∅.
Since m′ ∈ RN (m0) and [t] is collectively live at m0 there exist a marking m ∈ RN (m′)
and a step s such that m s−→ and [t]∩s 6= ∅. We have m0

∗−→ m′
∗−→ m

s−→ and, therefore,
m0 = eq(m0) ∗∗−−→ eq(m′) = m′

∗∗−−→ eq(m). Let σ ∈ Σ such that σ(m) = eq(m). Then,

eq(m)
σ(s)−−−→. Thus, m′′ := eq(m) has properties to prove: m′

∗∗−−→ m′′
σ(s)−−−→ and

σ(s) ∩ [t] 6= ∅.
Now assume, that for all m′ ∈ RΣ it holds [t] ∩ SΣ(m′) 6= ∅ and let m1 ∈ RN (m0). We
have to show that there exist a marking m and a step s such that m1

∗−→ m
s−→ and

s ∩ [t] 6= ∅.
We consider m′1 := eq(m1) ∈ RΣ. From [t]∩SΣ(m′1) 6= ∅ we obtain that there exists edges
[m′1, s1,m

′
2], [m′2, s2,m

′
3], . . . , [m′k, sk,m

′
k+1] ∈ EΣ such that sk∩ [t] 6= ∅. Let σ0 ∈ Σ such

that σ0(m′1) = m1 and for i = 1, . . . , k let σi ∈ Σ such that σi(m′i+1) = σi−1(m′i +4si).
Then we have
m1 = σ0(m′1)

σ0(s1)−−−−→ σ0(m′1 +4s1) = σ1(m′2)
σ1(s2)−−−−→ . . . σk−1(m′k)

σk−1(sk)−−−−−−→.

Hence, for m := σk−1(m′k) we obtain m1
∗−→ m

σk−1(sk)−−−−−−→ and σk−1(sk) ∩ [t] 6= ∅.

For the implementation of reduced reachability graph algorithms, we need to solve two
tasks. First, we need to calculate a representation of the symmetry group Σ used. It
should be possible to define restrictions for the group to be calculated (such as keeping
the initial state symmetric, defining fixed points and so on). The second task is the
decision whether, for a given state m, an equivalent one already has been computed.
The latter task is completely compatible to the Petri net case studied in [Sch00b].

For the calculation of the symmetry group, the ideas of [Sch00a] can be adapted.

9. Symmetries Karsten Schmidt, Peter H. Starke 43

There, a general framework is provided for many net classes. Nets are considered to
consist of places, transitions, and arcs, all of which can be inscribed (using a mapping
χ). For signal-net systems, this approach can be directly used if signals and condi-
tions are considered to be special arcs. We can translate a signal-net system N =
[P, T, F, V,B,W, S,M,m0] into a general net [P, T, F ′, χ, I,m0] according to [Sch00a] by
setting:

• F ′ = {[x, y] | [x, y] ∈ F or [x, y] ∈ S or [x, y] ∈ B};

• for x ∈ T , χ(x) = M(t); (if time constraints are involved, χ(t) assigns the time
parameters to a transition);

• for x ∈ P , χ(x) = nil;

• for [x, y] ∈ F , χ([x, y] := [”f”, V (x, y)];

• for [x, y] ∈ S, χ([x, y] := ”s”;

• for [x, y] ∈ B, χ([x, y] := [”b”,W (x, y)];

We coded the type of the arc by a constant, and added multiplicities to arc inscriptions.
The approach in [Sch00a] does not consider (signal) arcs between transitions, but non of
the results depend on this limitation. Therefore, the algorithm presented there can be
used to calculate the symmetries of signal-net systems. It returns a generating set of a
symmetry group which is has at most n(n−1)

2 members (n is the number of nodes of the
net). Restrictions such as fixed points and symmetric initial markings can be handled
by the algorithm.

44 10. Conflicts Peter H. Starke

10. Conflicts

Two transitions t, t′ of a Petri net are said to be in a (”true”) dynamic conflict at the
marking m iff they are both enabled (i.e. t− ≤ m and t′− ≤ m) but not concurrently
enabled (i.e. t−+ t′− ≤ m holds not). In loop-free nets (where no place is pre-place and
post-place of the same transition) this implies that t is not enabled after t′ has fired and
that t′ is not enabled after t has fired. Therefore, this consequence often is used as a
definition for conflict, but one has take in account that conflict in this sense is symmetric.
In Petri nets with self-loops non-symmetric conflicts appear, e.g. t′ is enabled after the
firing of t but t is not after the firing of t′.

If t and t′ are in a dynamic conflict at m, there exists a place p such that t−(p) +
t′−(p) > m(p); hence, t and t′ have a common pre-place and we say that t and t′ are in
a static conflict. Note that the static conflict relation is symmetric but not transitive.
Obviously, in a Petri net without static conflicts, no dynamic conflict can appear.

A non-empty set s of transitions of a Petri net is said to be concurrent at m iff
s− ≤ m. Otherwise, s is called conflicting at m. Obviously, if s is concurrent at m then
any sequence which contains every transition from s at most once can be executed at
m (the converse, again, holds only for loop-free Petri nets). This implies that all states
(reachable markings) of a Petri net can be found by firing sequences of single transitions
only (instead of concurrent steps). We know from the previous section that this is not
the case for SNS .

In SNS , we have to distinguish between step conflicts and transition conflicts.
Let s1 and s2 be executable steps at m,m s1−→ m1 and m

s2−→ m2. The steps s1, s2 are
said to be in symmetric (dynamic) conflict iff s1 is not a executable step at m2 and s2

is not a executable step at m1. The steps s1, s2 are said to be in conflict iff s1 is not a
executable step at m2 or s2 is not a executable step at m1.

Two transitions t1, t2 are in dynamic conflict at m iff there exist executable steps
s1, s2 at m with t1 ∈ s1, t2 6∈ s1, t1 6∈ s2, t2 ∈ s2, m s1−→ m1, and m

s2−→ m2 such that
there is no executable step at m1 containing t2 or such that there is no executable step
at m2 containing t1.

It may be the case that, at a marking m, two executable steps are in a dynamic
conflict but no two transitions are (see Figure 10.1). Obviously, the occurrence of a

t

t1 t2

Figure 10.1: s1 = {t1, t}, s2 = {t2, t} are in symmetric conflict and t1, t2 are not in
dynamic conflict

10. Conflicts Peter H. Starke 45

dynamic transition conflict implies the occurrence of a step conflict.
Consider the SNS of Figure 10.2. At the given marking the steps s1 = {t1}, s2 = {t2}

p1

p2p2

p1

t1 t2t2t1

Figure 10.2: s1 = {t1}, s2 = {t2} and s = {t1, t2} are executable

and s = {t1, t2} are executable. After the execution of any of these steps the net is dead,
although s = s1∪s2, s1∩s2 = ∅, i.e. s1, s2 seem to be concurrently executable. The three
reachable dead states are different. This shows that the single spontaneous transition
firing rule where every executable step contains exactly one spontaneous transition, is
not sufficient to construct all reachable states of a signal-net system. On the other hand,
if we put three tokens to every place of our net we have a situation where the step s can
be removed from the list of executable steps without changing the set of reachable states.
This faces us with the (implementation) problem of reducing the list of executable steps
as far as the diamond property holds.

Our tool SESA computes the static transition conflicts. The computation of (dy-
namic) step conflicts and dynamic transition conflicts can be done after a reachability
graph has been (partly) generated; the conflicts reflected by the computed graph are
displayed on demand.

46 10. Conflicts Peter H. Starke

III. Model Checking

11. Computation Tree Logic Peter H. Starke, Stephan Roch 49

11. Computation Tree Logic

Reachability analysis is a method for analyzing the dynamic behavior of a concurrent
system described by one of numerous modeling techniques. Creating a reachability graph
provides a way to characterize all possible behaviors of the system.

Temporal logics, such as the Computation Tree Logic CTL, offer facilities for the
specification of properties that the behavior of the system must fulfill. The process
of checking whether a temporal formula holds for a system is called model checking
[CES86,CGP99].

In CTL all formulae specify behaviors of the system starting from an assigned state
in which the formula is evaluated by taking paths, i.e. sequences of states, into account.
A formula holds true for the system if the formula evaluates to true in the initial state
of the system. Thereby, witnesses for existence-quantified sub-formulae, and counter
examples for all-quantified sub-formulae can be determined and displayed. CTL allows
us to use atomic propositions to express properties of certain states.

In this section, you will find a short introduction into the syntax and semantics of
CTL (Computational Tree Logic), and a description of the state predicates and atomic
state propositions used in SESA. See page 115ff in the appendix for a complete and
detailed overview of the CTL input language and the SESA model checker.

11.1. Basic Definitions

The semantics of temporal formulae is defined with respect to a reachability graph.
States and paths of this reachability graph are used for the evaluation of truth values.

11.1.1. Reachability graphs

The reachability graph of a system consists of all global states that the system can reach,
starting in a given initial state. The basic structure can be seen as a directed graph.

Definition 11.1
Structure M is a reachability graph, which is a tuple M = [Z,E], where

1. Z is a finite set of states

2. E is a finite set of transitions between states, i.e. a set of edges (z, z′), such that
z, z′ ∈ Z and z′ is reachable from z.

Note that E is a binary relation on Z. In the sequel we assume as usual that the
reachability graph has no terminal states, i.e. states without a successor; otherwise, for
every such state z we would add the edge (z, z) to E. This implies that the relation E
is total.

11.1.2. Paths

Paths play the key role in the definition and evaluation of formulae expressed in a CTL
like logic.

50 11. Computation Tree Logic Peter H. Starke, Stephan Roch

Definition 11.2
A path starting in the state z0 is a sequence of states (zi) = z0z1 . . . such that for all
j ≥ 0 it holds that there is an edge (zj , zj+1) ∈ E. We use (zi) to denote such a path.

Note that every path has infinite length due to the requirement that for every terminal
state z there is an edge (z, z) ∈ E

11.1.3. State predicates and atomic state propositions

During the computation of minimal paths, the reachability analysis (“bad” predicate),
and the model checking SESA works with state predicates.

A predicate is a disjunction of conjunctions of possibly negated atoms (disjunctive
normal form). An atom consists of a statement of the form

place : low ≤ value ≤ upp (where 0 ≤ low ≤ upp ≤ ∞)

As an example for the state predicates used in SESA, value =number of tokens on a
place; an atom p1 : low = 1, upp = 2; is then satisfied by all states in which place p1

contains one or two tokens.
In SESA you can even work with more general atomic state propositions, e.g. marking

sums as in m(p1) + m(p2) + m(p3) = 1 or arbitrary boolean combinations of other
relations as in ((m(p1) > 1) ∧ (m(p2) ≥ 1))⇒ (m(p3) = 0).

In the sequel we use functions P mapping states z ∈ Z to booleans, to express
properties related to certain states.

11.2. Syntax and Semantics of CTL

11.2.1. Syntax

Definition 11.3
The set of Computation Tree Logic formulae is defined inductively.

Basis: Every predicate or atomic state proposition P and the constants true and false
are CTL formulae.

Step: If ϕ and ψ are CTL formulae, so are the boolean combinations ¬ϕ, (ϕ ∧ ψ), and
(ϕ ∨ ψ), and the temporal operators EX ϕ, AX ϕ EF ϕ, AF ϕ, EGϕ, AGϕ,
E[ϕU ψ], A[ϕU ψ]. E[ϕB ψ], and A[ϕB ψ].

11.2.2. Semantics of CTL

The truth value of CTL formulae is evaluated with respect to a certain state of the
reachability graph. The semantics of predicates, atomic state propositions and boolean
combinations is standard and does not need further explanation.

The relation M, z0 |= ϕ means that the CTL–formula ϕ is satisfied in the state z0

within the given structure M . In the sequel we omit M in the definition of |=.

11. Computation Tree Logic Peter H. Starke, Stephan Roch 51

Definition 11.4
Let z0 ∈ Z be a state of the reachability graph and ϕ and ψ CTL formulae. Then the
relation |= for CTL formulae is defined inductively.

Basis: z0 |= P iff P holds in z0

z0 |= true always holds
z0 |= false never holds

Step: z0 |= ¬ϕ iff not z0 |= ϕ
z0 |= (ϕ ∧ ψ) iff z0 |= ϕ and z0 |= ψ
z0 |= (ϕ ∨ ψ) iff z0 |= ϕ or z0 |= ψ
z0 |= EX ϕ iff there exists a successor state z1 such that there is an

edge (z0, z1) ∈ E and z1 |= ϕ
z0 |= AX ϕ iff z1 |= ϕ holds for all successor states z1 with an edge

(z0, z1) ∈ E
z0 |= EF ϕ iff there is a path (zi) and a j ≥ 0 such that zj |= ϕ
z0 |= AF ϕ iff for all paths (zi) there exists a j ≥ 0 such that zj |= ϕ
z0 |= EGϕ iff there is a path (zi) and for all j ≥ 0 it holds zj |= ϕ
z0 |= AGϕ iff for all paths (zi) and for all j ≥ 0 it holds zj |= ϕ
z0 |= E[ϕU ψ] iff there is a path (zi) and a j ≥ 0 such that zj |= ψ and

for all 0 ≤ k < j it holds zk |= ϕ
z0 |= A[ϕU ψ] iff for all paths (zi) there exists a j ≥ 0 such that zj |= ψ

and for all 0 ≤ k < j it holds zk |= ϕ
z0 |= E[ϕB ψ] iff there is a path (zi) and a j ≥ 0 such that zj |= ψ and

there is a 0 ≤ k < j such that zk |= ϕ holds
z0 |= A[ϕB ψ] iff for all paths (zi) there exists a j ≥ 0 such that zj |= ψ

and there is a 0 ≤ k < j such that zk |= ϕ holds

A formula ϕ holds true in M = [Z,E] iff the formula is true in the initial state of the
reachability graph.

11.2.3. Equivalences

Definition 11.5
Two formulae ϕ, ψ are said to be equivalent (ϕ ≡ ψ) if z |= ϕ iff z |= ψ for every
reachability graph M and any state z of M .

For CTL we have the following equivalences:

• AX(ϕ) ≡ ¬EX(¬ϕ)

• AF (ϕ) ≡ A[trueU ϕ]

• EF (ϕ) ≡ E[trueU ϕ]

• AG(ϕ) ≡ ¬EF (¬ϕ)

• EG(ϕ) ≡ ¬AF (¬ϕ)

52 11. Computation Tree Logic Peter H. Starke, Stephan Roch

• A[ϕU ψ] ≡ ¬(E[¬ψ U ¬ψ ∧ ¬ϕ] ∨ EG¬ψ)

• E[ϕU ψ] ≡ ψ ∨ (ϕ ∧ EX (E[ϕU ψ])

• A[ϕU ψ] ≡ ψ ∨ (ϕ ∧ AX (A[ϕU ψ])

The semi-formal meaning of the temporal operators is underlined by the symbols used:
E stands for “exists”, A for “always”, X for “next”, U for “until”, B for “before”, F for
“future”, and G for “globally”.

12. Extended Computation Tree Logic Stephan Roch 53

12. Extended Computation Tree Logic

In CTL it is rather complicated to refer to information contained in certain state transi-
tions between states. We try to give a solution for this problem by proposing an extension
of CTL which we call eCTL extend Computation Tree Logic [Roc00b,Roc00c]. Most of
the known equivalences between CTL operators also hold for the extended operators.

First experiences have shown the power and expressiveness of eCTL. With the
extended next step operators you can express the need for certain state transitions along
a path, e.g. EF E tX EF a is true, if there is a path leading to a state fulfilling a and
along this path t is contained in a step.

If either an existential quantified formula is true giving us a witness path or an
universal quantified formula is false giving a counterexample, you can use a transition
formula to limit the range of temporal quantifiers to exclude such a path and possible
get another witness path or counterexample.

Our logic is only a subset of the action based logic ACTL [DV90], but we have choosen
to extend an existing model checker rather than to translate action based formulae
together with the underlying structure as it is proposed in [DV90].

12.1. Basic Definitions

We modify the standard definitions by using transition formulae and labeled reachability
graphs.

12.1.1. Reachability graphs

Since we want to refer not only to state information but also to steps between states,
multiple (labeled) edges between two nodes occur in our basic structure seen as a directed
graph.

Definition 12.1
Structure M is a reachability graph, which is a tuple M = [Z,E], where

1. Z is a finite set of states

2. E is a finite set of transitions between states, i.e. a set of labeled edges (z, s, z′),
such that z, z′ ∈ Z and z′ is reachable from z by executing the step s.

For every terminal state z we add the edge (z, ∅, z) to E.

12.1.2. Transition formulae

We introduce transition formulae to refer to state transition information contained in
the edges of the reachability graph. Since our reachability graph is labeled with steps,
we use t to refer to a transition of a step, and τ to denote transition formulae (we do
not have silent actions like [DV90]).

54 12. Extended Computation Tree Logic Stephan Roch

Definition 12.2
The set of transition formulae is defined inductively.

Basis: Every transition t ∈ T and the constants true and false are transition formulae.

Step: If τ and % are transition formulae, so are the boolean combinations ¬τ , (τ ∧ %),
and (τ ∨ %).

The semantics of transition formulae is standard and does not need further explanation.
The truth value is evaluated with respect to a certain edge of the reachability graph.

Definition 12.3
Let (z, s, z′) ∈ E be a state transition with a step s and τ and % transition formulae.
Then the relation |= for transition formulae is defined inductively.

Basis: (z, s, z′) |= t iff t ∈ s
(z, s, z′) |= true always holds
(z, s, z′) |= false never holds

Step: (z, s, z′) |= ¬τ iff not (z, s, z′) |= τ
(z, s, z′) |= (τ ∧ %) iff (z, s, z′) |= τ and (z, s, z′) |= %
(z, s, z′) |= (τ ∨ %) iff (z, s, z′) |= τ or (z, s, z′) |= %

12.1.3. Paths and Sequences

We extend the usual path definition by taking transition formulae into account and
defining τ -sequences. Note that a τ -sequence in general is not a path in the sense of
Definition 11.2.

To obtain a τ -sequence from a path only τ fulfilling state transitions have to be taken
into account, i.e. an edge (zk, sk, zk+1) ∈ E is ignored, if τ does not hold in (zk, sk, zk+1).
If the resulting sequence has finite length due to the ignoring of an edge, then infinitely
many repetitions of the last state have to be added.

Definition 12.4
A τ -sequence for a transion formula τ is a sequence of states (zi) = z0z1 . . . starting in
z0 such that either

for all j ≥ 0 it holds that there is an edge (zj , sj , zj+1) ∈ E with (zj , sj , zj+1) |= τ

(i.e. z0z1 . . . is a path such that every state transition fulfills τ)

or there is a k ≥ 0 such that there is for zk no edge (zk, s, z) ∈ E with (zk, s, z) |= τ
for any state transition s and state z, but for all 0 ≤ j < k there is an edge
(zj , sj , zj+1) ∈ E with (zj , sj , zj+1) |= τ , and for all i > k it holds that zi = zk

(i.e. zk is the last state in a series of τ fulfilling state transitions and this state is
repeated infintely).

We use (zi)τ to denote such a sequence.

12. Extended Computation Tree Logic Stephan Roch 55

Figure 12.1 shows on the left a reachability graph. The sequence z0, z1, z2, . . . is the only
path, but z0, z1, z1, z1, . . . is the only τ -sequence in this reachability graph.

z0 z1 z0 z1
τ z1

¬τ

Figure 12.1: Reachability graph with path z0z1z2 . . . and τ -sequence z0z1z1z1 . . .

12.2. Syntax and Semantics of eCTL

Our logic eCTL is an extension of the Computation Tree Logic CTL. We use transition
formulae to limit the range of quantifiers in temporal operators.

12.2.1. Syntax

Definition 12.5
The set of extended Computation Tree Logic formulae is defined inductively.

Basis: Every predicate or atomic state proposition P and the constants true and false
are eCTL formulae.

Step: If ϕ and ψ are eCTL formulae, so are the boolean combinations ¬ϕ, (ϕ∧ψ), and
(ϕ ∨ ψ), and the temporal operators E τ X ϕ, Aτ X ϕ E τ F ϕ, Aτ F ϕ, E τ Gϕ,
Aτ Gϕ, E τ [ϕU ψ], Aτ [ϕU ψ], E τ [ϕB ψ], and Aτ [ϕB ψ], for transition for-
mulae τ .

12.2.2. Semantics

We postpone the interpretation of most temporal operators to Section 12.2.4 and start
with the interpretation of the two next state operators EτXϕ and AτXϕ.

Definition 12.6
Let z0 ∈ Z be a state of the reachability graph, τ a transition formula, and ϕ and
ψ eCTL formulae. Then the relation |= for eCTL formulae is defined inductively (see
Definition 11.4 for the basis and boolean combinations).

Step: z0 |= E τ X ϕ iff there exists a successor state z1 such that there is an
edge (z0, s, z1) ∈ E such that (z0, s, z1) |= τ and z1 |= ϕ
holds

z0 |= Aτ X ϕ iff z1 |= ϕ holds for all successor states z1 with an edge
(z0, s, z1) ∈ E such that (z0, s, z1) |= τ holds

A formula ϕ holds true in M = [Z,E] iff the formula is true in the initial state of the
reachability graph.

56 12. Extended Computation Tree Logic Stephan Roch

Figure 12.2 shows three reachability graphs and gives examples for Aτ X ϕ and
E τ X ϕ. The edges are labeled with executable steps. z0 is the initial state. Note that
the truth value of ϕ in state z3 is not relevant, because this state is ignored due to the
transition formula t1.

t1, t2
z1 |= ϕ

z2 |= ϕ
t2

t1z0

z3

z0 |= E t1X ϕ
z0 |= At1X ϕ

t2
z0

z3

z0 6|= E t1X ϕ
z0 |= A t1X ϕ

t1, t2
z1 |= ϕ

z2 6|= ϕ
t2

t1z0

z3

z0 |= E t1X ϕ
z0 6|= A t1X ϕ

Figure 12.2: Aτ X ϕ and E τ X ϕ

First we want to investigate some properties of the next state operators.

Lemma 12.7

Aτ X ϕ ≡ ¬E τ X ¬ϕ (1)

As a consequence of the equivalence (1) we can omit the semantic definition of Aτ X ϕ
and derive this operator by setting (1) as an abbreviation.

The relation between the next state operators of CTL and eCTL is examined in the
following proposition and lemma.

Proposition 12.8
The next step operators EXϕ and AXϕ of CTL can be derived by setting τ ≡ true.

Lemma 12.9
For every transition formula τ it holds

z |= Eτ X ϕ ⇒ z |= EXϕ (2)
z |= AXϕ ⇒ z |= Aτ X ϕ (3)

The reverse directions do not hold, e.g. if z0 has a successor z1 such that z1 |= ϕ, i.e.
z0 |= EXϕ, then there may be no such z1 with (z0, s, z1) |= τ .

12.2.3. Expressiveness

Figure 12.3 shows two reachability graphs that can be distinguished by the eCTL formula
A tX ϕ. This is not possible in CTL, because both graphs are identical, if the state
transition information is ignored.

Remark. Basically E τ Xϕ resp. Aτ X ϕ are equivalent to 〈τ〉ϕ resp. [τ]ϕ of the modal
µ-calculus [Koz83]. Nevertheless eCTL does not contain the fixpoint operators of the

12. Extended Computation Tree Logic Stephan Roch 57

z0 |= A tXϕ

z2 6|= ϕ

z0 6|= A tX ϕ

z2 6|= ϕ
z0 z0

z1 |= ϕ

t¬t

t z1 |= ϕ ¬t

Figure 12.3: Two distinguishable reachability graphs

modal µ-calculus and has therefore not the same expressive power as the modal µ-
calculus.

It is known that eCTL-like logics can be decided by transformation of formula and
underlying structure and using standard CTL procedures [DV90].

12.2.4. Semantics of remaining eCTL temporal operators

The semantics is given like standard CTL but instead of a path we take τ -sequences into
account.

Definition 12.10 (cont. of Definition 12.6)

z0 |= E τ F ϕ iff there is a τ -sequence (zi)τ and a j ≥ 0 such that
zj |= ϕ

z0 |= Aτ F ϕ iff for all τ -sequences (zi)τ there is a j ≥ 0 such that
zj |= ϕ

z0 |= E τ Gϕ iff there is a τ -sequence (zi)τ such that for all j ≥ 0
it holds zj |= ϕ

z0 |= Aτ Gϕ iff for all τ -sequences (zi)τ and for all j ≥ 0 it holds
zj |= ϕ

z0 |= E τ [ϕU ψ] iff there is a τ -sequence (zi)τ and a j ≥ 0 such that
zj |= ψ and for all 0 ≤ k < j it holds zk |= ϕ

z0 |= Aτ [ϕU ψ] iff for all τ -sequences (zi)τ there exists a j ≥ 0 such
that zj |= ψ and for all 0 ≤ k < j it holds zk |= ϕ

Lemma 12.11

Aτ Gϕ ≡ ¬E τ F ¬ϕ (4)
Aτ F ϕ ≡ ¬E τ G¬ϕ (5)

≡ Aτ [trueU ϕ] (6)
E τ F ϕ ≡ E τ [trueU ϕ] (7)

Aτ [ϕU ψ] ≡ ¬(E τ [¬ψ U ¬ψ ∧ ¬ϕ] ∨ E τ G¬ψ) (8)

Equally valid formulations of eCTL are possible by taking only some operators as fun-
damental and deriving all other operators using the above equalities. One sufficient set

58 12. Extended Computation Tree Logic Stephan Roch

is E τ X ϕ, E τ Gϕ, and E τ [ϕU ψ], another set is E τ X ϕ, E τ [ϕU ψ], and Aτ [ϕU ψ].
We can use this in proofs.

Lemma 12.12

E τ [ϕU ψ] ≡ ψ ∨ (ϕ ∧ E τ X (E τ [ϕU ψ]) ∧ E τ X true) (9)
Aτ [ϕU ψ] ≡ ψ ∨ (ϕ ∧ Aτ X (Aτ [ϕU ψ]) ∧ E τ X true) (10)

Proof. (9) Case 1: z0 |= ψ. Then E τ [ϕU ψ] holds trivially in z0. Case 2: z0 6|= ψ.
Case 2a: z0 6|= ϕ. Then E τ [ϕU ψ] does not hold in z0. Case 2b: z0 |= ϕ. If z0 has
no successor z1 such that (z0, s, z1) |= τ then E τ [ϕU ψ] does not hold in z0. Otherwise
E τ [ϕU ψ] does only hold, iff z1 |= E τ [ϕU ψ].
(10) similar.

Proposition 12.13
The temporal operators of CTL, i.e. EFϕ, AFϕ, EGϕ, AGϕ, E[ϕUψ], and A[ϕUψ],
can be derived by setting τ ≡ true.

Corollary 12.14
CTL is a subset of eCTL.

Lemma 12.15

E τ [ϕU ψ] ⇒ E [ϕU ψ] (11)
E τ F ϕ ⇒ EFϕ (12)
AGϕ ⇒ Aτ Gϕ (13)

The reverse directions and other implications between CTL and eCTL temporal op-
erators do not hold, e.g. if z0 |= E τ Gϕ then the τ -sequence may be shorter than a
true-sequence.

12.3. Example eCTL formulae

E τ F ϕ can be used to express the reachability of a state fulfilling ϕ by a sequence
containing only state transitions, in which τ holds true. In Figure 12.4 z0 |= E τ F ϕ
holds true because there exists a τ -sequence z0, z3, z7 such that z7 |= ϕ. The sequence to
the state z4 with z4 |= ϕ is not valid for this, because this sequence is not a τ -sequence.
Note that Aτ F ϕ holds true in z0 as well, since z0, z3, z7 is the only τ -sequence staring
in z0 in this reachability graph.
To express that whenever a state transition fulfilling t is possible this transition should
lead to a successor state in which ϕ holds true, AGAtX ϕ can be used. In Figure 12.5
only z2, z4, and z6 have to fulfill the sub formula ϕ. A tX ϕ holds trivially in all other
states, because none of them has a τ successor.
The need for an acknowledgment of certain requests is specified by the formula

AGAtreqX AF E tacknX true .

12. Extended Computation Tree Logic Stephan Roch 59

z1

z0

z2 z3

z6z5 z7 |= ϕ

τ

¬τ

z4 |= ϕ

¬τ

τ
¬τ

Figure 12.4: z0 |= E τ F ϕ

z1

z0

z2 |= ϕ z3

z6 |= ϕz5 z7z4 |= ϕ

t

t

t

Figure 12.5: z0 |= AGAtX ϕ

60 12. Extended Computation Tree Logic Stephan Roch

Figure 12.6 shows a reachability graph, in which this formula is true. Note that only z3

and z4 have to fulfill AF E tacknX true.

z0

z6z5 z7z4

z1 z2 z3

z8 z9 z10

treq

treq tackn

tackntackntackn

Figure 12.6: z0 |= AGAtreqX AF E tacknX true

eCTL is a conservative extension of CTL in the sense that every eCTL formula without
any transition formula in it (τ always true) is interpreted in the same way as in plain
CTL.

12.4. Implementation

This section sketches, how our extension can be embedded in existing model checking
algorithms based on graph traversal.

These model checkers evaluate the truth value of a CTL formula by successively
traversing the reachability graph starting in a certain state [CES86, Hel97]. Only the
evaluation of atomic propositions, boolean combinations, and the temporal operators
Aτ X ϕ, E τ [ϕU ψ], and Aτ [ϕU ψ] have to be implemented, since all other eCTL
operators can be derived. We use the local model checking algorithm described in [Hel97,
Section 4].

A certain transition formula only limits the range of its temporal operator. Therefore
nothing but a selection of successor states have to be implemented: We just modify the
successors(z) routine [Hel97, Fig. 25-29 and 37-43] to return only successor states, for
which there is an edge fulfilling the current transition formula. This can be done by
passing τi to the successors routine.

Special care has to be taken to handle the semantic of the next step operator Aτ X ϕ.
Two cases have to be distinguished, if the current state z has no τ successors: If z has
at least one successor, i.e. (z, s, z′) ∈ E, but (z, s, z′) 6|= τ , then z |= Aτ X ϕ holds
independently of ϕ, because there is no τ successor. If otherwise z is a terminal state, i.e.
(z, ∅, z) is the only state transition from z, then z |= Aτ X ϕ holds if either (z, ∅, z) 6|= τ ,
i.e. τ does not hold for the empty state transition, or z |= ϕ. This only affects the
implementation of ax in [Hel97, Fig. 29]

12. Extended Computation Tree Logic Stephan Roch 61

Another model checking approach is based on fixpoint equations [BCM92, CGP99].
The equalities of Lemma 12.12 are a basis for the characterization of eCTL formulae
in form of fixpoint equations. These fixpoints can be computed, giving as a result all
states, for which a certain formula holds true. Since large sets have to be represented
and manipulated, binary decision diagrams (BDDs) are mostly used for this [BCM92].
In a BDD based model checker E τ X ϕ plays a key role, because all other operators
can be derived by negation and fixpoint computation. To evaluate E τ X ϕ, only the
representation of the state transition relation (coded as a BDD) must be changed to
respect τ . We have implemented an eCTL model checker based on [Hel97] in our tool
SESA.

62 13. Timed Computation Tree Logic Peter H. Starke

13. Timed Computation Tree Logic

This section shows an extension of the Computation Tree Logic CTL that allows the
melding of qualitative temporal assertions together with time constraints. The extension
essentially consists in attaching a time bound to the modalities. A good survey can be
found in [AH92], we were influenced esp. from [EMSS91].

We use intervals [l, h] with 0 ≤ l ≤ h ≤ ω as time constraints, but attach them
only to the modalities X, F and U . Hence, a formula from Timed Computation Tree
Logic TCTL is obtained from a CTL-formula by attaching intervals to some of these
modalities. We evaluate formulae over discrete-time reachability graphs of arc-timed
SNS . If EXϕ is a formula of CTL then EX[l,h]ϕ is a formula of TCTL which is satisfied
by a state z if this state has a successor z′ satisfying the formula ϕ and such that the
state transition from z to z′ takes at least l and at most h time units.

13.1. Basic Definitions

We define the semantics of TCTL based on the structure of a reachability graph of an
arc-timed SNS .

Definition 13.1
For a reachability graph [Z,E] we define the state delay D as a mapping D : Z → N0.

For any state z = [m,u] the number D(z) is the number of time units which have to
elaps at z before a step can be executed.

Definition 13.2
For any path (zi) and any state z ∈ Z we put

1. D[(zi), z] = 0 , if z0 = z

2. D[(zi), z] = D(z0) +D(z1) + · · ·+D(zk−1) , if zk = z and z0, . . . , zk−1 6= z

With other words, D[(zi), z] is the number of time units after which the state z on the
path (zi) is reached the first time, i.e. the minimal time distance from z0.

13.2. Syntax and Semantics of TCTL

The syntax of TCTL is like CTL, except the attachment of intervals [l, h] with 0 ≤ l ≤
h ≤ ω to the modalities X, F and U . The semantics for these temporal operators have
to take delays into account.

13.2.1. Semantics

Propositions, boolean combinations, and the temporal operators AG, EG, AB, and EB
have standard interpretation and are omitted in the following.

13. Timed Computation Tree Logic Peter H. Starke 63

Definition 13.3
Let z0 ∈ Z be a state of the reachability graph and ϕ and ψ TCTL formulae. Then the
relation |= for TCTL formulae is defined as follows.

z0 |= EX[l,h] ϕ iff there exists a successor state z1 such that there is
an edge (z0, z1) ∈ E and l ≤ D(z0) ≤ h and z1 |= ϕ
holds

z0 |= AX[l,h] ϕ iff z1 |= ϕ holds for all successor states z1 with an
edge (z0, z1) ∈ E and l ≤ D(z0) ≤ h holds

z0 |= EF[l,h] ϕ iff there is a path (zi) and a j > 0 such that zj |= ϕ
and l ≤ D((zi), zj) ≤ h

z0 |= AF[l,h] ϕ iff for all paths (zi) there is a j > 0 such that zj |= ϕ
and l ≤ D((zi), zj) ≤ h

z0 |= E[ϕU[l,h] ψ] iff there exists a path (zi) and a j > 0 such that
zj |= ψ, l ≤ D((zi), zj) ≤ h and for all 0 ≤ k < j it
holds zk |= ϕ)

z0 |= A[ϕU[l,h] ψ] iff for all paths (zi) there is a j > 0 such that zj |= ψ,
l ≤ D((zi), zj) ≤ h and for all 0 ≤ k < j it holds
zk |= ϕ)

13.2.2. Equivalences

• z |= EX[l,h] true iff l ≤ D(z) ≤ h iff z |= AX[l,h]true,

• E[trueU[l,h] ϕ] ≡ EF[l,h] ϕ,

• A[trueU[l,h] ϕ] ≡ AF[l,h] ϕ,

• EX[0,ω] ϕ ≡ EXϕ,

• AX[0,ω] ϕ ≡ AXϕ,

• EF[0,ω] ϕ ≡ EFϕ,

• AF[0,ω] ϕ ≡ AFϕ,

• E[ϕU[0,ω] ψ] ≡ E[ϕU ψ],

• A[ϕU[0,ω] ψ] ≡ A[ϕU ψ].

13.3. Example TCTL formulae

• A state z is called a time-deadlock iff all states z′ which are reachable from z have
the delay D(z′) = 0. This is expressed by

z |= AGEX[0,0]true or z |= ¬EF[1,ω]true.

64 13. Timed Computation Tree Logic Peter H. Starke

• Let ϕ be a formula which is satisfied exactly by the state z. From the state z0 in
any case the state z is reached after at most d units of time: z0 |= AF[0,d]ϕ.

• Let ϕ be a formula which is satified exactly for states z = [m,u] with m(p1) = 3
and let ψ be satisfied iff m(p2) = 4. Then

z |= ¬EF (ϕ ∧ ¬AF[0,d]ψ)

holds from any state z where p1 has three tokens within at most d units of time a
state is reached where p2 has four tokens.

IV. Structural Properties

14. Static Deadlocks and Traps Peter H. Starke, Adrianna Alexander 67

14. Static Deadlocks and Traps

One of the very few possibilities to prove liveness properties of an unbounded Petri net is
provided by the Commoner-Theorem: An ordinary free-choice Petri net is live iff it has
the Deadlock-Trap property. In this section we try to find definitions for a corresponding
property of SNS . For simplicity we confine ourselves to ordinary signal-net systems (i.e.
all multiplicities are equal to 1). Let us first consider traps.

The essential property of a trap is that a trap is not able to become clean after being
marked.

Definition 14.1

1. A subset Q ⊆ P is said to be a dynamic trap at m∗ iff

∀m∀s∀m′(m∗ ∗−→ m
s−→ m′ ∧m(Q) > 0⇒ m′(Q) > 0).

2. A subset Q ⊆ P is said to be a strongly dynamic trap at m∗ iff

∀m∀s(m∗ ∗−→ m
s−→ ∧s−(Q) > 0⇒ s+(Q) > 0).

Lemma 14.2

1. Any strongly dynamic trap at m∗ is a dynamic trap at m∗.

2. If Q is a dynamic trap at m∗, m∗(Q) > 0 and m∗ ∗−→ m′ then m′(Q) > 0.

3. If Q is a (strongly) dynamic trap at m∗ and m∗
∗−→ m∗∗, then Q is a (strongly)

dynamic trap at m∗∗.

The converse of Lemma 14.2.2 is (even for Petri nets) not true. In Figure 14.1 the place
set P is a dynamic trap at the marking (1, 2) (since the zero marking is not reachable),
but P is not a strongly dynamic trap at (1, 2) because the step s = {t} is executable at
(1, 2). Nevertheless, P is a strongly dynamic trap at (0, 1), hence, the converses of 14.2.1
and 3 do not hold. In Figure 14.2 the set Q = {p1, p2} is a strongly dynamic trap at

(1, 1, 0), and, (1, 0, 1)
{t3}−−−→ (1, 1, 0), but Q is not a dynamic trap at the marking (1, 0, 1).

Now, we try to find structural properties of place sets Q which imply that Q is a
(strongly) dynamic trap.

Definition 14.3
Let Poss(N) := {s | ∅ 6= s ⊆ T ∧ ∃m m

s−→ } be the set of all possible steps of N .
Then Q ⊆ P is said to be a structural trap of N iff

∀s(s ∈ Poss(N) ∧ s ∩QF 6= ∅ ⇒ s ∩ FQ 6= ∅).

Lemma 14.4
Every structural trap is a strongly dynamic trap at m0.

68 14. Static Deadlocks and Traps Peter H. Starke, Adrianna Alexander

��

��
��

1

p
2

t

p

Figure 14.1: Counterexample to the converse of Lemma 14.2.1 and 14.2.3

������

�� ��

t
1

t
3

t
2

p p
2

p
1 3

Figure 14.2: Counterexample to the converse of Lemma 14.2.1 and 14.4

Proof. Let m0
∗−→ m

s−→ and s−(Q) > 0. Then s ∈ Poss(N). By s−(Q) > 0 we have
s ∩QF 6= ∅. Since Q is a structural trap it holds s ∩ FQ 6= ∅, i.e. s+(Q) > 0.

The converse does not hold: In Figure 14.2, the set Q = {p1, p2} is a strongly dynamic
trap at (1, 1, 0) which is not a structural trap since s = {t1} ∈ Poss(N), but s∩FQ = ∅.

Remark. If N is a Petri net then a set Q is a structural trap iff

QF ⊆ FQ.

Now, we are going to consider (static) deadlocks. The essential property of a deadlock
is that a clean deadlock never can become marked.

Definition 14.5
Let ∅ 6= D ⊆ P and m∗ ∈ RN (m0).

14. Static Deadlocks and Traps Peter H. Starke, Adrianna Alexander 69

������

t
3

t t
1 2

p

Figure 14.3: Counterexample to the converse of Lemma 14.4 and 14.6.3

t t
1 2

p

Figure 14.4: Counterexample to the converse of Lemma 14.4

1. D is a dynamic deadlock at m∗ iff

∀m∀s∀m′(m∗ ∗−→ m
s−→ m′ ∧m(D) = 0 ⇒ m′(D) = 0).

2. D is a strongly dynamic deadlock at m∗ iff

∀m∀s(m∗ ∗−→ m
s−→ ∧s+(D) > 0 ⇒ s−(D) > 0 ∨ ŝ(D) > 0).

Lemma 14.6

1. Every strongly dynamic deadlock at m∗ is a dynamic deadlock at m∗.

2. If D is a dynamic deadlock at m∗, m∗(D) = 0 and m∗ ∗−→ m′, then m′(D) = 0.

3. If D is a (strongly) dynamic deadlock at m∗ and m∗ ∗−→ m∗∗, then D is a (strongly)
dynamic deadlock at m∗∗.

Proof. Let D be a strongly dynamic deadlock at m∗ and m∗ ∗−→ m
s−→ m′, and m(D) = 0.

Assume that m′(D) > 0. Then s+(D) > 0, hence s−(D) > 0 or ŝ(D) > 0 which by
m

s−→ is in contradiction with m(D) = 0. Hence, D is a dynamic deadlock at m∗. The
remaining assertions are obvious.

As we can see by Figure 14.5, the converse of 14.6.1 is not true: D = {p} is a dynamic
deadlock at m0 because a marking m with m(p) = 0 is not reachable. Obviously, D is

70 14. Static Deadlocks and Traps Peter H. Starke, Adrianna Alexander

�� pt

Figure 14.5: Counterexample to the converse of Lemma 14.6.1

not a strongly dynamic deadlock at m0. D is not a dynamic deadlock at m = (0), but
D is a dynamic deadlock at m′ = (1), which is reachable from (0). In Figure 14.3, {p}
is a strongly dynamic deadlock at m = (1), but not a strongly dynamic deadlock at (0):
the converse of 14.6.3 does not hold as well.

Definition 14.7
A nonempty subset D ⊆ P is said to be a structural deadlock iff

∀s(s ∈ Poss(N) ∧ s ∩ FD 6= ∅ ⇒ s ∩ (DF ∪DB) 6= ∅).

Lemma 14.8
Every structural deadlock is a strongly dynamic deadlock at m0.

Proof. Let D be a structural deadlock, m0
∗−→ m

s−→ and s+(D) > 0. From m
s−→ we

obtain s ∈ Poss(N); by s+(D) > 0 we have s∩FD 6= ∅. Therefore, s∩ (DF ∪DB) 6= ∅,
i.e. s−(D) > 0 or ŝ(D) > 0.

������

t
3

������ t
2

t
1

p

Figure 14.6: Counterexample to the converse of Lemma 14.8

The converse is not true. In Figure 14.3, {p} is a strongly dynamic deadlock at m = (1),
but not a structural deadlock.

Lemma 14.9
If D is a dynamic deadlock at m, m(D) = 0, and t ∈ DF , then t is dead at m.

Proof. Assume, that t is not dead at m, then from m a marking m′ is reachable such
that t is an element of an executable step s at m′. By t ∈ DF we obtain m′(D) ≥
s−(D) ≥ t−(D) > 0, contradicting the fact that D is a dynamic deadlock at m.

14. Static Deadlocks and Traps Peter H. Starke, Adrianna Alexander 71

Lemma 14.10
If a signal-net system N has no structural deadlock then it is deadlock-free, i.e. no dead
marking is reachable in N .

Proof. We show, that a structural deadlock D exists, if a dead marking m∗ is reachable
in N . We consider the set

D := {p
∣∣ p ∈ P ∧ m∗(p) = 0}.

The set D is not empty since otherwise m∗ ≥ 1, i.e. a spontaneous transition would be
enabled (N is assumed to be ordinary). This contradicts that m∗ is dead.

To show that D is a structural deadlock, let s ∈ Poss(N) and s∩FD 6= ∅. Since m∗

is dead, s is not executable at m∗. By s ∈ Poss(N) we obtain that s is not enabled at
m∗ or s is not maximal at m∗, but the latter would contradict that m∗ is dead. Hence,
we have s− 6≤ m∗ or ŝ 6≤ m∗. In the first case there exists a transition t ∈ s and a place
p such that

1 ≥ t−(p) > m∗(p) ≥ 0,

hence, m∗(p) = 0 and therefore, p ∈ D, which implies s ∩DF 6= ∅. In the second case
there exists a place p such that

1 ≥ ŝ(p) > m∗(p) ≥ 0,

which implies s ∩DB 6= ∅.

Definition 14.11
A SNS has the deadlock-trap property (DTP for short) iff every structural deadlock
contains a structural trap which is marked at the initial marking.

Theorem 14.12 (cf. [SLH98])
Let N be an ordinary SNS (i.e. all multiplicities of arcs or conditions equal 1). If N has
the DTP then N is deadlock-free.

Proof. We assume, that the dead marking m∗ is reachable in N . From the proof of
Lemma 14.10 we obtain that

D := {p
∣∣ p ∈ P ∧ m∗(p) = 0}.

is a structural deadlock. By the deadlock-trap property D contains a structural trap
Q ⊆ D which is marked under m0. By Lemma 14.4 Q is a strongly dynamic trap at m0.
From m0(Q) > 0 by Lemma 14.2.2 we have m∗(Q) > 0, contradicting m∗(Q) = 0.

72 15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander

15. Free Choice and Extended Simple Properties

In this section we define the EFC- and ES-properties and show their consequences for
liveness properties. We consider here only ordinary SNS (where all multiplicities equal
1).

Definition 15.1
Let N be an SNS . For all p ∈ P we put

Post(p) := pF ∪ pB,

and for all t ∈ T

Pred(t) := St ∪ Ft ∪Bt.

1. N is said to be extended free choice (EFC for short) iff for all transitions t1, t2 ∈ T
it holds:

Ft1 ∩ Pred(t2) 6= ∅ ⇒ Pred(t1) = Pred(t2) ∧ M(t1) = M(t2).

2. N is said to be extended simple (ES for short) iff for all p, q ∈ P it holds:

Post(p) ∩ Post(q) 6= ∅ ⇒ Post(p) ⊆ Post(q) ∨ Post(q) ⊆ Post(p).

Obviously, for SNS without condition and signal arcs these definitions coincide with the
definitions known for Petri nets.

Corollary 15.2
For every transition t of an extended simple SNS there exists an enumeration of Pred(t)∩
P = {p1, p2, . . . , pn} such that

Post(p1) ⊆ Post(p2) ⊆ . . . ⊆ Post(pn).

Lemma 15.3
Every extended free choice SNS N such that for every place p ∈ P the set pF is not
empty is extended simple.

��� ��������� ��������� ���������

Figure 15.1: Extended free choice SNS which is not extended simple

15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander 73

Proof. We shall show that Post(p) ∩ Post(q) 6= ∅ implies Post(p) = Post(q). Let t ∈
Post(p) ∩ Post(q), t∗ ∈ pF and t1 ∈ Post(p). From p ∈ Ft∗ and p ∈ Pred(t) by EFC we
obtain Pred(t∗) = Pred(t), hence q ∈ Pred(t∗). From p ∈ Ft∗ and p ∈ Pred(t1) in the
same way we obtain Pred(t∗) = Pred(t1), hence q ∈ Pred(t1), i.e. t1 ∈ Post(q).

The converse of Lemma 15.3 does not hold even for Petri nets.

Definition 15.4
Let m be a marking.

1. A transition t is dead at m iff there is no marking m′ reachable from m, such that
t is an element of an executable step s at m′. We put

deadtr(m) := {t
∣∣ t is dead at m}.

2. A transition t is live at m iff there is no marking m′ reachable from m, such that
t is dead at m′.

3. The SNS N is said to be live iff all its transitions are live at the initial marking.

4. A place p is called dead at m iff m′(p) = 0 for all markings m′ reachable from m.
We put

deadpl(m) := {p
∣∣ p is dead at m}.

5. A place p is called live at m iff there is no marking m′ reachable from m such that
p is dead at m.

6. The SNS N is said to be place-live iff all its places are live at the initial marking.

Obviously, it holds

m′ ∈ RN (m) ⇒ deadtr(m) ⊆ deadtr(m′) ∧ deadpl(m) ⊆ deadpl(m′).

Definition 15.5
A marking m is said to be maximal-dead iff

m′ ∈ RN (m) ⇒ deadtr(m) = deadtr(m′) ∧ deadpl(m) = deadpl(m′).

Note, that any live marking m is maximal-dead with deadtr(m) = ∅. At a maximal-dead
marking every transition (place) is either live or dead.

Lemma 15.6
Let N be an ordinary extended free choice SNS, m∗ a maximal-dead marking and t0 ∈
deadtr(m∗) a dead transition. Then there exists a marking m∗∗ which is reachable from
m∗ and such that every place p from Pred(t0) which is not dead at m∗ is marked under
m∗∗.

74 15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander

Proof. Let Q0 := {p | p ∈ Pred(t0) ∧ p /∈ deadpl(m∗) ∧ m∗(p) = 0}. If Q0 is empty
we put m∗∗ := m∗ and we are ready. Otherwise, select a place p0 from Q0. The place p0

is live but clean at m∗. Therefore there exist steps s1, . . . , sk and markings m1, . . . ,mk

such that

m∗
s1−→ m1

s2−→ m2 . . .mk−1
sk−−→ mk

and mk(p0) > 0.
During this state transition no token has been removed from a place from Q0: if a

transition t from the step sj takes a token from Q0 then Ft∩Pred(t0) 6= ∅, hence by the
EFC-property we obtain

Pred(t) = Pred(t0) ∧ M(t) = M(t0)

which implies that t0 can be fired at mj−1 contradicting that t0 is dead at m∗. This is
seen easily if one reminds the construction of the step sj at mj−1 – at the same stage
when we include t we can include t0 instead.

Hence we have mk(p) ≥ m∗(p) for p ∈ Q0. Let

Q1 := {p | p ∈ Pred(t0) ∧ p /∈ deadpl(m∗) ∧ mk(p) = 0}.

If Q1 is empty we put m∗∗ := mk and we are ready, otherwise Q1 is a proper subset of
Q0 containing only places which are live at m∗, hence at mk. We select a place p1 from
Q1 and proceed in the same way, since Q0 is finite, the construction terminates.

Theorem 15.7
Let N be an ordinary extended free choice SNS. If N is place-live then any spontaneous
transition of N is live at the initial marking.

Proof. For contradiction we assume that t0 is a spontaneous transition which is not live
at m0. Then there exists a maximal-dead marking m∗ such that t0 ∈ deadtr(m∗). Since
N is place-live we have deadpl(m∗) = ∅. Since t0 is spontaneous we have St0 = ∅,
Pred(t0) ⊆ P . Because t0 is dead at m∗ the set Q = {p | p ∈ Pred(t0) ∧ m∗(p) = 0} is
not empty. By Lemma 15.6 from m∗ we can reach a marking m∗∗ such that all places
from Pred(t0) are marked, hence t0 is enabled at m∗∗ contradicting that t0 is dead at
m∗.

Theorem 15.8
Let N be an ordinary extended simple SNS and let m∗ be a maximal-dead marking. For
every spontaneous transition t∗ ∈ deadtr(m∗), there exists a place p ∈ Pred(t∗) which is
dead at m∗.

Proof. Let t∗ ∈ Spont ∩ deadtr(m∗). By St∗ = ∅ we have Pred(t∗)∩P 6= ∅ (otherwise t∗

would be live); corresponding to Corollary 15.2 we have Pred(t∗) = {p1, . . . , pn},

Post(p1) ⊆ Post(p2) ⊆ . . . ⊆ Post(pn).

15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander 75

For any m ∈ RN (m∗), t∗ is dead at m, hence, there is a p ∈ Pred(t∗) which is not
marked, since N is ordinary. Let

i[m] := min{j
∣∣ 1 ≤ j ≤ n ∧m(pj) = 0}.

We show

m ∈ RN (m∗) ⇒ Post(pi[m]) ⊆ deadtr(m) = deadtr(m∗) ∧ m∗(pi[m]) = 0.

Consider an arbitrary t ∈ Post(pi[m]) ⊆ . . . ⊆ Post(pn), hence,

{pi[m], pi[m]+1, . . . , pn} ⊆ Pred(t).

If t is not dead at m, then there exists a firing sequence s1 . . . sk such that m s1...sk−−−−→ m′

and t has token-concession at m′, thus,

m′(pj) > 0 for j = i[m], . . . , n.

The places p1, . . . pi[m]−1 are marked under m. If there is a pj such that 1 ≤ j < i[m]
and m′(pj) = 0 (loosing its tokens during the transition from m to m′), then a transition

t′ ∈ Post(pj) ⊆ Post(pi[m]) ⊆ . . . ⊆ Post(pn)

has fired, say within the step sl (1 ≤ l ≤ k). We choose l to be minimal and consider the
marking m′′, reached just before the execution of sl. At m′′ the places p1, . . . , pj−1 are
marked, since they are marked at m and l is minimal, moreover, pj , . . . , pn are marked,
since t′ may fire. Hence, at m′′ the transition t∗ is enabled, contradicting that t∗ is dead
at m∗ and therefore is dead at m′′. This proves Post(pi[m]) ⊆ deadtr(m∗).

Assume that m∗(pi[m]) > 0. Then, during the transition from m∗ to m a transition
from Post(pi[m]) has been fired, contradicting the fact that all these transitions are dead.

We now show that t∗ has a place p∗ ∈ Pred(t∗) which is dead at m∗. If pi[m∗] is dead
at m∗, then we put p∗ := pi[m∗] and we are ready. Otherwise this place starting from m∗

can become marked; let s1 . . . sk be a firing sequence such that

m∗
s1...sk−−−−→ m1, m1(pi[m∗]) > 0.

At m∗ the places p1, . . . , pi[m∗]−1 are marked; these places are marked at m1 as well,
since all the transitions from Post(pi[m∗]) are dead at m∗ and all the transitions which
remove tokens from p1, . . . , pi[m∗]−1 are elements of Post(pi[m∗]). Since t∗ is dead at m1

as well, there exists a place in Pred(t) which is unmarked at m1; consider the place
pi[m1]. Obviously, i[m∗] < i[m1].

In case that pi[m1] is dead at m1, then p∗ := pi[m1] is dead at m∗, since m∗ is
maximal-dead, otherwise, from m1 there is reachable a marking m2, such that the places
p1, . . . , pi[m2]−1 are marked at m2 and i[m2] > i[m1]. Since i[mj] is increasing monotoni-
cally but is bounded by n, the second case cannot occur arbitrarily often, hence we shall
find a dead preplace of t∗. This proves Theorem 15.8.

76 15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander

Corollary 15.9
Let N be an ordinary extended simple SNS. If N is place-live then any spontaneous
transition of N is live at the initial marking.

Theorem 15.10
Let N be an ordinary extended free choice SNS, which contains no signal arc circuit and
such that

∀t
(
t ∈ T ⇒ card(St) ≤ 1 ∨ M(t) = ∨

)
.

If N is place-live then N is live.

���
���
������ ������������

Figure 15.2: Ordinary extended free choice place-live SNS with signal arc circuit

Proof. For contradicition we assume that t0 is not live at m0. By Theorem 15.7, t0 is
not spontaneous, i.e. St0 6= ∅. Let m∗ be a maximal-dead marking reachable from m0

with t0 ∈ deadtr(m∗). Since N is place-live and EFC we may assume that all places
p ∈ Pred(t0) are marked at m∗. We show now that all transitions t1 ∈ St0 6= ∅ are dead
at m∗. From this it follows that no spontaneous transition is in St0 and for an arbitrary
transition t1 ∈ St0 we can reach a marking where all places in Pred(t1) are marked, so
that Pred(t1) contains no spontaneous transition, inductively leading to a contradiction
since no circuit buildt from signal arcs only exists in the net.

Now, assume that t1 ∈ St0 is not dead at m∗. Then t1 is live at m∗ since m∗ is
maximal-dead. Hence, there exist executable steps si and reachable mi such that

m∗
s1−→ m1

s2−→ m2 . . .mk−1
sk−−→ mk

and t1 ∈ sk. During the state transition fromm∗ tomk−1 no tokens are removed from any
place in Pred(t0) by a transition t ∈ s1∪. . .∪sk−1 because otherwise by Ft∩Pred(t0) 6= ∅
we have Pred(t) = Pred(t0) so that t0 would not be dead at m∗. Hence, we obtained that
at mk−1 all places in Pred(t0) are marked and t1 ∈ St0 is enabled. Because card(St0) = 1
or M(t0) = ∨ the only possibility to prevent t0 from firing at mk−1 is that t1 takes
a token from Pred(t0) which supplies us with Pred(t0) = Pred(t1) which is impossible
by t1 ∈ St0 ⊆ Pred(t0) leading to t1 ∈ St1 contradicting the irreflexivity of the signal
relation.

15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander 77

The last theorem does not hold for extended simple SNS : Figure 15.3 shows an ordinary
extended simple place-live SNS (which is not EFC) with a dead transition t0.

���
���
���
���

�
��

t1 t2

t0

p1 p2

Figure 15.3: Ordinary extended simple place-live SNS with a dead transition

Theorem 15.11
Let N be an ordinary extended free choice SNS which has the deadlock-trap property and
such that

∀t
(
t ∈ T ⇒ card(St) ≤ 1 ∨ M(t) = ∨

)
.

Then N is place-live.

Proof. We assume for contradiction that N is not place-live. Then there exists a
maximal-dead marking m∗ reachable from m0 such that

D := deadpl(m∗) 6= ∅.

The nonempty set D is clean under m∗, hence it is a dynamic deadlock at m∗. We show,
that D is a structural deadlock which contradicts the deadlock-trap property.

Let s ∈ Poss(N) such that s ∩ FD 6= ∅, i.e. any execution of s fires tokens to places
in D. We have to show that s ∩ (DF ∪DB) 6= ∅.

Clearly, any transition t ∈ FD is dead at m∗ since D contains only places which are
dead at m∗, hence, s ∩ FD ⊆ deadtr(m∗).

Let t0 ∈ s ∩ FD. Since s is a possible step s contains a finite sequence tk, . . . , t1 of
pairwise different transitions such that tk is spontaneous and

tkStk−1S . . . St1St0.

The assumption that none of these transitions is an element of DF ∪DB will lead to a
contradiction as follows.

First note, that under our assumption, for i = 0, . . . , k the set Pred(ti) contains only
places which are live under m∗ and under every successor marking of m∗ (since m∗ is
maximal dead).

Next we show, for i = 0, . . . , k − 1, that ti+1 is dead at m∗ if ti is dead at m∗.
Assume for contradiction that ti+1 is not dead at m∗, i.e. ti+1 is live at m∗. Since all
places in Pred(ti) are live at m∗ by the EFC-property we can reach from m∗ a marking

78 15. Free Choice and Extended Simple Properties Peter H. Starke, Adrianna Alexander

m1 such that all places in Pred(ti) are marked under m1. Obviously, ti is dead at m1

and ti+1 is live at m1. Hence, a marking m∗∗ is reachable from m1 such that a step
s∗ containing ti+1 is executable at m∗∗. During the state transition from m1 to m∗∗

no token has been removed from a place in Pred(ti) because from Ft ∩ Pred(ti) 6= ∅ it
follows Pred(t) = Pred(ti), i.e. we can fire ti instead of t. Hence, all places in Pred(ti)
are marked at m∗∗ and ti+1 ∈ Sti may fire at Sm∗∗S. By M(ti) = ∨ or Sti = {ti+1},
ti may fire at m∗∗ contradicting that ti is dead at m∗∗.

Thus we have that the spontaneous transition tk is dead at m∗, but all places in
Pred(tk) are live at m∗ from which it follows that from m∗ a marking is reachable such
that all places in Pred(tk) are marked contradicting that tk is dead.

Corollary 15.12
Let N be an ordinary extended free choice signal-net system without signal arc circuits
which has the deadlock-trap property and such that

∀t
(
t ∈ T ⇒ card(St) ≤ 1 ∨ M(t) = ∨

)
.

Then N is live.

More general results can be found in the Diploma-Thesis of Adrianna Alexander [For99]
and were published in [Sta99,FS00].

These results as well apply to non-ordinary SNS .
In our tool SESA we implemented (as an edit function) a check for the EFC-property.

Since there are (so far) no practical relevant SNS which have that property we delayed
the implementation of the check for the deadlock-trap-property.

16. Composition Peter H. Starke 79

16. Composition

Any signal-net system can be considered as a Petri net containing additional signal
arcs and condition arcs. These arcs describe state and event signals flowing from one
subsystem to the other. During a bottom-up design of a signal-net system often one
starts with small Petri nets which then are interconnected by signal arcs and condition
arcs to achieve the behaviour desired. In this section we investigate certain design rules
which ensure that the resulting signal-net system (which we call the composition) has
desired properties.

16.1. Basic Definitions

Let be K = {Ki|i ∈ I} a nonempty finite set of connected and pairwise disjoint ordinary
Petri nets Ki = [Pi, Ti, Fi,m0i] which we call components. We put

P :=
⋃
i∈I Pi, T :=

⋃
i∈I Ti, F :=

⋃
i∈I Fi, m0 :=

⋃
i∈I m0i.

Moreover, let B ⊆ P × T be a set of condition arcs, let S ⊆ T × T a set of signal arcs
(which considered as a relation in T is irreflexive and circuit-free) such that for all i ∈ I
(C1) p ∈ Pi ⇒ pB ∩ Ti = ∅,
(C2) t ∈ Ti ⇒ tS ∩ Ti = ∅.
Finally let M be a mapping from T into the set {∧,∨} (M(t) is the signal-mode of
t ∈ T).
The composition of K with [B,S,M] is the signal-net system

Comp(K, B, S,M) = [P, T, F,B, S,M,m0].

The conditions (C1) and (C2) ensure that the components have no inner signals, i.e.
if a place is connected to a transition by a condition arc, the place and the transition are
in different components; and, if two transitions are connected by a signal arc they are in
different components too. From this it is easy to see that there are signal-net systems
which are not compositions.

The requirement of the connectedness of the components is obviously no restriction:
we may include into K the connectivity components of the Petri net instead of the net
itself.

Corollary 16.1
An ordinary signal-net system N = [P, T, F,B, S,M,m0] is the composition of a set of
components iff

pBt⇒ ¬p(F ∪ F−1)∗t,
tSt′ ⇒ ¬t(F ∪ F−1)∗t′.

The state space of a composition obviously is a subset of the Cartesian product of
the state spaces of its components. Therefore, if all the components of a composition
are safe resp. bounded then the composition itself is safe resp. bounded. It is easy to
see, that the converse it not true. In the sequel we will consider liveness properties of

80 16. Composition Peter H. Starke

������������

������������ ������������

������������	�		�	
�

�

���
�

�
�t6

t8

t7

t2t1

t5t4

t3

p9p8

p7

p5

p4p3

p2

K2

K1

p6

p1

p10

Figure 16.1: Composition

compositions.

For any nonempty subset K′ = {Kj |j ∈ I ′} of K we may consider the (sub-) compo-
sition Comp(K′, B′, S′,M ′), where B′ := B ∩ (P ′ × T ′) and S′ := S ∩ (T ′ × T ′) contain
exactly those arcs from B resp. S, which connect nodes from K′. If M ′ is the restriction
of M to T ′ ⊆ T ,

P ′ :=
⋃
i∈I′ Pi, T ′ :=

⋃
i∈I′ Ti, F ′ :=

⋃
i∈I′ Fi, m′0 :=

⋃
i∈I′m

′
0i,

then Comp(K′, B′, S′,M ′) = [P ′, T ′, F ′, B′, S′,M ′,m′0] is the subnet of Comp(K, B, S,M)
adjoined with K′.

Consider the composition represented in Figure 16.1. This composition is a live
signal-net system, while the component K2 is (as a Petri net) not live. Hence, a sub-
composition of a live composition is not necessarily live.

For certain types of compositions we are able to show that reachability is monotonic
with respect to subcompositions.

16.2. Conjunctive Compositions

A composition Comp(K, B, S,M) is called conjunctive iff for all transitions t ∈ T it
holds

card(St) > 1⇒M(t) = ∧.

16. Composition Peter H. Starke 81

Obviously, all the subcompositions of a conjunctive composition are conjunctive.

Theorem 16.2
Let N = Comp(K, B, S,M) be a conjunctive composition, m a marking of N and let s be
an executable step at m in N . If K′ ⊆ K, N ′ = Comp(K′, B′, S′,M ′) is the corresponding
subcomposition of N and s′ := s∩ T ′ 6= ∅, then s′ is an executable step at m′ := m|P ′ in
N ′.

Proof. We have to show
(1) s′ contains a spontaneous transition,
(2) s′ is signal-complete,
(3) s′ has token-concession,
(4) s′ is enabled with respect to conditions,
(5) there is no forced transition t′ ∈ T ′ − s′ such that s′ ∪ {t′} satisfies (1) . . . (4).
Ad (1). The relation S is irreflexive and circuit-free, S′ ⊆ S, hence, S′ is irreflexive

and circuit-free. Let be t1 ∈ s′. If S′t1 = ∅ then t1 is spontaneous in N ′ and we are
ready, otherwise we choose a t2 ∈ S′t1. Then t2 ∈ T ′ und t2 ∈ St1 ⊆ s, since N is
conjunctive and s is signal-complete in N . Therefore, t2 ∈ s′. If t2 is not spontaneous
in N ′ we proceed in the same way and choose a t3 ∈ S′t2. If there is no spontaneous
transition in s′ we would arrive at a signal-circuit because s′ is finite contradicting that
S is circuit-free.

Ad (2). Since N ′ is conjunctive it suffices to show that for all t ∈ s′ always S′t ⊆ s′

holds. Since s is signal-complete and N is conjunctive we have St ⊆ s and S′t = St∩T ′ ⊆
s ∩ T ′ = s′.

Ad (3). Since s has token-concession at m in N , for all p ∈ P ′ it holds:∑
t∈s′ t

−(p) ≤
∑

t∈s t
−(p) ≤ m(p),

hence, [s′]− ≤ m′.
Ad (4). Since s is enabled with respect to conditions at m in N , all the places p ∈ Bs

are marked at m, consequently all places p′ ∈ Bs′ ⊆ Bs are marked at m′.
Ad (5). Assume that s′ is not maximal in N ′, i.e. there is a forced transition t∗ ∈

T ′ − s′ such that s′ ∪ {t∗} satisfies (1) . . . (4). Then S′t∗ ⊆ s′ ⊆ s and s ∪ {t∗} would
fulfil (1) . . . (4) in N .

The example given in Figure 16.2 shows that conjunctivity is necessary for Theo-
rem 16.2: s = {t1, t2} is an executable step in N and s′ = {t1} is not step in N ′.

Theorem 16.3
Let N = Comp(K, B, S,M) be a conjunctive composition, K′ ⊆ K and, correspondingly,
N ′ = Comp(K′, B′, S′,M ′). If the marking m is reachable from m0 in N then m′ := m|P ′
is reachable from m′0 in N ′.

Theorem 16.3 is a consequence of Theorem 16.2 and the equation 4s|P ′ = 4(s ∩
T ′)|P ′ .

The converse of Theorem 16.3 is not true as can be seen by Figure 16.1: in K2 there
is a marking holding two tokens on place p1 reachable, no such marking is reachable in

82 16. Composition Peter H. Starke

���
���
���
���

���
���
���
���

���
���
���
���

N ′t1

t2

t3

M(t1) = ∨

Figure 16.2: Disjunctive composition

N .

Theorem 16.4
Let N = Comp(K, B, S,M) be a conjunctive composition, K′ ⊆ K and correspondingly,
N ′ = Comp(K′, B′, S′,M ′). If no transition from N is dead at m0 then no transition
from N ′ is dead at m′0.

Proof. Let t ∈ T ′ ⊆ T . Since t is not dead in N , in N there is reachable a marking
m such that a step s is executable at m with t ∈ s. By Theorem 16.3 the marking
m′ := m|P ′ is reachable in N ′. By Theorem 16.2 s′ := s∩ T ′ is an executable step at m′

in N ′. From t ∈ s′ we have that t is not dead in N ′.

On the other hand, there exist conjunctive compositions containing dead transitions
and such that any proper subcomposition is live.

16.3. The Signal-Flow Relation

We define the signal-flow relation sig for components Ki,Kj ∈ K of an arbitrary com-
position Comp(K, B, S,M) by

KisigKj :↔ (B ∪ S)Tj ∩ (Pi ∪ Ti) 6= ∅.
Hence, KisigKj holds iff there exists a condition arc [p, t] ∈ B or a signal arc [t′, t] ∈ S

leading from Ki to Kj , i.e. iff a transition t ∈ Tj imports a condition p ∈ Pi or a transition
t′ ∈ Ti from Ki.

By (C1) und (C2) it holds
KisigKj ⇒ i 6= j.

For the composition Comp(K, B, S,M), the relation sig describes the structure of
the signal flow. By (C1), (C2) the relation sig is irreflexive. The reflexive-transitive
closure of sig we denote by sig∗.

Mutual independence, i.e. concurrency, is given by the relation co which is defined
as follows:

16. Composition Peter H. Starke 83

For K,K ′ ∈ K let

KcoK ′ :↔ K 6= K ′ ∧ sig∗K ∩ sig∗K ′ = ∅.

Different components K,K ′ are concurrent iff there is no component K∗ ∈ K such
that K∗sig∗K and K∗sig∗K ′.

Corollary 16.5
Two components Ki,Kj with (B ∪ S)Ti = ∅ = (B ∪ S)Tj, i.e. without imports, are
concurrent.

Using the signal-flow relation we are able to built natural subcompositions consisting
of a component and all its (transitive) signal sources.

Theorem 16.6
Let N = Comp(K, B, S,M) be a composition, K ∈ K a component, K′ := sig∗K, and,
N ′ := Comp(K′, B′, S′,M ′). Then it holds:
(1) For all t′ ∈ T ′ it holds B′t = Bt and S′t = St.
(2) If s is an executable step at m in N and m′ = m|P ′, then s′ = s∩T ′ is executable at
m′ in N ′.
(3) If s′ is an executable step at m′ in N ′ and m is a marking of N with m|P ′ = m′,
then there is a step s executable at m in N such that s′ = s ∩ T ′.
(4) A transition t ∈ T ′ is dead in N iff t is dead in N ′.

Proof. By definition we have B′t ⊆ Bt and S′t ⊆ St. Let be t ∈ Tj and [p, t] ∈ B. Then
there is exactly one i ∈ I with p ∈ Pi and we have KisigKj , hence, i ∈ I ′. From t ∈ T ′
we obtain Kjsig

∗K. Consequently, Kisig
∗K, hence, p inP ′ and [p, t] ∈ B′. In the same

way S′t = St is proved.
From (1) it follows, that every transition t ∈ T ′ in N has the same conditions, signal

sources and preplaces as in N ′. Therefore, t is spontaneous in N iff t is spontaneous in
N ′, and, since s is signal-complete in N , s′ is signal-complete in N ′, because transitions
from different components are not conflicting. Assume that there is a forced transition
t′ ∈ T ′ − s′ such that s′ ∪ {t′} satisfies the executability conditions (1) . . . (4). Then
s ∪ {t′} would satisfy (1) . . . (4) which contradicts the executability of s. This proves
assertion (2).

Since s′ is executable at m′ in N ′, the conditions (1) . . . (4) are satisfied for s′ in N
at m. If condition (5) is violated by a transition t, then t ∈ T − T ′. We include such
transitions into s′ to obtain finally a step s executable at m with s′ = s ∩ T ′.

If t is not dead in N , then there is a firing sequence m0
s1−→ m1

s2−→ m2 . . .mk
sk+1−−−→

with t ∈ sk+1.For j = 0, 1, . . . , k the step sj+1 is executable at mj in N , therefore, by
assertion (2), s′j+1 := sj+1∩T ′ is executable at m′j := mj |P ′ . We obtain a firing sequence

m′0
s′1−→ m′1

s′2−→ m′2 . . .m
′
k

s′k+1−−−→ in N ′ with t ∈ s′k+1, i.e. t is not dead in N ′.
Conversely, if t ∈ T ′ is not dead in N ′ at m′0, then there exists a firing sequence

m′0
s′1−→ m′1

s′2−→ . . .m′k
s′k+1−−−→ with t ∈ s′k+1. We have m0|P ′ = m′0, hence, there is

84 16. Composition Peter H. Starke

a step s1 which is executable at m0 in N with s1 ∩ T ′ = s′1. For m1 := m0 + 4s1,
obviously, it holds m1|P ′ = m′1, hence, there is a step s2 with s2 ∩ T ′ = s′2, and so on.
By t ∈ s′k+1 ⊆ sk+1, the transition t is not dead in N .

Obviously, Theorem 16.6 is interesting only in cases where sig∗K 6= K holds, e.g. if
sig∗K is a tree.

16.4. Tree-like Compositions

The composition of K with [B,S,M] is said to be tree-like, iff the signal-flow relation
sig of Comp(K, B, S,M) is
(C3) circuit-free, and,
(C4) mesh-free, i.e. for all K,K ′,K ′′ ∈ K it holds:

K ′ 6= K ′′ ∧K ′sigK ∧K ′′sigK ⇒ K ′coK ′′.

Corollary 16.7

1. Every tree-like composition contains a component K without imports, i.e. with
sigK = ∅ and sig∗K = {K}.

2. For every component K of a tree-like composition the graph [sig∗K, sig−1] is a
(directed) tree.

The composition given in Figure 16.1 is not tree-like, the composition in Figure 16.2
is. Figure 16.3 shows a live, tree-like and conjunctive composition containing a compo-
nent which is not live.

16.5. State-Machine Compositions

Most of the signal-net systems which are practically used as models for the verification of
discrete event systems can be seen as compositions made of safe state-machines. State-
machines are (ordinary) Petri nets where every transition has exactly one preplace and
exactly one postplace. In a state-machine, therefore, the number of tokens is constant
(invariant). Hence, a state-machine, where initially only one place is marked with one
token, is safe. A state-machine with exactly one marked place is live and safe iff it is
strongly connected.

The composition Comp(K, B, S,M) is said to be a state-machine composition (abbr.
SM-composition), if every component K ∈ K is a state-machine containing exactly one
token which is connected from the marked place. If, moreover, all the components are
strongly connected, we call it SCSM-composition.

Corollary 16.8

1. The components of a SM-composition are safe Petri nets without dead transitions.

2. The components of a SCSM-composition are live and safe.

16. Composition Peter H. Starke 85

���������
��� ������

���
���

���������
���

p3

t4

t3

p4

t5

t7

p7

t6

p6

t1 t2

p5

p1

p2

Figure 16.3: Tree-like composition

86 16. Composition Peter H. Starke

Let m be a reachable marking of the SM-composition N = Comp(K, B, S,M). Then,
in every component ofN , exactly one place is marked underm. Therefore, any transition,
which imports two or more conditions from the same component, is dead.

With other words, to avoid dead transitions in a SM-composition, we have to obbey
the following rule:

(R1) p 6= p′ ∧ p, p′ ∈ Bt ∧ p ∈ Pi ∧ p′ ∈ Pj ⇒ Ki 6= Kj

If m is reachable in the SM-composition N and s is an executable step at m in N ,
then s contains from every component at most one transition (with marked preplace).
Therefore, the following rule is necessary:

(R2) t′ 6= t′′ ∧ t′, t′′ ∈ St ∧ t′ ∈ Ti ∧ t′′ ∈ Tj ∧M(t) = ∧ ⇒ Ki 6= Kj

Let us consider a transition t which imports a condition p as well as a transition t′

from the same component Ki. The transition t may fire only if p is marked and t′ fires.
Hence, the preplace of t′ must be marked, i.e. must equal p:

(R3) pBt ∧ t′St ∧ p ∈ Pi ∧ t′ ∈ Ti ⇒ pFt′

A SM-composition N = Comp(K, B, S,M) is called free-choice, if conflicts are not
decided by signals, i.e.

(FC) Ft ∩ Ft′ 6= ∅ ⇒ Bt = Bt′ ∧ St = St′.

Theorem 16.9
Let N = Comp(K, B, S,M) a free-choice tree-like SCSM-composition satifying (R1),
(R2) and (R3). Then N is live.

Proof. We assume that N is not live. For any marking m of N let deadN (m) be the set
of all transitions which are dead at m. Obviously, it holds deadN (m) ⊆ deadN (m′), if
m′ is reachable from m. A marking m is said to be max-dead, if deadN (m) = deadN (m′)
for all markings m′ reachable from m. At a max-dead marking every transition is either
dead or live.

Since N is not live, we can reach in N a max-dead marking m1 with deadN (m1) 6= ∅.
For every t ∈ deadN (m1) let be i(t) ∈ I such that t ∈ Ti(t), i.e. i(t) is the number of

the component which contains t. Moreover, let Kt := sig∗Ki(t).
We now fix a transition t ∈ deadN (m1) such that Kt is minimal. By Theorem 16.6

the marking m′1 := m1|P ′ is reachable in the subcomposition N ′ = Comp(Kt, B′, S′,M ′)
and t ∈ deadN ′(m′1).

We have deadN ′(m′1) = deadN (m1)∩T ′ ⊆ Ti(t), otherwise there would exist a t′ ∈ Tj ,
j 6= i(t) which is dead atm′1. The transition t′ would be dead atm1 inN andKjsig

∗Ki(t),
hence, Kt′ ⊂ Kt, contradicting the minimality of Kt.

Let p1 be the place in Ki(t) which is marked under m′1. Since Ki(t) is strongly con-
nected, for any transition t ∈ deadN ′(m′1) there is a shortest path p1Ft1Fp2 . . . tn−1FpnFt.

We choose a t, for which the number n is minimal. If n = 1 then p1 is the preplace
of t. From the minimality of n we obtain, that the transitions t1, . . . , tn−1 on this path
are live. Therefore, from m′1 we can reach in N ′ a marking m′2 such that the preplace
p∗ of t is marked.

Every condition p ∈ Bt of t is imported, consequently postplace of a live transition.
By (R1) different places p, p′ ∈ Bt are in different components Ki,Kj . Because the

16. Composition Peter H. Starke 87

composition is tree-like these components are concurrent, i.e. the trees sig∗Ki and sig∗Kj

are disjoint. Because of this independence from m′2 we can reach in N ′ a marking m′3,
such that all the places from Bt are marked.

During this state transition the token on the preplace p∗ of t is not removed, because
for every transition t∗ 6= t with p∗Ft∗ from the free-choice condition it follows that
Bt∗ = Bt and St∗ = St hold. Hence, t∗ is enabled iff t is, which is in contrdiction with
t being dead. Under m′3 the place p∗ therefore is marked.

Now, consider the case that M(t) = ∧. By (R2) all t′ ∈ St are in different, thus,
concurrent, components and are live. Firings in the upper components which are nec-
essary to enable a step s mit St ⊆ s do not disturb one another. Assume that during
this enabling a condition p ∈ Bt becomes unmarked. Then p is element of a component
which is not concurrent with a component containing a transition t′ ∈ St. Consequently,
it is the same component. By (R3) it holds pFt′. Now, if a transition t∗ tries to take the
token from p, from the free-choice condition it follows that the firing of t∗ is not neces-
sary because t′ has already concession (at any marking where t∗ is enabled). Therefore,
we can reach a marking m′4 where t may fire, contradiction.

In case that M(t) = ∨ the reasoning is analog. Since all t′ ∈ St are live, one can
choose any signal source t′.

The result represented by Theorem 16.9 is unsatisfactory because the free-choice
condition is in practice never valid. The problem remains to search for weaker conditions
from which we can infer at least place-liveness or non-existence of dead transitions.

88 16. Composition Peter H. Starke

V. Invariants

17. State Invariants Peter H. Starke 91

17. State Invariants

A State invariant I (S-invariant for short) is a non-constant mapping defined on the set
of all imaginable states which is constant on the set of all reachable states. Note that
whether I is a state invariant of the system considered depends on its initial state.

We may use a known state invariant I to perform a quick non-reachability test: If
I(z) 6= I(z0), where z0 is the initial state, then the state z is not reachable from z0.

For Petri nets or signal-net systems, the set of all imaginable states is the set of all
markings; it can be considered as a subspace of the linear space of all integer valued
place vectors, i.e. for all markings m one has:

m =
∑
p∈P

m(p)ep

where ep is the marking such that ep(p) = 1 and ep(p′) = 0 for p′ 6= p.
We confine ourselves to integer valued state invariants; hence domain and range are

(both) linear spaces. Then any linear state invariant I can be described by an integer
valued place vector i:

i(p) := I(ep),

I(m) =
∑
p∈P

m(p)I(ep) = m ◦ i :=
∑
p∈P

m(p)i(p).

Here the P -vector i is not zero because I is not constant. On the other hand, every
non-zero P -vector i such that m ◦ i = m0 ◦ i holds for all reachable states m defines a
linear state invariant.
From RN (m0) ⊆ RPN (m0) we obtain:

Theorem 17.1
Every (linear) state invariant of the underlying Petri net PN is a (linear) state invariant
of N .

Let Steps(m0) denote the set of all steps s which are executable at a marking reachable
from m0:

Steps(m0) = {s | ∃m(m ∈ RN (m0) ∧m s−→)}.

Theorem 17.2
An integer valued P-vector i 6= 0 defines a (linear) S-invariant I iff for all steps s in
Steps(m0) it holds i ◦ (s+ − s−) = 0.

Proof. The mapping I with I(m) = i◦m is a state invariant iff for all m,m′ ∈ RN (m0) it
holds i◦m = i◦m0. This is the case iff for all m ∈ RN (m0) and every step s ∈ Steps(m0)
such that m s−→ it holds

i ◦m = i ◦ (m− s− + s+) = i ◦m+ i ◦ (s+ − s−).

92 17. State Invariants Peter H. Starke

For any step s let be 4s be the P -vector with 4s = s+ − s−. We form a matrix
CN,m0 with card(P) rows and card(Steps(m0)) columns where the entry in the row
corresponding to p ∈ P and the column corresponding to s ∈ Steps(m0) is 4s(p).
Obviously, the P -vector i 6= 0 defines a linear state invariant of N iff i ◦ CN,m0 = 0.

If N is a Petri net then Steps(m0) corresponds to the set of non-dead transitions. In this
case, CN,m0 is the submatrix of the incidence matrix of N not containing the columns
corresponding to dead transitions. In the general case, the columns of CN,m0 are sums
of columns of the incidence matrix CPN of the underlying Petri net.

18. Place Invariants Peter H. Starke 93

18. Place Invariants

Place invariants (P -invariants for short) are linear state invariants which hold for all
initial states, i.e. being a place invariant is a structural property.

For Petri nets, the P -invariants are identified with the non-zero integer solutions
of the homogeneous linear equation system i ◦ C = 0, where C is the (full) incidence
matrix of the net (with place vectors as columns and transition vectors as rows, where
C(p, t) := t+(p) − t−(p) is the entry in the row corresponding to p and the column
corresponding to t). This is the case because there exists always an initial marking such
that no transition is dead.

On the other hand one can show that, if a P -vector i defines a (linear) state invariant
I at an initial state m0 such that no transition t is dead at m0, then i is a place invariant
of PN . Hence, the linear state invariants of Petri nets without dead transitions can be
easily computed.

Unfortunately, in SNS , there may exist steps (i.e. signal-complete sets of transitions
containing at least one spontaneous transition) which are never executable because at
any marking m where this step is enabled an additional forced transition will be enabled
too.

Consider the set eSteps of all steps such that there exists a marking m with m
s−→

and let be i a place invariant of N . Then for any s ∈ eSteps we have a marking m with
m

s−→ and i is a state invariant at m, hence i ◦m = i ◦ (m+4s), i.e. i ◦ 4s = 0.
On the other hand, if i ◦ 4s = 0 for all s ∈ eSteps, then i obviously is a place

invariant of N . Let CN denote the matrix with rows corresponding to the places and
columns formed by the P -vectors 4s for s ∈ eSteps. Then we have

Theorem 18.1
For any SNS N = [P, T, F, V,B,W, S,M,m0]:

1. A non-zero P -vector i is a place invariant of N iff i ◦ CN = 0.

2. Any P -invariant of PN is an P -invariant of N .

The second assertion follows from the fact that the columns of CN are sums of columns
of the incidence matrix CPN of the underlying Petri net.

���
�

a b
p q

Figure 18.1: Counterexample to the converse of Theorem 18.1

The converse is not true; consider the SNS N depicted in Figure 18.1. Obviously, a is
spontaneous, b is forced, s = {a, b} is the only executable step, eSteps = {s}. Therefore
the place vector i with i(p) = i(q) = 1 is a place invariant, but the underlying Petri net
PN has no place invariants at all.

94 18. Place Invariants Peter H. Starke

The problem is, for an SNS N , to compute one of the matrices CN or CN,m0 without
knowledge of the set of all reachable markings, which in turn is needed to compute the
set of all executable steps. Probably, we can do with an approximation of that set (e.g.
ignoring all signal arcs gives the set of all singletons of transitions as an approximation
providing the incidence matrix of PN).

19. Transition Invariants and Step Invariants Peter H. Starke 95

19. Transition Invariants and Step Invariants

For Petri nets N , transition invariants (T -invariants for short) are defined as non-zero
T -vectors j satisfying C ◦ j = 0. If, in the reachability graph of N , there exists a
circuit, i.e. a (reachable) marking m and a non-empty sequence w of transitions such
that m w−→ m, then the Parikh-vector j of w (i.e., j(t) is the number of occurrences of
t in w) is a non-negative T -invariant of N . On the other hand, for any non-negative
T -invariant j of N , one can find an initial marking m0 such that a circuit with the firing
count j exists in the corresponding reachability graph.

A Petri net N is said to be covered by transition invariants (CTI for short) iff there
exists a solution j of C ◦ j = 0 which is positive for any transition t ∈ T . It has been
shown that every live and bounded Petri net is covered by transition invariants which
provides us with a simple non-liveness test for bounded Petri nets.

For an SNS N , we have to distinguish between transition invariants and step in-
variants. For want of a better definition, we consider as transition invariants of N the
transition invariants of the underlying Petri net PN . Hence, N is CTI iff PN is.

For an SNS N let Steps(m0) be the set of all steps executable at a marking m
reachable from m0. Then a mapping j : Steps(m0)→ Z is called a step invariant of N
at the initial marking m0 iff

∑
s∈Steps(m0) j(s)(s

+−s−) = 0, where 0 is the zero P -vector.
The SNS N is said to be covered by step invariants (CSI for short) iff N has a step

invariant which is positive for any s ∈ Steps(m0).
An SNS N is said to be step-live (at its initial marking m0) iff, for any marking

m ∈ RN (m0) and every step s ∈ Steps(m0), a marking m′ exists which is reachable from
m and such that s is executable at m′.

Theorem 19.1
If an SNS N is bounded and step-live, then N is covered by step invariants.

The proof runs along the same lines as the proof of the corresponding assertion (men-
tioned above) for Petri nets.

In order to use the theorem for testing non-step-liveness, we need a condition implying
that the SNS N is not CSI since we do not know how to check that property without
computation of Steps(m0).
We define

δ(t, s) :=
{

1, if t ∈ s
0, else.

Theorem 19.2

1. If j is a step invariant of N then j∗ is a transition invariant of N , where, for
t ∈ T ,

j∗(t) :=
∑

s∈Steps(m0)

δ(t, s)j(s).

96 19. Transition Invariants and Step Invariants Peter H. Starke

2. If an SNS N is CSI and has no dead transition at its initial marking, then N is
covered by transition invariants.

Proof. First we show now that j∗ is a transition invariant:∑
t∈T

j ∗ (t)[t+ − t−] =
∑
t∈T

[
∑

s∈Steps(m0)

δ(t, s)j(s)][t+ − t−]

=
∑

s∈Steps(m0)

∑
t∈T

j(s)[t+ − t−]

=
∑

s∈Steps(m0)

j(s)[s+ − s−] = 0.

Now, let j be a covering step invariant, i.e. j : Steps(m0)→ Z such that j(s) > 0 for
any executable step s. Since N has no dead transition, every transition t is contained
in at least one executable step s from Steps(m0), hence, j∗(t) > 0 for all t ∈ T , i.e. N is
CTI .

As a consequence, we have

Theorem 19.3
If a bounded SNS N has no dead transitions and is not covered by transition invariants
then N is not step-live.

���
�

t t’
p

2

Figure 19.1: Counterexample to the converse of Theorem 19.3

On the other hand, there exist SNS which are CTI but not CSI . As an example,
consider the net N depicted in Figure 19.1. The T -vector j with j(t) = 1 and j(t′) = 2
is a covering transition invariant of N , but there is no step invariant, if p is marked in
the initial marking.

We remarked above that in a Petri net PN , any non-negative transition invariant j
occurs to be the Parikh-vector of a circuit in some reachability graph of PN . This does
not hold for step invariants of SNS . Consider the SNS N depicted in Figure 19.2.
Under the initial marking m0 = (1, 1, 0, 1), we have

Steps(m0) = {s1, s2, s3, s4},

where

s1 = {t1}, s2 = {t2}, s3 = {t3}, s4 = {t2, t3}.

19. Transition Invariants and Step Invariants Peter H. Starke 97

��

����

���
�

���
�

		

t
1

t
2

p
4

p
3

t
5

t
4

p
t

3

p
1

2

Figure 19.2: SNS with non negative step-invariant

s
3

s
2

s
2

(1,1,0,1) (2,1,0,0)

(1,0,1,1)(0,0,1,2) (0,1,0,2)s
1

s
4

Figure 19.3: Reachability graph of the SNS depicted in Figure 19.2

Obviously, the mapping j with j(s1) = j(s2) = 1, j(s3) = 2 is a non-negative step
invariant of N at m0. The reachability graph of N at m0 (depicted in Figure 19.3)
is circuit-free, and we shall show that no initial marking exists for N such that the
corresponding reachability graph contains a circuit on which only the steps s1, s2, s3

are fired.
Note that, if the step s3 = {t3} is executable at a certain marking m then

• m(p1) ≥ 1 (since p1 is a condition of t3),

• m(p2) ≥ 1 (since p2 is a condition of t3),

• m(p3) = 0 (since s3 is not maximal otherwise), and

• m(p4) = 1 (since s3 is not enabled or not maximal otherwise).

Now, we assume that the reachability graph of N under a certain initial marking m0

98 19. Transition Invariants and Step Invariants Peter H. Starke

contains a circuit of that kind, i.e. there exist markings mk ∈ RN (m0) and steps s(k) ∈
{s1, s2, s3} such that

m1
s(1)−−→ m2

s(2)−−→ . . .ml−1
s(l−1)

−−−−→ ml
s(l)−−→ m1.

For the Parikh-vector j of the sequence s(1)s(2) . . . s(l−1)s(l) it holds

j(s2) = j(s1), j(s3) = 2j(s1).

Therefore, the step s3 has to occur in the circuit. Without loss of generality, we can
assume that s(1) = s3. Then s3 is executable at m1, hence,

m1(p1) ≥ 1, m1(p2) ≥ 1, m1(p3) = 0, m1(p4) = 1;

m2(p1) ≥ 2, m2(p2) ≥ 1, m2(p3) = 0, m2(p4) = 0.

Since s2 is the only step executable at m2 we have s(2) = s2 and

m3(p1) ≥ 1, m3(p2) ≥ 0, m3(p3) = 1, m3(p4) = 1.

Since t4 is enabled at m3 the step s3 is not executable at m3.
In the case that s(3) = s1 we obtain for m4:

m4(p1) ≥ 0, m4(p2) ≥ 1, m4(p3) = 0, m4(p4) = 2.

Since t5 is enabled at m4 the step s3 is not executable at m4 and that property remains
valid as long as only the steps s1 and s2 are fired because any step which removes tokens
from p4 contains t3. Thus, the only possibility is that s(3) = s2.
In this case we obtain for m4:

m4(p1) ≥ 0, m4(p2) ≥ 0, m4(p3) = 2, m4(p4) = 2.

The same argumentation as above shows that we arrived at a contradiction — the circuit
does not exist.

The idea of the example was to prevent steps from being executable by enabling of
a superset. Let us call a step s saturated iff it contains all its forced transitions, i.e.
sS+ ⊆ s. Obviously, the following monotonicity property holds.

Lemma 19.4
If a saturated step s is executable at m and m′ ≥ m, then s is executable at m′.

Consequently, a saturated step is executable iff it is enabled. Now, we can show

Theorem 19.5
Let j be a non-negative step invariant of the SNS N at m0 such that for any step s,
j(s) > 0 implies that s is saturated. Then there exists an initial marking for N such
that j is the Parikh-vector of a circuit in the corresponding reachability graph.

19. Transition Invariants and Step Invariants Peter H. Starke 99

Proof. Let c be the P -vector such that

c(p) =
∑

[p,t]∈B

W (p, t).

Then the conditions of all transitions are fulfilled at any marking m ≥ c. By Step we
denote the set of all steps s such that j(s) > 0. We consider the marking

m := c+
∑
s∈Step

j(s)s−.

Obviously, any step s ∈ Step is enabled (j(s) times) at m, hence it is executable, i.e. we
may execute the steps from Step, starting at m, the corresponding number of times in
any order. Since j is a step invariant, this brings us back to the marking m.

If, in our example, we remove the transitions t4 and t5 we obtain a net without signal
arcs, hence every step is saturated. Then e.g. the sequence s2s3s1s3 can be executed at
m = (2, 2, 0, 1).

Currently, our tool SESA computes (a base for all) place invariants of the underlying
Petri net. These are then used for several different purposes:

• checking non-reachability of a given marking m:
If there is a place invariant i such that i ◦m 6= i ◦m0 then m is not reachable from
m0 in N .

• finding bounded places:
If there is a non-negative place invariant i ≥ 0 such that i(p) > 0, then the place
p is bounded in N .

• saving memory:
For any place invariant i, every place p with i(p) 6= 0 and any marking m reachable
from m0, the value m(p) can be computed as

m(p) = [i ◦m0 −
∑
p′ 6=p

i(p′)m(p′)] : i(p),

hence, we need not store it.

SESA also decides automatically whether the underlying Petri net is covered by place
invariants. If this is the case, the SNS is structurally bounded (i.e. bounded under any
initial marking).

Moreover, SESA computes a base of all transition invariants. The computation of
step invariants has not been implemented so far.

Some results of the last part were first published in [Sta98].

Appendix

SESA Tool Description Paul Berthold 103

SESA Tool Description

SESA is our tool for the analysis of signal-net systems. Typical properties which can be
verified are boundedness of places, liveness of transitions, and reachability of markings or
states. General properties can be expressed in CTL and verified by the model checker of
SESA. To reduce the size of the state space and the time for its construction, SESA offers
several reduction methods. SESA also derives some analysis results from the underlying
Petri net of a signal-net system. SESA inherited much of its code from the Petri net
tool INA [RS98].

How to run SESA

To start the program, open a command shell, change to the directory which contains the
net to be analysed, and into which the files to be constructed should be stored. Then
enter SESA.exe at the shell prompt. Up to this version of SESA, there is no graphical
user interface available. All output is displayed on the terminal of the command shell,
where SESA.exe was started, and all input has to be typed in by the keyboard. In this
section, we denote the typing of the key X by <X>. If SESA asks you for an output file
name and you type the escape key <esc>, the output will be displayed on the terminal.
On the other hand, if you type <esc> at an input file prompt, SESA expects your input
from the keyboard.

If the file OPTIONS.sna is in the working directory, it will be read. On the other hand,
the file COMMAND.sna will only be executed if you answer the question same procedure
as last time? (which then appears at the beginning) with <Y>. In this case, the
stored commands of the last session are repeated until <H> (for halt) is entered, or all
commands have been executed. If there is no COMMAND.sna, or the question above has
been answered with <N>, the main menu appears on the screen and the selected options
are displayed:

>>>>>>>>>>> Welcome to the Signal Net Analyzer S E S A <<<<<<<<<<<
Version 1.x Humboldt-University Berlin xx xyz 2002"

Current net options are:
token type: black
time option: no times
firing rule: arbitrary maximal steps
synchros : not to be used
greediness : not to be used
priorities : not to be used
reductions : not to be used

Do You want to
edit ?E
fire ?F
analyse ?A
read the session report ?S
delete the session report ?D
change options ?O
quit ?Q

104 SESA Tool Description Paul Berthold

choice >

By pressing the indicated letters the corresponding functions are selected. To stop a
command, or quit a menu, <Q> can be entered in most cases. At many points this will
also cancel running computations prematurely.

During a session, the program writes all analysis results and deductions into the file
SESSION.sna. In the main menu, two menu items are offered, one to display the session
report, and the other to erase it.

Options

After the start of SESA the current net options are displayed in the main menu. By
entering <O>, these can be changed. There, the token type, the time option, the firing
rule, the use of synchro sets, the use of greedy transitions, the use of priorities, the use
of reductions, and line length are requested subsequently. The selected options are saved
in the file OPTIONS.sna. The default net options of SESA can also be changed via the
command line options at the start of the program.
In the following list, all possible options are individually presented:

token types With this option, you can determine whether the tokens are coloured.

 black (indistinguishable) tokens

Hereby, you choose to work with (uncoloured) signal-net systems, whose
markings consists of black indistinguishable tokens. The command line option
therefore is -black.

<C> coloured tokens

With this selection, you will work with coloured nets, which allows to work
with coloured, i.e. distinguishable tokens. The command line option therefore
is -colour. For more information about coloured nets, please, confront the
section 3 on page 11.

If you have set the token type of a coloured net to black, SESA will ask: Forget
the colour structure?; with <Y>, the colours are deleted. Warning: Information
about the net can get lost this way!

If, on the other hand, you change the token type in the opposite way, the question
appears: Fold the Net? If your answer is <Y>, you have to indicate how SESA
should fold it. You can choose a maximal folding, a user-defined folding or no
folding.

time option Here you can choose a clocked net type:

<N> no time constraints

With this selection, no clocks will be used. The command line option therefore
is -notimes.

SESA Tool Description Paul Berthold 105

<A> arc timed

A time interval can be assigned to the input arcs of transitions. The command
line option therefore is -arctimed. For more information about arc timed
nets, refer to section 2 on page 8.

firing rule Here you can choose between different firing rules:

<N> normal: arbitrary maximal steps

That is the default firing rule. The executable steps under this rule are
formed by first picking up a nonempty set of enabled spontaneous transitions
and then adding as many as possible of those transitions that are forced to
fire by signal-events produced by transitions in the step. The command line
option for this rule is -maximal.

<S> maximal single spontaneous transition steps

With this firing rule all steps will disappear from the step list which contain
more than one spontaneous transition. The command line option for this rule
is -single.

synchronisation sets With this option, you can determine the use of synchronisation
sets. The transitions in the same synchronisation set should fire simultaneously
as much as possible. The synchro option can be set only under the normal firing
rule. The command line options for synchronisation sets are -sync and -nosync.

greedy transitions With this option enabled, only steps containing at least one greedy
(spontaneous) transition are executed. If at the current state no greedy transitions
are enabled, then the other steps are executed too. The greediness option can not
be set under the single firing rule. The command line options for greedy transitions
are -greedy and -nogreedy.

priorities Under the priority option only the spontaneous transitions with the great-
est occurring priority are enabled. The command line options for priorities are
-priorities and -nopriorities.

reductions The firing rule can also be influenced by the command line options -diamond,
-stubborn and -symmetric. With the option -diamond the list of enabled steps
under the normal firing rule is reduced with respect to diamonds. This means, that
steps will be deleted from the step list which can be safely omitted without missing
reachable markings (because the diamond property holds). For details about this
reduction, please, confront the section 7 on page 21. The option -stubborn turns
on the stubborn set reduction for the state space analysis. For a description of this
reduction, see section 8 on page 27. For the firing rule maximal single spontaneous
transition steps you can use -noapprox to select the non-approximative computa-
tion of stubborn sets. With the option -symmetric, SESA uses the symmetries

106 SESA Tool Description Paul Berthold

of a signal-net system for the state space analysis. The symmetries are computed
on demand. For details about symmetric reduction, see section 9 on page 37.
More explanations of the firing rules, synchronisation sets, greedy transitions and
priorities can be found in section 1.2 on page 5ff.

line length With this option, you can determine the length of the output lines to fit
your terminal.

At the command line, it is also possible to change the file names of the session report,
the command file and the options file. You can specify these names by the command
line options -session <sessfile>, -cmd <cmdfile> and -opt <optfile>. With the
commandline option -prefix <prefix> you can add a prefix for each of these file names.
This is useful for running more than one instance of SESA in the same directory.

With the command line options -noopt and -nocmd you can prevent the processing
of the files OPTIONS.sna and COMMAND.sna at the start of a session. The command line
option -reset sets all options back to their default value. The order of command line
options matters.

If you want the names of transitions and places to be displayed at the terminal and
written in the session report, you can specify the option -names at the commandline,
otherwise specify -nonames.

At the end of a command line, you can specify the file name of the net you want to
analyse. With -help you get a short list of all possible command line options before the
program starts:

SESA command line options summary

-black -colour
-notimes -arctimed
-maximal -single
-[no]priorities
-[no]greedy
-[no]sync
-stubborn -diamond -symmetric
-[no]names
-[no]opt <optfile>
-[no]cmd <cmdfile>
-session <sessfile>
-prefix <prefix>
-reset -help
<filename>

The net editor

By pressing <E> in the main menu, the menu of the editor is shown:

Do You want to
Quit the editing process.....................Q

SESA Tool Description Paul Berthold 107

execute Input operations.....................I
execute Output operations....................O
Change something in the current net..........C
Delete something in the current net..........D
check the EFC property.......................E
Search for signal circuits...................S
Test connectedness of the current net........T
decompose or Merge...........................M

edit>

If no net is loaded, then the edit menu is substituted by the file input menu, which
appears also by pressing <I> in the editor.

In the file input menu, nets can be entered with the command <T>. Besides, if a net
is requested as a file, you can switch to the terminal mode with <esc> and enter the net
as described in the following.

First of all, the net number (default value: 0) and the net name (16 characters
maximum) are requested. It is recommendable to fill out both, because the net number
and name appear at many points in the protocol and in the saved files, and may therefore
help to prevent confusion.

In the case of a uncoloured net SESA expects a list of places with their pre and
post arcs next. First, SESA asks for the number of the place by the prompt place
nr. and after typing in this number you can specify the Token load (default = 0) of
that place. Then SESA asks for the numbers of the pre-transitions by the prompt from
transition nr., which can be stopped by pressing <Q> at the prompt. After that, the
numbers of the post-transitions are expected by the prompt to transition nr., which
can also be stopped by pressing <Q>. Then SESA asks for the number of the next place,
and so on... You can stop the input of the list of places by pressing <Q> at the place
nr. prompt.

Because there can be isolated transitions in signal-net systems, the next question
of SESA is: Give the numbers of transitions without pre- and post-arcs. The
input of the numbers of these transitions can also be stopped by pressing <Q>.

After that, you have to type in the names for all the places and transitions you
introduced before. After the name of each transition, SESA asks also for the numbers of
places, which have a condition to that transition and the numbers of transitions, which
have a signal to that transition. The input of these numbers can be stopped by pressing
<Q>.

The input of a coloured net is a little bit more complicated. First, all places and
their colours and token load have to be typed in. For each place and each colour you
have to supply a name. Then SESA asks for the transitions and their colours. After
the input of the names for the colours for a transition, you have to supply the pre- and
post-arcs for this transition. Unfortunately conditions and signals cannot be typed in.
But you can insert such arcs into a coloured net by using the change menu.

When you read a uncoloured net from a file by pressing <F> in the input file menu,
the file must be accepted by the following grammar in EBNF:

<netfile> ::= "P M PRE,POST NET " <nr> ":" <name> "<cr>"

108 SESA Tool Description Paul Berthold

<flowarcs>
"@<cr>"
"pl-nr. name icp<cr>"
<places>
"@<cr>"
"<cr>"
"tr-nr. name pri md conditions; signals;<cr>"
<transitions>
"@<cr>"

<flowarcs> ::= { <nr> " " <tokens> " "
[<prelist>] ["," <postlist>] "<cr>" }

<prelist> ::= { <nr> [":" <mult>] " " }
<postlist> ::= { <nr> [":" <mult>] " " }

<places> ::= { <nr> ": " <name> " " <icp> "<cr>" }
<transitions> ::= { <nr> ": " <name> " " <priority> " " <modus> " "

[<conditions>] ";" [<signals>] ";<cr>" }
<conditions> ::= { <nr> [":" <mult>] " " }

<signals> ::= { <nr> " " }

The following grammar describes the format of coloured net files:

<colnetfile> ::= <netfile>
"AGGREGATION:<cr>"
"places:<cr>"
<plcolours>
"@<cr>"
"transitions:<cr>"
<trcolours>
"@<cr>"

<plcolours> ::= { <nr> ":" <name> " " { <nr> " " } "<cr>" }
<trcolours> ::= { <nr> ":" <name> " " { <nr> " " } "<cr>" }

After loading or typing in a net under the input file menu, you can perform output
operations (by pressing <O>) or change the structure of the net (by pressing <C> or <D>)
in the edit menu.

There are also test functions for some structural properties of the current net:

<E> check the EFC property

With this function, you can check the EFC property of a signal-net system. For
the definition of the EFC property see section 15 on page 72.

<S> Search for signal circuits

This function searches for circuits in the signal relation of a net. In most cases, a
signal circuit in a net is the result of an input error.

<T> Test connectedness of the current net

With this function, you can test the connectedness of the nodes of a net with

SESA Tool Description Paul Berthold 109

respect to the flow relation, the condition relation and/or the signal relation. If
the net consists of more than one component, then you can write these components
to separate files.

<M> decompose or Merge

This function offers to double a node or to merge two nodes or two nets. Further,
you can decompose a net into its elementary modules. For composition of modules
see section 16 on page 79.

The simulator

By pressing <F> in the main menu, the program changes into the simulation mode. At
the beginning and after each operation in this mode the current marking and a list of its
executable steps are shown. Each step has its own number, so you can fire this step by
typing in this number. If you want to cancel the execution of the last step, then press
. By pressing <r>, you reset the current marking to the initial marking.

If you want to see the stubborn set used by the stubborn reduced reachability graph,
then press <s>. Press <c>, if you want to see the construction of this set. For more
information about the stubborn set reduction, see section 8 on page 27. For the firing rule
maximal single spontaneous transition steps you can toogle between the approximative
and the non-approximative computation of stubborn sets by pressing <a>.

To see the step list reduced with respect to diamonds, press <d>. For details about
the diamond reduction, see section 7 on page 21.

You can write the current marking into a .mar file by pressing <w>. To leave the
simulation mode and return to the main menu enter <q>.

Analysing signal-net systems

By pressing <A> in the main menu, you enter the most important menu of SESA the
analysis menu. In the analysis menu, different analysis procedures are offered depending
on the net type and the status of the analysis. Only those procedures are offered which
can lead to statements about the important dynamic properties. To return to the main
menu, enter <Q>.

Analysis menu:

Non-reachability test of a partial marking using the state equation.........N
Compute a minimal path from the initial state to satisfy a predicate........P
Compute a minimal path from the initial state to a (sub-)marking............O
Check a CTL-formula...F
Compute a reachability graph..R

Compute the symmetries of the net...Y
Define a concession predicate...D

110 SESA Tool Description Paul Berthold

For the underlying Petri net (signal arcs ignored):
Decide structural boundedness..S
Decide boundedness...B
Compute a base for all S/T-invariants [non-reachability test]............I

choice >

Before the analysis menu is displayed, SESA executes a pre-analysis of the net, which
investigates structural properties, and also checks which functions are available for the
given net. At the beginning, you can set writing options. These include, for example,
the output option for static conflicts: Print the static conflicts?

The progress of the analysis is indicated in a status line above the Analysis menu:

SCV SCF Ft0 tF0 Fp0 pF0 CPI CTI B SB REV DSt BSt DTr DCF L LV L&B WL CL
Y N Y N N N ? ? Y Y ? ? ? ? ? ? ? ? ? ?

The possible properties of the current net are listed. The symbol below each property
indicates whether the property is fulfilled (Y), not fulfilled (N), or no decision could have
been made yet (?). For an explanation of each property see the section on page 116.

In the following list, all possible functions of the analysis menu are presented:

<N> Non-reachability test of a partial marking using the state
equation

This function can decide the non-reachability of a marking using the state equa-
tion. A partial marking is sufficient here: the marking of the remaining places is
considered to be not defined.

<O> Compute a minimal path from the initial state to a
(sub-)marking

A marking is tested for reachability, and, if possible, a path is displayed. The path
is minimal with respect to the length (i.e. number of firing procedures) or the cost
(the value of a path is the sum of the values of the fired transitions). Here, a
partial marking is sufficient. The marking of the remaining places is considered as
not defined.

The marking to be examined can be read from a file or, by pressing <esc>, entered
directly.

For a net with time allocation, in addition to the computation of a minimal path
with respect to length or cost, it is also possible to compute a path which is minimal
with respect to time (i.e. a fastest one). Time allocation will be inquired anyway.

After entering (or reading) the target marking, you can enable some reduction
methods for the construction of the state space. You can use the stubborn set
reduction or the diamond reduction. In combination with the normal firing rule
you will only get an upper bound of the minimal length, due to reducible steps.

SESA Tool Description Paul Berthold 111

In all other cases (single spontaneous transition steps or minimal values) you will
get exact results. Reachability is preserved by both reductions. For details refer
to section 7 on page 21 and section 8 on page 27.

It is also possible to cut of the construction of the state graph at states, which
satisfy a defined ”bad” predicate.

Then, SESA starts to construct the state graph of the net breadth first. The
number of states so far computed is displayed: States generated.

If SESA encounters a marking that agrees with the target marking on the places
defined, the examination is cancelled. The target marking is reported on the screen
as reachable. The path can be written into a separate file with the extension .tra
or in the session report.

If the target marking is not reachable, there are two cases: if the entire state
graph can be constructed and saved, the marking will be regarded as unreachable
(The marking is not reachable); otherwise (always in unbounded nets), SESA
cancels with the message Node overflow and states that no decision can be made:
No decision possible.

By pressing <Q>, the computation process can be cancelled at any time. Any dead
states which may have been found are taken into account in the further analysis.

<P> Compute a minimal path from the initial state to satisfy a
predicate

This function computes a minimal path to a state which satisfies a previously
specified state predicate. Otherwise, this function is similar to the one with <O>.

<R> Compute a reachability graph

This command constructs the state graph of a signal-net system. For the construc-
tion of the state space, you can enable some reduction methods: You can use the
symmetrical reduction, the stubborn set reduction or the diamond reduction. For
these reductions refer to section 7 on page 21, section 8 on page 27 and section 9
on page 37. It is also possible restrict the depth of the state graph and to cut of the
construction of the state graph at states, which satisfy a defined ”bad” predicate.

Then, SESA starts to construct the state graph of the net depth first. The number
of states so far computed is displayed: States generated.

Subsequently, different graph analyses can be executed, CTL-formulae and pred-
icates can be created or checked, and certain results can be written either into
separate files or in the session report. For more information about graph analysis
in SESA see the section on page 113.

<F> Check a CTL-formula

With this function, you can check CTL-formulae, i.e. determine their validity and

112 SESA Tool Description Paul Berthold

generate proofs. For more information about checking CTL-formulae in SESA see
the section on page 115.

<Y> Compute the symmetries of the net

When computing the symmetry group of the current net, SESA considers possible
time allocations.

First, you have to state whether fixed points should be set for places and tran-
sitions, or whether the initial state should be considered as symmetric: Do you
want to set fixpoints? or Initial state to be symmetric?

Sometimes, other symmetries or none at all are found in this way, and the compu-
tation is cancelled: Trivial transition partition!

By answering the question Write the symmetries to the session file? with
<Y>, the generators of the symmetry group are written into the session-report.
With <N>, only the decompositions of the place and transition sets into equivalence
classes are written.

During the computation, a counter records the generators found; the running com-
putation can be aborted with <Q>.

At the end of the computation, the number of generators and the number of
symmetries, which can be obtained by combining them, are displayed.

The function <Y> can also be used to have a (already once computed) symmetry
group be re-computed. In order to do this, you only have to answer the question
Compute the symmetries once again? with <Y>. For example, you can set new
fixed points, or consider the initial marking.

<D> Define a concession predicate

With this function, a predicate is defined based on a transition set to be specified;
this predicate is satisfied exactly by those states in which at least one transition
of the set is enabled.

<S> Decide structural boundedness

This function decides whether the net is covered by P -invariants. If this is the
case, it is structurally bounded, i.e. bounded in every initial marking.

 Decide boundedness

This function decides the boundedness of a net by the computation of the cov-
erability graph of the underlying Petri net. SESA computes the graph using the
algorithm of Karp and Miller. In case the net is bounded, the coverability graph
corresponds to the usual state graph of the underlying Petri net.

SESA Tool Description Paul Berthold 113

<I> Compute a base for all S/T-invariants [non-reachability
test]

This command computes a basis for the space of all invariants of the selected type.
SESA states whether invariants were found, and possibly derives further deductions
from it. The program decides whether the net is covered by invariants of the
selected type, i.e. whether an invariant exists which is positive in all components.
If such an invariant was actually computed, it will be displayed as well. If P -
invariants were found, a fast non-reachability test is offered.

Further analysis of the reachability graph

After the (incomplete) construction of the reachability graph or after the model check-
ing of a CTL-formula which led to a complete reachability graph, you enter the graph
analysis menu. In this menu different graph analyses can be executed, CTL-formulae
and predicates can be created or checked, and certain results can be written either into
separate files or in the session report:

Graph analysis menu
Do You want to

quit analysis of the computed graph Q

test the reachability/coverability of a marking R
convert a set of states to a predicate C
define a concession predicate E
check a CTL-formula F
compute distances A
compute circuits K
check liveness properties L
compute strongly connected components V
check dynamic conflicts Y
check for false diamonds U
write the computed graph (states and arcs) W
write all arcs X
write all states M
write all states satisfying a predicate P
write all states with a given successor G
write the dead states D
write the bad states B
write a trace to a state T
write the list of executed steps S
inspect a result file I

choice>

Warning: If you leave this menu by pressing <Q> the memory of the reachability
graph is freed. So, you have to construct the graph again, if you want to perform more
graph analysis.
In the following list, all possible functions of the graph analysis menu are presented:

114 SESA Tool Description Paul Berthold

<R> test the reachability/coverability of a marking

With this function, you can execute reachability or coverability tests, and find (not
necessarily minimal) paths from the initial marking to a target marking.

<C> convert a set of states to a predicate

With this command, a predicate for a set of states is defined which is satisfied
exactly by these given states. You can construct the predicate with respect to all
computed states, the dead states, states where a set of transitions is fireable, or a
set to be specified by state numbers. The predicate defined can be saved in a file
with the extension .pdc.

<E> define a concession predicate

With this function, a predicate is defined based on a transition set to be specified;
this predicate is satisfied exactly by those states in which at least one transition
of the set is enabled.

<F> check a CTL-formula

With this function, you can check CTL-formulae, i.e. determine their validity and
generate proofs. For more information about checking CTL-formulae in SESA see
the section on page 115.

<A> compute distances

With this command, minimal and maximal distances between nodes of the state
graph can be computed. The results are written into the session report.

<K> compute circuits

With this command, circuits in the state graph can be computed and evaluated.

<L> check liveness properties

With this command, a liveness analysis can be executed. This works only for
completely computed state graphs without stubborn reduction.

If the net contains transitions which are dead in the initial state, then the liveness
analysis is restricted to the transitions that are not dead. The net can be live if all
dead transitions are considered as facts; the property LV (Liveness when ignoring
dead transitions) is then set accordingly. Further weaker notions of liveness are
explained on the screen, if necessary.

<V> compute strongly connected components

With this function, the strongly connected components are computed, and, upon
request, written into a file with the extension .res.

SESA Tool Description Paul Berthold 115

<Y> check dynamic conflicts

With this function, you can search the set of reachable states for dynamic conflicts
(see in section 10 on page 44).

<U> check for false diamonds

This function looks for reachable states where the diamond property does not hold
(see section 7 on page 21).

<...> write ...

With these commands, the computed graph, or parts of it, are written into the
session report, or, upon request, into a file. By entering <esc> on the file name
prompt, you can redirect the output to the screen. In most cases, a selection of
states can be defined.

<I> inspect a result file

With this command, you can inspect different files created during the analysis.

CTL model checking

Testing the validity of Computation Tree Logic CTL-formulae in the initial state is
called model checking. Thereby, witnesses for existence-quantified sub-formulae, and
counter examples for all-quantified sub-formulae can be determined and displayed. See
section 11ff for details about CTL and the timed and extended Computation Tree Logic.

At the formula input file prompt, you can then read a .ctl file, or, by pressing
<esc>, enter a formula directly. A very short explanation of the CTL syntax is displayed
when entering formulae by hand:

Syntax:

Boolean combination: NOT f, f1 AND f2, f1 OR f2, f1 IMPL f2, f1 EQUIV f2
Temporal operators : EX f, EF f, EG f, E[f1 U f2], E[f1 B f2]

AX f, AF f, AG f, A[f1 U f2], A[f1 B f2]
Predicates : disjunction of conjunctions of interval specifications

use P and a number or a file name (*.pdc with quotes)
to refer to a predicate e.g P1 or P"pred1.pdc"

Atomic propositions: references to the marking of a place by number or name
and comparisons > < = <> >= <= of markings and marking
sums e.g. p1 m(p1)=0 or m(p1)+m(p2)=1
for reference by name use quotes e.g. m(p"end")
a reference without m() is interpreted as m()>0

Transition formulae: boolean combinations of references to transitions
attached to the quantifiers E and A to limit the
range of temporal operators e.g. E t1 F m(p1)
or A (t"one" OR t"two") G P"invar.pdc"

Please, type the formula to check:

116 SESA Tool Description Paul Berthold

A complete graphical diagram of the syntax of CTL used in SESA is shown in Fig. A.1
and A.2. Each nonterminal of the language is explained by a little diagram. The name
of the nonterminal is shown in boldface on the top left corner of this diagram. Below this
name, there is the entry point of the syntax diagram for the nonterminal. The boxes
of the diagrams represent other nonterminals. Their names are written in the boxes.
On the other hand, the circles represent the terminals. The symbols of these terminals
are shown in the circles. To check the correctness of a sentence, start with the top left
nonterminal ”ctl” and then follow the arrows from the left hand side through the boxes
and circles to the right end of the diagrams.

After typing in the formula and afterwards answering the question ok? with <Y>, you
can write the formula to a file with the extension .ctl. Thereafter, SESA is parsing the
formula and the predicates whose numbers were mentioned in the formula are requested.
You can either read previously defined predicates from a file, or, by pressing <esc>, enter
predicates directly. Before the computation is started, you can specify some output
options for the proof of the formula. The progress of the computation is displayed by
the number of generated states. The computation can be cancelled by pressing <Q>.
After a successful computation, the value of the formula is displayed. SESA warns
with TRUE/FALSE in the computed subgraph if a reduced or incomplete graph was
generated and the truth value of a formula in the complete graph is not deducible (for
reduction techniques see section 7 on page 21, section 8 on page 27 and section 9 on
page 37). If the generated graph is complete, you enter the graph analysis menu, see the
section on page 113. Otherwise, you can write the incomplete graph or check the next
formula.

Properties

In the following list, all properties of the status line in the analysis menu and the graph
analysis menu of SESA are explained:

SCV subconservative

A net is sub-conservative, if all transitions add at most as many tokens to their
post-places as they subtract from their pre-places. The total number of tokens can
therefore not increase.

SCF statically conflict-free

If two transitions have a common pre-place, they are in a static conflict about the
tokens on this pre-place. Then, the net is not static conflict free.

Further information can be found in section 10 on page 44ff.

Ft0 transition without pre-place

A net has Ft0-transitions, if there are spontaneous transitions without a pre-place
and without a condition but with a post-place; St = ∅, Ft = ∅, Cond(t) = ∅,
tF 6= ∅.

SESA Tool Description Paul Berthold 117

tF0 transition without post-place

A net has tF0-transitions, if there are spontaneous transitions without a post-place
and without any signal to another transition but with a pre-place; St = ∅, tF = ∅,
tS = ∅, Ft 6= ∅.

Fp0 place without pre-transition

A net has Fp0-places, if there are places without a pre-transition but with a post-
transition; Fp = ∅, pF 6= ∅.

pF0 place without post-transition

A net has pF0-places, if there are places without a post-transition but with a
pre-transition; pF = ∅, Fp 6= ∅.

CPI covered by place invariants

A net is covered by place invariants, if there exists a P -invariant which assigns a
positive value to each place. If this is the case, the net is structurally bounded,
i.e. bounded under any initial marking.

CTI covered by transition invariants

A net is covered by transition invariants, if there exists a T -invariant which assigns
a positive value to each transition.

Further information can be found in section 19 on page 95ff.

B bounded

A net is bounded, if there is a number k such that, in any reachable marking, there
are never more than k tokens on a place.

SB structurally bounded

A net is structurally bounded, if it is bounded in every initial marking.

REV reversible

A net is reversible, if the initial state can be reached from every reachable state.

DSt dead state reachable

A dead state is reachable, if a state is reachable in which no transition can fire any
more.

BSt bad state reachable

If a state satisfies a so-called ”bad” predicate, it is not further developed when
computing a state graph. In this case, the attribute Bst is set. However, after
leaving the graph analysis, this attribute is reset to ?.

118 SESA Tool Description Paul Berthold

DTr dead transition exists (at the initial marking)

This attribute indicates whether the net has dead transitions in the initial marking,
i.e. facts.

DCF dynamically conflictfree

A net is said to be dynamically conflict free, if no state is reachable in which a
step conflict or a transition conflict occurs.

Further information can be found in section 10 on page 44ff.

L live

A net is live, if all its transitions are live in the initial marking, i.e. no state is
reachable in which a transition is dead.

LV live if dead transitions ignored

A net is live when ignoring dead transitions, if all its transitions, which are not
already dead in the initial marking, are live. The transitions thereby ignored can
be considered as unspecified facts.

L&B live and bounded

A net is live and bounded, if it is live and, if there is a number k such that, in any
reachable marking, there are never more than k tokens on a place.

WL weakly live

A coloured net is weakly live, if all its transitions are weakly live, i.e. for each
transition, there is a colour in which the transition is live in the initial marking.

CL collectively live

A coloured net is collectively live, if all its transitions are collectively live. A
transition is collectively live, if for every reachable state a colour exists, such that
in a state reachable from this marking, the transition can fire in this colour. In
particular, every weakly live transition is also collectively live.

SESA Tool Description Paul Berthold 119

or_expr

equiv

equiv_expr

E

A

transition_formula

X

F

formula[U formula

interval

B

]

factor

interval

factorG

predicate

true

false

(formula)

not factor

factor

factor

and

and_expr

equiv_expr

impl equiv_expr

impl_expr

impl_expr

formula

formula EOF

ctl

and_expr

or

or_expr

atomic_pred

def_pred

predicate

atomic_term

condition

atomic_pred

atomic_factor

+

atomic_term

variable

constant

atomic_factor

number

infinity

constant

marking

clock

variable

[number number,

infinity

]

interval

.

number

name

number

name

node

P number

name

def_pred

)node

p

(u

clock

)nodem (

p

marking

Figure A.1: CTL Syntax

120 SESA Tool Description Paul Berthold

transition_impl_expr

transition_formula

equiv

transition_or_expr

transition_equiv_expr

and

transition_factor

transition_and_expr

t

true

false

not transition_factor

(transition_formula)

node

transition_factor

transition_equiv_expr

impl transition_equiv_expr

transition_impl_expr

or

transition_and_expr

transition_or_expr

letter

digit letter

digit

" "

’’

name

OR

V

v

or

AND

&

^

and

NOT

-

!

not

->

IMPL

impl

EQUIV

<->

equiv

<

<=

>

>=

=

<>

#

!=

condition

a...z

A...Z

_

letter

0...9

digit

F

FALSE

false

TRUE

T

true

o

oo

infinity

digit

number

Figure A.2: CTL Syntax (cont’d)

References 121

References

[AH92] Rajeev Alur and Thomas A. Henzinger: Logics and Models of Real-
Time: A Survey. In J. W. de Bakker, C. Huizing, W. P. de Roever,
and G. Rozenberg (editors): Proceedings of Real-Time: Theory in Prac-
tice, REX Workshop, Mook, The Netherlands, June 3-7, 1991, volume 600
of Lecture Notes in Computer Science, pages 74–106, Berlin, Germany, 1992.
Springer-Verlag.

[BCM92] Jerry R. Burch, Edmund M. Clarke, and Kenneth L. McMillan: Sym-
bolic Model Checking: 1020 States and Beyond. Information and Computa-
tion, 98(2), June 1992.

[Ber02] Paul Berthold: Analyse von Signal-Netz-Systemen unter verschiedenen
Schaltregeln. Diplomarbeit, Humboldt-Universität zu Berlin, May 2002.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla: Automatic
Verification of Finite-State Concurrent Systems Using Temporal Logic Spec-
ification. ACM Transactions on Programming Languages and Systems, 8(2):
233–263, 1986.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled: Model Checking.
MIT Press, December 1999.

[DA92] Rene David and Hassane Alla (editors): Petri Nets and Grafcet: Tools for
Modelling Discrete Event Systems. Prentice Hall, New York, 1992.

[DV90] Rocco De Nicola and Frits W. Vaandrager: Action versus state based
logics for transition systems. In I. Guessarian (editor): Semantics of Sys-
tems of Concurrent Processes, Proceedings LITP Spring School on Theoretical
Computer Science, La Roche Posay, France, volume 469 of Lecture Notes in
Computer Science, pages 407–419. Springer-Verlag, 1990.

[EMSS91] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla, and Jai Srini-

vasan: Quantitative Temporal Reasoning. In Proc. 2nd International Com-
puter Aided Verification Conference CAV, volume 531 of Lecture Notes in
Computer Science, pages 136–145. Spinger-Verlag, 1991.

[For99] Adrianna Foremniak: Struktureigenschaften von Signal-Ereignis-Netzen.
Diplomarbeit, Humboldt-Universität zu Berlin, August 1999.

[FS00] Adrianna Foremniak and Peter H. Starke: Structural Analysis of Signal-
Event Systems. Fundamenta Informaticae, 41(3): 81–104, February 2000.

[Han93] Hans-Michael Hanisch: Analysis of Place/Transition Nets with Timed Arcs
and its Application to Batch Process Control. In Ajmone Marsan, M.

(editor): Lecture Notes in Computer Science; Application and Theory of

122 References

Petri Nets 1993, Proceedings 14th International Conference, Chicago, Illi-
nois, USA, volume 691, pages 282–299. Springer-Verlag, 1993.

[Hel97] Keijo Heljanko: Model Checking the Branching Time Temporal Logic CTL.
Series A: Research Report 45, Helsinki University of Technology, Digital Sys-
tems Laboratory, Espoo, Finland, May 1997.

[HKL99] Hans-Michael Hanisch, Peter Kemper, and Arndt Lüder: A Modular and
Compositional Approach to Modeling and Controller Verification of Manu-
facturing Systems. In Proceedings of the 14th IFAC World Congress, Beijing,
China, July 1999. International Federation of Automatic Control.

[HPP+99] Hans-Michael Hanisch, Torsten Pannier, Dirk Peter, Stephan Roch, and
Peter H. Starke: Modeling and Verification of a Modular Level-Crossing
Controller Design. at Automatisierungstechnik, 47(8): 366–373, August 1999.

[Jen92] Kurt Jensen: Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Vol. 1: Basic Concepts. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag,

[Jen94] Kurt Jensen: Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Vol. 2: Analysis Methods. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1994.

[JK91a] Ryszard Janicki and Maciej Koutny: Invariants and Paradigms of Con-
currency Theory. In E. H. L. Arts, J. van Leeuwen, and M. Rem (edi-
tors): Parallel Architectures and Languages Europe (PARLE’91) Volume II:
Paralell Languages, Eindhoven, The Netherlands, June 1991, volume 506 of
Lecture Notes in Computer Science, pages 59–74, Berlin, Heidelberg, 1991.
Springer-Verlag.

[JK91b] Ryszard Janicki and Maciej Koutny: Invariant Semantics of Nets with
Inhibitor Arcs. In J. C. M. Baeten and J. F. Groote (editors): Proceedings
of the 2nd International Conference on Concurrency Theory (CONCUR’91),
Amsterdam, The Netherlands, August 1991, volume 527 of Lecture Notes in
Computer Science, pages 317–331, Berlin, Heidelberg, August 1991. Springer-
Verlag.

[JK93] Ryszard Janicki and Maciej Koutny: Structure of Concurrency. Theoretical
Computer Science, 112: 5–52, 1993.

[JK95] Ryszard Janicki and Maciej Koutny: Semantics of Inhibitor Nets. Infor-
mation and Computation, 123: 1–16, 1995.

[Kar99] Sirko Karras: Formale Verifikation und automatische Codegenerierung von
SPS-Programmen. Diplomarbeit, Otto-von-Guerike Universität Magdeburg,
Lehrstuhl Steuerungstechnik, August 1999.

References 123

[Koz83] Dexter Kozen: Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27: 333–354, 1983.

[KQ88] R. König and L. Quäck (editors): Petri Netze in der Steuerungstechnik.
Verlag Technik, Berlin, 1988.

[KV00] Lars Michael Kristensen and Antti Valmari: Improved Question-Guided
Stubborn Set Methods for State Properties. In Nielsen, M. and Simpson, D.

(editors): Lecture Notes in Computer Science: 21st International Conference
on Application and Theory of Petri Nets (ICATPN 2000), Aarhus, Denmark,
June 2000, volume 1825, pages 282–302. Springer-Verlag, 2000.

[LH00] Arndt Lüder and Hans-Michael Hanisch: A Signal Extension for Petri
nets and its Use in Controller Design. Fundamenta Informaticae, 41(3): 415–
431, February 2000. Previously published in Hans-Dieter Burkhard, Ludwik
Czaja, and Peter H. Starke (editors): Proceedings of the CS&P’98 Workshop,
number 110 in Informatik-Berichte, pages 98-105, Berlin, Germany, Septem-
ber 1998. Humboldt-Universität zu Berlin.

[MR95] Ugo Montanari and Francesca Rossi: Contextual Nets. Acta Informatica,
32(6): 545–596, September 1995.

[Pan98] Torsten Pannier: Spezifikation, Verifikation und Implementation einer
microrechnergestützten Bahnübergangssteuerung. Diplomarbeit, Otto-von-
Guerike Universität Magdeburg, Lehrstuhl Steuerungstechnik, October 1998.

[PPH98] Torsten Pannier, Dirk Peter, and Hans-Michael Hanisch: Safety-related
Design and Verification of a Computer Aided Level-Crossing Control. In
Hans-Dieter Burkhard, Ludwik Czaja, and Peter H. Starke (editors):
Proceedings of the CS&P’98 Workshop, number 110 in Informatik-Berichte,
pages 162–175, Berlin, Germany, September 1998. Humboldt-Universität zu
Berlin.

[Rau96] Mathias Rausch: Modulare Modellbildung, Syntese und Codegenerierung
ereignisdiskreter Steuerungssysteme. PhD thesis, Otto-von-Guerike Univer-
sität Magdeburg, Lehrstuhl Steuerungstechnik, 1996.

[RH95] Mathias Rausch and Hans-Michael Hanisch: Net Condition/Event Systems
with Multiple Condition Outputs. In Proc. EFTA’95, Paris, volume 1, pages
592–600, October 1995.

[Roc98a] Stephan Roch: Definition und Berechnung sturer Schrittmengen in Signal-
Ereignis-Netzen. Diplomarbeit, Humboldt-Universität zu Berlin, August
1998. http://www.informatik.hu-berlin.de/˜roch/Diplom/.

[Roc98b] Stephan Roch: Stubborn Sets of Signal-Event Nets. In Hans-Dieter
Burkhard, Ludwik Czaja, and Peter H. Starke (editors): Proceedings of

124 References

the CS&P’98 Workshop, number 110 in Informatik-Berichte, pages 197–203,
Berlin, Germany, September 1998. Humboldt-Universität zu Berlin.

[Roc99a] Stephan Roch: Simultaneity in Signal-Event Systems. In Josep M. Fuertes

(editor): Proceedings of the 7th IEEE International Conference on Emerging
Techologies and Factory Automation ETFA’99, pages 281–285, Barcelona,
Spain, October 1999.

[Roc99b] Stephan Roch: Simultaneity in Signal-Event Systems. In Hans-Dieter
Burkhard, Ludwik Czaja, Hung Son Nguyen, and Peter H. Starke

(editors): Proceedings of the CS&P’99 Workshop, pages 196–203, Warsaw,
Poland, September 1999. Final version appeared in Fundamenta Informati-
cae.

[Roc00a] Stephan Roch: Analyzing and Reducing Simultaneous Firing in Signal-Event
Nets. Fundamenta Informaticae, 43: 321–330, August 2000.

[Roc00b] Stephan Roch: extended Computation Tree Logic. In Hans-Dieter
Burkhard, Ludwik Czaja, Andrzej Skowron, and Peter H. Starke (ed-
itors): Proceedings of the CS&P 2000 Workshop, number 140 in Informatik-
Berichte, pages 225–234, Berlin, Germany, October 2000. Humboldt-
Universität zu Berlin.

[Roc00c] Stephan Roch: extended Computation Tree Logic: Implementation and Ap-
plication. In Proceedings of the AWPN 2000 Workshop, Koblenz, Germany,
October 2000. Universität Koblenz.

[Roc01] Stephan Roch: Reducing Simultaenous Firing in Signal-Net Systems
with Strongly Connected Sets. In Hans-Dieter Burkhard, Ludwik Czaja,
Hung Son Nguyen, and Peter H. Starke (editors): Proceedings of the
CS&P’2001 Workshop, pages 230–241, Warsaw, Poland, October 2001.

[RS98] Stephan Roch and Peter H. Starke: INA - Integrated Net Analyzer - Ver-
sion 2.2 - Manual. Technical report, first published (in German) as INA
- Integrierter Netz Analysator - Version 2.1 - Handbuch, number 101 in
Informatik-Berichte, Humboldt-Universität zu Berlin, Berlin, Germany, April
1998. Current version 2.2 (in English) available as http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/ina/ HTML, April 1999.

[Sch97] Dirk Schwanke: Probleme des Zusammenwirkens von Bestandteilen kom-
plexer Steuerungen und ihre netztheoretische Interpretation. Diplomar-
beit, Otto-von-Guerike Universität Magdeburg, Lehrstuhl Steuerungstechnik,
1997.

[Sch99] Karsten Schmidt: Stubborn Sets for Standard Properties. In Donatelli,

Susanna and Kleijn, Jetty (editors): Lecture Notes in Computer Sci-
ence: Application and Theory of Petri Nets 1999, 20th International Confer-

References 125

ence, ICATPN’99, Williamsburg, Virginia, USA, volume 1630, pages 46–65.
Springer-Verlag, June 1999.

[Sch00a] Karsten Schmidt: How to calculate symmetries of Petri nets. Acta Infor-
matica, 36(7): 545–590, 2000. Technical report MATH-AL-8-1997, Dresden,
University of Technology, 1997.

[Sch00b] Karsten Schmidt: Integrating Low Level Symmetries into Reachability
Analysis. In Susanne Graf and Michael I. Schwartzbach (editors): Tools
and Algorithms for Construction and Analysis of Systems, 6th International
Conference, TACAS 2000, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March
25 - April 2, 2000, Proceedings, volume 1785 of Lecture Notes in Computer
Science, pages 315–330. Springer, 2000.

[SH97] Peter H. Starke and Hans-Michael Hanisch: Analysis of Signal/Event Nets.
In Proc. of IEEE 6th International Conference on Emerging Technologies and
Factory Automation, pages 253–257, 1997.

[SK91] R. S. Sreenivas and B. H. Krogh: On condition/event systems with dis-
crete state realizations. Discrete Event Dynamic Systems: Theory and Ap-
plications, 2(1): 209–236, 1991.

[SLH98] Dirk Schwanke, Arndt Lüder, and Hans-Michael Hanisch: Dynamic Be-
haviour and the Deadlock-Trap Property of Signal/Event Nets. In Hans-Dieter
Burkhard, Ludwik Czaja, and Peter H. Starke (editors): Proceedings of
the CS&P’98 Workshop, number 110 in Informatik-Berichte, pages 215–220,
Berlin, Germany, September 1998. Humboldt-Universität zu Berlin.

[SR00] Peter H. Starke and Stephan Roch: INA et al. In Kjeld H. Mortensen

(editor): Tool Demonstrations 21st International Conference on Application
and Theory of Petri Nets, pages 51–56, Aarhus, Denmark, June 2000. De-
partment of Computer Science, University of Aarhus.

[Sta97] Peter H. Starke: Signal-Event Nets. In Hans-Dieter Burkhard, Ludwik
Czaja, and Peter H. Starke (editors): Proceedings of the CS&P’97 Work-
shop, pages 124–130, Warsaw, Poland, October 1997.

[Sta98] Peter H. Starke: Invariants Of Signal-Event Nets. In Hans-Dieter
Burkhard, Ludwik Czaja, and Peter H. Starke (editors): Proceedings of
the CS&P’98 Workshop, number 110 in Informatik-Berichte, pages 245–256,
Berlin, Germany, September 1998. Humboldt-Universität zu Berlin.

[Sta99] Peter H. Starke: Structural Analysis of Signal-Event Systems. In Hans-
Dieter Burkhard, Ludwik Czaja, Hung Son Nguyen, and Peter H.
Starke (editors): Proceedings of the CS&P’99 Workshop, pages 236–250,
Warsaw, Poland, September 1999.

126 References

[Val91] Antti Valmari: Stubborn Sets for Reduced State Space Generation. In
G. Rozenberg (editor): Proc. Advances in Petri Nets 1990, volume 483 of
Lecture Notes in Computer Science, pages 491–515, Berlin, GermanyBerlin,
Heidelberg, November 1991. Springer-Verlag.

[Val94] Antti Valmari: State of the Art Report: Stubborn Sets. Petri Net Newsletter,
46: 6–14, April 1994. Gesellschaft für Informatik, Special Interest Group on
Petri Nets and Related System Models.

[Val98] Antti Valmari: The State Explosion Problem. Lecture Notes in Computer
Science: Lectures on Petri Nets I: Basic Models, 1491: 429–528, 1998.

[Var93] Kimmo Varpaaniemi: Efficient Detection of Deadlocks in Petri Nets. Series
A: Research Report 26, Helsinki University of Technology, Digital Systems
Laboratory, Espoo, Finland, October 1993.

[VH99] Valeriy Vyatkin and Hans-Michael Hanisch: A Modeling Approach for
Verification of IEC1499 Function Blocks using Net Condition/Event Systems.
In Josep M. Fuertes (editor): Proceedings of the ETFA’99 Workshop, pages
261–270, Barcelona, Spain, September 1999.

[VHSR00] Valeriy Vyatkin, Hans-Michael Hanisch, Peter H. Starke, and Stephan
Roch: Further Development of Formalisms for Modelling and Verification
of IEC 1499 Distributed Control Applications. In Proceedings of Verteilte
Automatisierung, pages 72–79, Magdeburg, Germany, March 2000.

[Vog97] Walter Vogler: Partial Order Semantics and Read Arcs. Technical report
1997-1, Universität Augsburg, Institut für Informatik,, 1997.

[VSY98] Walter Vogler, Alex Semenov, and Alex Yakovlev: Unfolding and Fi-
nite Prefix for Nets with Read Arcs. In D. Sangiorgi and R. de Simone

(editors): Proceedings 9th International Conference on Concurrency Theory
(CONCUR’98), Nice, France, September 1998, volume 1466 of Lecture Notes
in Computer Science, pages 501–516, Berlin, Heidelberg, 1998. Springer-
Verlag.

Index 127

Index

approximative static stubbornness . 33
arbitrary maximal steps 105
arc . 3
arc-timed 8, 62, 105
-arctimed . 105

B . 117
bad predicate . 111
bad state reachable 117
bag . 3
base of invariants 113
-black . 104
black tokens . 104
bounded . 117
boundedness 19, 39, 112
breadth first search 111
BSt . 117

circuit in state graph 114
CL . 118
clock . 8
clock stop position 9
-cmd <cmdfile> 106
collectively live 42, 118
colour . 11
-colour . 104
coloured net file format 108
coloured tokens 104
command line option

-arctimed 105
-black . 104
-cmd <cmdfile> 106
-colour . 104
-diamond . 105
-greedy . 105
-help . 106
-maximal . 105
-names . 106
-noapprox 105
-nocmd . 106
-nogreedy 105
-nonames . 106

-noopt . 106
-nopriorities 105
-nosync . 105
-notimes . 104
-opt <optfile> 106
-prefix <prefix> 106
-priorities 105
-reset . 106
-session <sessfile> 106
-single . 105
-stubborn 105
-symmetric 105
-sync . 105

COMMAND.sna . 103
components . 79
composition . 79
Computation Tree Logic 49
computational power 15
concession . 6
concession predicate 112, 114
concurrent component 83
condition . 4
condition arc . 3
condition arc replacement 15
conflict . 44, 115
conjunctive composition 80
connectedness . 108
counter machine simulation 15
coverability . 114
coverability graph 112
covered by invariants 95
covered by place invariants 117
covered by transition invariants . . . 117
CPI . 117
criteria for unboundedness 19
csp . 9
CTI . 117
CTL 49, 53, 62, 111, 114, 115
CTL-syntax 115, 119, 120

DCF . 118

128 Index

dead marking . 40
dead state reachable 117
dead transition . 41
dead transition exists (at the initial mark-

ing) . 118
deadlock . 67
deadlock-free . 40
deadlock-trap property 71
decompose . 109
default firing rule 105
delay . 9
depth first search 111
-diamond . 105
diamond reduction 21
distance . 114
DSt . 117
DTr . 118
dynamic conflict 44, 115
dynamic stubbornness 27
dynamically conflictfree 118

earliest firing time 8
eCTL . 53
editor . 106
EFC . 108
eft . 8
enabled . 6, 8
executable . 6, 9
extended free choice 72

false diamonds . 115
file format . 107
fire . 109
firing rule . 5, 9, 105
fixed points . 112
flow relation . 3
folding . 104
forced transition . 5
formula . 111, 114
Fp0 . 117
free choice . 72
free-choice composition 86
Ft0 . 116

-greedy . 105

greedy transition 7, 9, 105

-help . 106

initial marking . 3
invariant . 91
invariants . 113
isolated node . 4

L . 118
L&B . 118
latest firing time . 8
lft . 8
line length . 106
live . 118
live and bounded 118
live if dead transitions ignored 118
liveness . 42, 114
LV . 118

marking . 3
-maximal . 105
merge . 109
minimal path 110, 111
mode . 3
model checking 49, 111, 114, 115
multiset . 3

-names . 106
net editor . 106
-noapprox . 105
-nocmd . 106
-nogreedy . 105
non-reachability test 110, 113
-nonames . 106
-noopt . 106
-nopriorities 105
normal firing rule 105
-nosync . 105
-notimes . 104

-opt <optfile> 106
options . 7, 104
OPTIONS.sna 103, 104
ordinary . 72

Index 129

path 49, 54, 110, 111
pF0 . 117
P -invariants . 113
place . 3
place invariant 93, 112
place without post-transition 117
place without pre-transition 117
predicate . 114

bad . 111
concession 112, 114

-prefix <prefix> 106
priorities . 7, 105
-priorities . 105
property . 110, 116

B . 117
BSt . 117
CL . 118
CPI . 117
CTI . 117
DCF . 118
DSt . 117
DTr . 118
EFC . 108
Fp0 . 117
Ft0 . 116
L . 118
L&B . 118
LV . 118
pF0 . 117
REV . 117
SB . 117
SCF . 116
SCV . 116
tF0 . 117
WL . 118

reachability 6, 18, 19, 39, 49, 110, 113,
114

coverability 112
graph 6, 111, 113

reduction 21, 27, 37, 111
replacement of condition arc 15
-reset . 106
resetability . 41

REV . 117
reversible . 117

saturated step . 98
SB . 117
SCF . 116
SCV . 116
sequence . 54
SESA . 103
-session <sessfile> 106
session report . 104
SESSION.sna . 104
signal . 3
signal arc . 4
signal circuit . 108
signal relation . 3
signal-closed . 6
signal-complete . 5
signal-event . 4
signal-flow . 82
signal-founded . 6
signal-processing . 3
simulator . 109
simultaeneous execution 21
-single . 105
single spontaneous transition step . . . 7
single firing rule 105
spontaneous transition 5
state . 3, 6, 8
state delay . 62
state graph 111, 113
state invariant . 91
state predicate . 50
state-machine composition 84
static conflict . 44
static stubbornness 32
statically conflict-free 116
status line . 110
step . 5
step invariant . 95
step-live . 95
strict earliest firing 9
strongly connected components . . . 114
structural boundedness 112

130 Index

structurally bounded 117
-stubborn . 105
stubborn set . 27
subconservative 116
-symmetric . 105
symmetric initial state 112
symmetry . 37, 112
-sync . 105
synchronisation set 7, 9, 105
syntax

coloured net 108
CTL 115, 119, 120
uncoloured net 107

TCTL . 62
tF0 . 117
time . 8
time option . 104
token . 3
token type . 104
token-concession . 6
transition . 3
transition formulae 53
transition invariant 95
transition without post-place 117
transition without pre-place 116
trap . 67
tree-like composition 84
Turing-equivalence 15

unboundedness . 19
uncoloured net file format 107
underlying Petri net 4, 16, 19, 38
unfolding . 12

weak earliest firing 9
weakly live . 118
weight . 3
WL . 118

	I. Preliminaries
	Basic Definitions
	Time Constraints on Arcs
	Colours

	II. Dynamic Properties
	Analysis
	Reachability Graphs
	Boundedness
	Diamond Reduction
	Stubborn Sets
	Symmetries
	Conflicts

	III. Model Checking
	Computation Tree Logic
	Extended Computation Tree Logic
	Timed Computation Tree Logic

	IV. Structural Properties
	Static Deadlocks and Traps
	Free Choice and Extended Simple Properties
	Composition

	V. Invariants
	State Invariants
	Place Invariants
	Transition Invariants and Step Invariants

	Appendix
	SESA Tool Description
	References
	Index

