
STEP Tools Software

ST-Viewer
OLE Automation

Reference Manual

 ®



Contributors

Written by Alexey Lipatov.

 Copyright 1991-2007 STEP Tools, Inc. — All Rights Reserved.

This document contains proprietary and confidential information of STEP Tools, Inc. The contents of this
document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without
the prior written permission of STEP Tools, Inc.

ST-Developer, ST-Machine, ST-Viewer, and the ST prefix are trademarks of STEP Tools, Inc. STEP Tools
is a registered trademark of STEP Tools, Inc. Other brand or product names are the trademarks or registered
trademarks of their respective holders.

STEP Tools, Inc.
14 First Street
Troy, New York 12180

Phone (518) 687-2848
Fax (518) 687-4420
E-Mail info@steptools.com
Web. http://www.steptools.com

Contents
Contents . iii

1 — Introduction to OLE Automation . 1
1.1 Introduction . 1
1.2 What is Automation? . 1

2 — The ISTview interface . 3
2.1 Methods . 3

3 — The ISTviewEvents Interface . 9
3.1 Methods . 9

4 — Examples . 11
4.1 Overview . 11
4.2 The Visual C++ example . 11

4.2.1 How the driver works . 13
4.3 The Visual Basic example . 16

4.3.1 How the driver works . 16
4.4 The Microsoft Excel (VBA) example . 17

4.4.1 How the Macros Work . 18
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL III

 CONTENTS

IV
 STEP TOOLS, INC.

1 Introduction to OLE
Automation
1.1 Introduction

The ST-Viewer automation interface is designed so users can easily add STEP
viewing capability to their applications. The interface allows an external applica-
tion to use ST-Viewer as the viewing platform, and to communicate with ST-Viewer
via a series of events generated from ST-Viewer.

1.2 What is Automation?

Automation is a mechanism to manipulate an application's objects from outside the
application. To make this happen, the application exposes one or more COM inter-
faces. These interfaces can contain methods and properties. These become acces-
sible to the automation client, and the exposing application becomes the automation
server.

The interfaces are described in ODL (Object Description Language) and presented
to the client as a type library file. Development tools or wizards can then import the
type library and generate a code framework for the automation client. The automa-
tion client can be written in many languages, including Microsoft Visual Basic, Vi-
sual C++, and Visual J++.

ST-Viewer exposes the ISTview interface to allow an external application to control
it. It also uses another interface ISTviewEvents to send events to an external appli-
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 1

1 INTRODUCTION TO OLE AUTOMATION

2

cation. The latter interface is not exposed by the viewer, but should be exposed by
an external application. In this case the viewer acts as an automation client, and the
external application acts as an automation server.

The ST-Developer distribution includes an example driver program that controls
ST-Viewer and receives events. The examples are written in Microsoft Visual C++,
Visual Basic and Visual Basic for Applications (using Microsoft Excel) .

This reference manual contains descriptions of the ST-Viewer COM interfaces and
examples of their use. It is assumed that the reader is familiar with COM and has
C++ and/or Visual Basic programming experience.
STEP TOOLS, INC.

2 The ISTview interface
2.1 Methods

The ISTview interface is the interface that ST-Viewer exposes to allow user pro-
grams to control it. This interface has only methods and no properties. The follow-
ing is the list of the ODL definitions for these methods.

BOOL LoadFile(
 BSTR strName
);

Use this method to load a STEP Part 21 file with the specified name. This method
returns TRUE if the file was successfully loaded, or FALSE if it was unable to load
the file.

void SetWindowPosition(
 short nX,
 short nY,
 short nWidth,
 short nHeight,
 long nShow,
 short nSeparatorOffset
);

This method changes the position and size of the STEP model window. The first
four arguments set the position and size of the window. The nShow specifies the
window sizing and positioning flags. The low-order word is the same as the uFlags
argument to the SetWindowPos Win32 API function and can be a boolean OR com-
bination of the following values.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 3

2 THE ISTVIEW INTERFACE

4

SWP_DRAWFRAME
Draws a frame (defined in the window’s class description) around
the window.

SWP_FRAMECHANGED
Sends a WM_NCCALCSIZE message to the window, even if the win-
dow’s size is not being changed. If this flag is not specified,
WM_NCCALCSIZE is sent only when the window’s size is being
changed.

SWP_HIDEWINDOW
Hides the window.

SWP_NOACTIVATE
Does not activate the window. If this flag is not set, the window is
activated and moved to the top of either the topmost group.

SWP_NOCOPYBITS
Discards the entire contents of the client area. If this flag is not spec-
ified, the valid contents of the client area are saved and copied back
into the client area after the window is sized or repositioned.

SWP_NOMOVE
Retains the current position (ignores the nX and nY arguments).

SWP_NOOWNERZORDER
Does not change the owner window’s position in the Z order.

SWP_NOREDRAW
Does not redraw changes. If this flag is set, no repainting of any kind
occurs. This applies to the client area, the nonclient area (including
the title bar and scroll bars), and any part of the parent window un-
covered as a result of the window being moved. When this flag is set,
the application must explicitly invalidate or redraw any parts of the
window and parent window that need redrawing.

SWP_NOREPOSITION
Same as the SWP_NOOWNERZORDER flag.

SWP_NOSENDCHANGING
Prevents the window from receiving the
WM_WINDOWPOSCHANGING message.

SWP_NOSIZE
Retains the current size (ignores the nWidth and nHeight arguments).

SWP_NOZORDER
Retains the current Z order.
STEP TOOLS, INC.

 2 THE ISTVIEW INTERFACE
SWP_SHOWWINDOW
Displays the window.

The high-order word is the same as the nCmdShow argument to the ShowWindow
Win32 API function and can be one of the following values.

SW_HIDE
Hides the window and activates another window.

SW_MAXIMIZE
Maximizes the specified window.

SW_MINIMIZE
Minimizes the specified window and activates the next top-level
window in the Z order.

SW_RESTORE
Activates and displays the window. If the window is minimized or
maximized, Windows restores it to its original size and position. An
application should specify this flag when restoring a minimized win-
dow.

SW_SHOW
Activates the window and displays it in its current size and position.

SW_SHOWDEFAULT
Sets the show state based on the SW_ flag specified in the
STARTUPINFO structure passed to the CreateProcess function by the
program that started ST-Viewer.

SW_SHOWMAXIMIZED
Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED
Activates the window and displays it as a minimized window.

SW_SHOWMINNOACTIVE
Displays the window as a minimized window. The active window
remains active.

SW_SHOWNA
Displays the window in its current state. The active window remains
active.

SW_SHOWNOACTIVATE
Displays a window in its most recent size and position. The active
window remains active.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 5

2 THE ISTVIEW INTERFACE

6

SW_SHOWNORMAL
Activates and displays a window. If the window is minimized or
maximized, Windows restores it to its original size and position.

The nSeparatorOffset sets the width of the identification pane within the document
window.

If any of the dimensional arguments is -1, this window parameter remains un-
changed. For example:

SetWindowPosition(
 0, 0, -1, 456,
 MAKELONG(SWP_SHOWWINDOW, SW_SHOWNORMAL), -1
);

will move the model window to the upper left corner of the ST-Viewer MDI client
window, set its height to 456 pixels and leave the width of the model window and
the identification pane unchanged.

void SetMainWindowPosition(
 short nX,
 short nY,
 short nWidth,
 short nHeight,
 long nShow
);

This method is similar to the previous one, but it changes the size and position of
the ST-Viewer main window.

void RotateThumbWheel(
 short nWheel,
 short nDegrees
);

The method "rotates" the specified thumbwheel by a number of degrees. The thum-
bwheels perform different functions depending on the current scene viewer. The
number of thumbwheels also vary, but only first three are supported at this time. The
nWheel argument specifies the thumbwheel.

0 Left

1 Bottom

2 Right

3 Top left (not supported)
STEP TOOLS, INC.

 2 THE ISTVIEW INTERFACE
void Zoom(
 float fZoom
);

Use this method to zoom the camera in and out. The fZoom value specifies the same
value as the zoom scrollbar in the geometric view.

void MakeSelected(
 long nID,
 long nInstance,
 short bSelect
);

This method selects an object in the model identified by its STEP entity ID (the nID
argument) and the instance number (nInstance). A model can have several instances
of the same STEP object, for example an assembly can have several parts that share
the same geometry. The instances are counted starting from 1. Set bSelect to TRUE
to select the object, set it to FALSE to cancel the selection.

void MakeAllSelected(
 long nID,
 short bSelect
);

Use this method to select all instances of the object with the specified STEP ID. A
model can have several instances of the same STEP object, for example an assem-
bly can have several parts that share the same geometry. The nID argument specifies
the STEP entity ID of the object from the original file, and the bSelect argument
should be set to TRUE to select all instances or to FALSE to cancel selection.

void MakeVisible(
 long nID,
 long nInstance,
 short bVisible
);

Use this method to display or hide an instance of an object in the model. The object
is identified by its STEP entity ID (the nID argument) and the instance number (nIn-
stance). To display the object set bVisible to TRUE, to hide the object set it to FALSE.

void MakeAllVisible(
 long nID,
 short bVisible
);

Use this method to display or hide all instances of the object with the specified
STEP ID. The nID argument specifies the STEP entity ID of the object from the
original file, and the bVisible argument should be set to TRUE to display all instanc-
es or to FALSE to hide them.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 7

2 THE ISTVIEW INTERFACE

8

void SetColor(
long nID,
long nInstance,
double dRed,
double dGreen,
double dBlue);

Use this method to set the color of the specified object. The object is identified by
its STEP entity ID (the nID argument) and the instance number (nInstance). The last
three arguments are red, green, and blue components of the color, expressed as the
values within the 0...1 range. For example, a default gray color will be expressed as
(0.8, 0.8, 0.8).
STEP TOOLS, INC.

3 The ISTviewEvents
Interface
3.1 Methods

The ISTviewEvents interface is the interface that the user program should imple-
ment to allow ST-Viewer send events to this program. ST-Viewer uses the connec-
tion points mechanism to connect to the implementation in the user program.

This interface has only methods and no properties. The following is the list of the
ODL definitions for these methods.

void OnObjectDisplay(
 long nID,
 long nInstance,
 short bDisplay
);

This method is called by ST-Viewer when an object is being displayed or hidden.
The object is identified by its STEP entity ID (the nID argument) and the instance
number (nInstance). A model can have several instances of the same STEP object,
for example an assembly can have several parts that share the same geometry. The
instances are counted starting from 1. The bDisplay argument is set to TRUE when
the object is being displayed or FALSE when the object is being hidden.

void OnObjectSelect(
 long nID,
 long nInstance,
 short bSelect
);

This method is called by the viewer when the selection state of an object changes.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 9

3 THE ISTVIEWEVENTS INTERFACE

10
The object is identified by its STEP entity ID (the nID argument) and the instance
number (nInstance). A model can have several instances of the same STEP object,
for example an assembly can have several parts that share the same geometry. The
instances are counted starting from 1. The bSelect argument is set to TRUE when the
object is being selected or FALSE when the selection is being canceled.
STEP TOOLS, INC.

4 Examples
4.1 Overview

ST-Developer includes three examples of a driver program that controls ST-Viewer
and receives its events. The examples are written in Microsoft Visual C++, Visual
Basic and Visual Basic for Applications (VBA). The first two programs are distrib-
uted as Microsoft Visual Studio projects and include full source code. The VBA ex-
ample is distributed as a Microsoft Excel template file. They are installed in the
automation directory under the ST-Developer root installation directory.

4.2 The Visual C++ example

The window of the ST-Viewer Automation Driver is shown in Figure 4.1. The top
portion of the window (the Commands area) contains controls that use the methods
of the ISTview interface.

File name Specify the name of the file you want to load into the viewer.

[...] Display the Open File dialog box to locate the file you want to load
into the viewer.

Load Invoke the LoadFile method.

Entity ID Specify the entity ID for the object you want to display, hide, or se-
lect/unselect.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 11

4 EXAMPLES

12
Instance Specify the instance number for the object specified in the Entity ID
box.

All Apply the display/select commands to all instances of the specified
object.

Display Display the object(s) with the specified entity ID and instance(s).
(Invoke the MakeVisible or MakeAllVisible methods.)

Hide Hide the specified object(s). (Invoke the MakeVisible or
MakeAllVisible methods.)

Select Select the specified object(s). (Invoke the MakeSelected or
MakeAllSelected methods.)

Unselect Cancel the selection of the specified object(s). (Invoke the
MakeSelected or MakeAllSelected methods.)

Left Specify the horizontal position of the window.

Top Specify the vertical position of the window.

Width Specify the width of the window.

Height Specify the height of the window.

Figure 4.1 — ST-Viewer Automation Driver window
STEP TOOLS, INC.

 4 EXAMPLES
Left pane Specify the width of the left (identification) pane in the model win-
dow.

Shortcuts Select a window shortcut command. The available commands are:
None, Minimize, Maximize, Restore. When None is selected, the win-
dow position and size values are used. The other commands ignore
these values.

Main Invoke the SetMainWindowPosition method.

Model Invoke the SetWindowPosition method.

X-Angle Specify the number of degrees to rotate the left thumbwheel.

Y-Angle Specify the number of degrees to rotate the bottom thumbwheel.

Dolly Specify the number of degrees to rotate the right thumbwheel.

Zoom Specify the fZoom argument value in the Zoom method.

Apply Invoke the RotateThumbWheel and Zoom methods.

Reset Set all default values.

The controls in the Events area display the last events received from the viewer via
the ISTviewEvents interface. These controls do not accept user input. Under Display/
Select you will see the results of the OnObjectDisplay and OnObjectSelect events.

4.2.1 How the driver works

The driver is a dialog-based MFC application. It uses the ISTview interface to send
commands to ST-Viewer, and implements the ISTviewEvents interface to receive
events from ST-Viewer.

After the project was created with MFC AppWizard, ST-Viewer type library was
used to add a class wrapper for the ISTview interface. ClassWizard does this using
the AddClass button and then choosing From a type library on the menu. This class
wrapper is usually named after the corresponding COM interface, in this applica-
tion it is the ISTview C++ class. Then a member of this class was added to the main
window class (CVizdriverDlg) — CVizdriverDlg::m_iSTview. In addition, the follow-
ing code was added to the CVizdriverApp::InitInstance implementation:

if (!AfxOleInit()) {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 13

4 EXAMPLES

14
}

This code initializes Automation DLLs.

The communication between the driver and ST-Viewer is established in the
CVizdriverDlg::OnInitDialog method. The viewer is started and the new IDispatch
object is created by the call:

m_iSTview.CreateDispatch("STview.Document")

This new IDispatch object is an Automation object in ST-Viewer and it impements
the ISTview interface.

The next step is to establish return communication from the viewer to the driver via
the ISTviewEvents interface. First, the interface is described in vizdriver.odl file the
same way it is described in the stview.tlb type library:

[uuid(18533554-04A8-11D3-B137-00902717498E), version(1.0)]
library STview
{
 // Primary dispatch interface
 [uuid(18533554-04A8-11D3-B137-00902717498D)]
 interface ISTviewEvents : IUnknown
 {
 [id(1)] HRESULT OnObjectDisplay(long nID,
 long nInstance, short bDisplay);
 [id(2)] HRESULT OnObjectSelect(long nID,
 long nInstance, short bSelect);
 };
}

When this ODL file is compiled, the MIDL compiler generates two C++ source
files: guid.c and events.h; the former defines C++ constants with GUIDs taken from
the ODL file, the latter declares the ISTviewEvents C++ class.

Communication becomes possible by a mechanism known as connection points.
The CVizdriverDlg class is a connection point container and implements the ICon-
nectionPointContainer interface. The support for this interface is provided by in-
cluding an interface map and adding the appropriate interface part to it:

in vizdriverDlg.h:

DECLARE_INTERFACE_MAP()

BEGIN_INTERFACE_PART(Events, ISTviewEvents)
 STDMETHOD (OnObjectDisplay)(long nID, long nInst, short bDisp);
 STDMETHOD (OnObjectSelect) (long nID, long nInst, short bSelect);
END_INTERFACE_PART(Events)
STEP TOOLS, INC.

 4 EXAMPLES
in vizdriverDlg.cpp:

BEGIN_INTERFACE_MAP(CVizdriverDlg, CDialog)
 INTERFACE_PART(CVizdriverDlg, IID_ISTviewEvents, Events)
END_INTERFACE_MAP()

This code creates a nested class, CVizdriverDlg::XEvents that implements the IST-
viewEvents interface declared in events.h. A member variable XEvents m_xEvents
is added to CVizdriverDlg class. The XEvents class has two methods, OnObjectDis-
play and OnObjectSelect. These methods are called when ST-Viewer fires the cor-
responding events.

Finally, write the implementation of OnObjectDisplay and OnObjectSelect methods
(in addition to the three standard methods of IUnknown: AddRef, Release and Que-
ryInterface). These methods are located at lines 454-501 in vizdriverDlg.cpp.

The connection points are initialized in the CVizdriverDlg::OnInitDialog method:

[1] m_pEvents = m_iSTview.m_lpDispatch;

 ISTviewEvents* pEvents;
[2] HRESULT hr = m_xEvents.QueryInterface(IID_ISTviewEvents,
 (void**)&pEvents);
 ASSERT(SUCCEEDED(hr));
 m_xEvents.Release();

[3] if (!AfxConnectionAdvise(m_pEvents, IID_ISTviewEvents, pEvents,
 FALSE, &m_dwConnectID))
 MessageBox("AfxConnectionAdvise failed", "Error", MB_OK);

First, we get a pointer to the IDispatch interface in the viewer’s Automation object
[1]. This interface pointer identifies the source of the events. We get another inter-
face pointer by calling QueryInterface on m_xEvents with the GUID of the ISTview-
Events [2]. This interface pointer identifies the sink or destination for the events.

Finally, the connection is esablished between the source (m_pEvents, a pointer to
the ST-Viewer's IDispatch), and the sink (pEvents, a pointer to the driver's imple-
mentation of the ISTviewEvents interface) [3].

Once the bidirectional communication is set up, the driver operation is simple. Each
command handler (e.g. CVizdriverDlg::OnCommandsDisplayselectSelect() calls the
methods of ISTview class, which in turn invokes the interface methods in ST-View-
er. On the other end, when the viewer fires an event (that is it calls a method of IST-
viewEvents interface), the corresponding method of CVizdriverDlg::XEvents is
invoked.

When the driver's dialog box is closed, the OnCancel method calls CVizdriver::Dis-
connect, which calls AfxConnectionUnadvise to break the connection between the
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 15

4 EXAMPLES

16
source and the sink of the ISTviewEvents interface.

4.3 The Visual Basic example

The window and controls of Visual Basic automation driver are identical to that of
the Visual C++ driver.

4.3.1 How the driver works

The Visual Basic project for the driver consist of a single dialog form. The ST-
Viewer object variable is declared at the beginning of the file as:

Dim WithEvents STV As STview.Document

The WithEvents keyword specifies that the STV object variable can respond to
events by an ActiveX object (ST-Viewer automation object in this case).

For this to work, the project must reference the ST-Viewer type library (stview.tlb)
Use the Project | References command in the Visual Basic editor to reference this
library.

This variable is insantiated in the Form_Load procedure:

Set STV = New STview.Document

This insures that ST-Viewer starts and creates a new automation object as soon as
the driver's dialog gets displayed.

The rest of the code is very simple. Each control event procedure calls the corre-
sponding method of the STV object, for instance:

Private Sub cmdDisplaySelectSelect_Click()
 If chkDisplaySelectAll.Value = 1 Then
 STV.MakeAllSelected (txtDisplaySelectEntityID.Text), 1
 Else
 STV.MakeSelected (txtDisplaySelectEntityID.Text),
 (txtDisplaySelectInstance.Text), 1
 End If
End Sub

In addition to control event procedures, there are two event procedures for the STV
STEP TOOLS, INC.

 4 EXAMPLES
object, STV_OnObjectDisplay and STV_OnObjectSelect. These procedures are
called when the viewer fires the corresponding events (calls ISTviewEvents meth-
ods).

4.4 The Microsoft Excel (VBA)
example

The Microsoft Excel example is a template (.xlt) file. This template file contains a
single worksheet, Selected Objects. The first two columns are reserved for the se-
lected objects IDs and types. The ST-Viewer Automation toolbar visible on the fol-
lowing illustration is included in the template file.

The file also contains a set of macros written in Visual Basic for Applications
(VBA). These macros are organized into four modules within the template file.

Figure 4.2 — Microsoft Excel example window.
ST-VIEWER OLE AUTOMATION REFERENCE MANUAL 17

4 EXAMPLES

18
4.4.1 How the Macros Work

The ThisWorkbook module defines the ST-Viewer object variable, which is declared
at the beginning of the source code as:

Dim WithEvents STV As STview.Document

The WithEvents keyword specifies that the STV object variable can respond to
events by an ActiveX object (ST-Viewer automation object in this case).

For this to work, the project must reference the ST-Viewer type library (stview.tlb)
Use the Project | References command in the Visual Basic editor to reference this
library.

The STV variable is insantiated by the StartViewer procedure in the Viewer module:

Set ThisWorkbook.STV = New STview.Document

The StartViewer procedure is called when you click Start ST-Viewer on the ST-Viewer
Automation toolbar. To load a STEP file into the viewer, click Open STEP File. This
will call the LoadSTEPFile procedure in the Viewer module. This procedure in turns
calls the STV.LoadFile method.

When you select an object in ST-Viewer, the STEP ID of this object and its entity
type are added to the worksheet and drawn in red color as shown in Figure 4.2. If
the object loses selection, the text color returns to normal.

The Main (Selected Objects) module contains the macros that handle the rest of the
commands on the ST-Viewer Automation toolbar — SelectObject, RemoveSelection,
ResetSelection. These procedures call the MakeAllSelected method of the STV ob-
ject.

Finally, the ThisWorkbook module contains the event procedures that respond to
events in the viewer and in the workbook itself. The STV_OnObjectSelect procedure
implements the ISTviewEvents::OnObjectSelect interface method and is called by
ST-Viewer whenever the user changes the selection state of an object in the viewer.
The other two procedures respond to activation and deactivation of the workbook
by adding and removing the commands to control ST-Viewer from the Excel short-
cut menu.
STEP TOOLS, INC.

	Contents
	Introduction to OLE Automation
	1.1 Introduction
	1.2 What is Automation?

	The ISTview interface
	2.1 Methods

	The ISTviewEvents Interface
	3.1 Methods

	Examples
	4.1 Overview
	4.2 The Visual C++ example
	4.2.1 How the driver works

	4.3 The Visual Basic example
	4.3.1 How the driver works

	4.4 The Microsoft Excel (VBA) example
	4.4.1 How the Macros Work

