
R
ecent advances in commu-
nications technology make
it possible for manufactur-
ers to transmit data to
each other in fractions of a
second. However, if these
corporations do not use
the same software tools,

understanding of the data can be delayed for weeks
or months while employees purchase and learn to use
new tools. This article describes ongoing research
into an information infrastructure that seeks to use
standards (formal and de facto) to reduce the prob-
lems that occur when manufacturers want to use dif-
ferent tools to process each other’s data.

Communicating information between different
software tools is a problem common to many applica-
tion domains. For example, many researchers who
have collaborated on research projects are familiar
with arguments over which word processor to use for
a particular project. In manufacturing, the multifac-
eted nature of design information makes communi-
cations particularly difficult. A mechanical design
may contain geometric, tolerance, material, process
control, and many other kinds of information. An
information infrastructure is needed to allow manu-
facturing applications to communicate efficiently.
The infrastructure should allow engineers to use
familiar applications whenever possible. A successful
infrastructure will reduce the time to market for new

products while letting multiple organizations apply
their specialties to product development.

Manufacturing has a long history of reducing com-
munications problems through standards. Some of the
most significant advances in the industrial revolution
occurred when standards were established. For example,
drafting standards for drawings represented a significant
contribution in the 18th and early 19th centuries. In the
modern era, electronic communications are more
important every year. Standards are needed so manufac-
turers can communicate efficiently through the Internet.
The required standards are becoming increasingly com-
plex as the range of information the industry wants to
communicate becomes wider. Demand for these stan-
dards is increased by the desire to allow corporations to
communicate in virtual enterprises.

A Prototype Information Infrastructure
This article describes a prototype information infra-
structure for virtual manufacturing enterprises. This
infrastructure combines the Internet with the STan-
dard for the Exchange of Product Model Data
(STEP) for data exchange (see the first sidebar,
“Development of the STEP Standard”) and the Com-
mon Object Request Broker Architecture (CORBA)
standard for interoperation of application systems.1

46 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Sharing Manufacturing Information
in Virtual Enterprises 

Martin Hardwick,  David L .  Spooner,  Tom Rando,  and K.  C .  Morr is

Two manufacturers cannot collaborate if the systems in one cannot process the data in the other.

The prototype information infrastructure described here uses standards to let the applications 

of one manufacturer process the databases of another.

1 Microsoft OLE also defines a framework that allows applications to inter-
operate. CORBA is used here because, at the time of writing, OLE did not
allow applications to interoperate over wide-area networks and did not use a
general-purpose definition language to define its interfaces.



The prototype shows how applications described by
CORBA can be applied to data defined by STEP on
the Internet. The combination allows manufacturers
to share information about products over the Inter-
net while using their favorite tools to process the
information. To create the infrastructure, the data
definition language of CORBA, IDL, is combined
with the data definition language of STEP, EXPRESS.
These two languages have different purposes: IDL
describes interfaces to applications; EXPRESS
describes normalized data models. Both can be used
to describe objects for manufacturing applications.

The next section describes some barriers prevent-
ing communications between manufacturing organi-
zations; the section that follows describes an
information infrastructure for manufacturing; the
section after that describes unresolved issues; and the
concluding section summarizes the entire article.

Problem Definition and Related Work
The design and manufacture of new products fre-
quently requires the talents of many specialists. When
many corporations combine their specialties to create
a product, the result can be called a virtual enter-
prise. A virtual enterprise must be able to form quick-
ly in response to new opportunities and dissolve just
as quickly when the need ceases. From the informa-
tion management point of view, communicating
industrial information within a virtual enterprise
offers many challenges. Barriers hindering communi-
cations include:

• Insufficient security controls. The corporations
participating in a virtual enterprise are indepen-
dent and frequently compete against one another.

• Loss of control over projects. Techniques used to
control a project in one corporation do not gener-
alize well to multiple corporations because of each
corporation’s different operating practices.

• Inability of application systems to interoperate.
The data produced by the systems of one corpora-
tion cannot be read and processed by the systems
of other corporations. This problem is further sub-
divided into:

• Semantic interoperability. Two applications cannot
process each other’s data because they cannot
understand the internal organization of each oth-
er’s data.
— Code interoperability. Two applications cannot

make use of each other’s functionality because
they cannot invoke one another’s resources.

— Unfamiliar technologies and application sys-
tems. A corporation’s technologies and applica-
tion systems are often complex and require
extensive training to be used correctly.

Making communications more efficient requires
overcoming these barriers, which are being
addressed in several ways. For example, the comput-

er and communications industries are developing
secure and trusted communications protocols [4]
and the security community is developing access con-
trols [2]. Preventing the loss of control requires
sophisticated workflow control systems [9] and engi-
neering-change control systems [5], as well as experi-
ence. The need for training in the use of
technologies is reduced by the information infra-
structure described in this article, which focuses on

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 47

Development of the
STEP Standard

T he designers of STEP had to produce an extensi-

ble specification for product data for use by all

countries of the world. The specification had to

describe data used by many different kinds of applica-

tions in many different contexts, leading to the definition

of normalized object models, called information models. 

STEP uses the EXPRESS data definition language to

define its information models; this language was defined

by the STEP community. Many other languages were tried

before EXPRESS was developed, but it was found that

these languages were not well suited for use by mechani-

cal engineers and were unable to create models of the

complexity required for STEP. EXPRESS has a range of rich

data structures, including an advanced form of inheri-

tance. The STEP normalization process requires that a

data structure be used to represent an integrity con-

straint whenever possible. If a data structure is not avail-

able for this purpose, the modelers describe the

constraint using a procedural language that is also part of

EXPRESS. Like any language, EXPRESS has weaknesses, but

it is more powerful than most other popular data-defini-

tion languages.

STEP information models are developed through a

four-stage process that should be familiar to most data-

base designers:

• In the first stage, the scope of the model is defined.

The result is called an Application Activity Model (AAM). 

• The second stage defines the information require-

ments of the processes identified by the AAM. The

result is called an ARM. 

• The third stage maps the ARM into the normalized

STEP database. The result is called an AIM. In this

stage, each ARM entity is mapped to an equivalent set

of AIM entities. Mapping the ARM to the AIM may

require new entity definitions to be added to the AIM

if information of the required kind has not previously

been modeled in STEP. 

• The fourth, and final, stage develops tests for the

new information model to verify that instances of the

AIM model meet all constraints described by that

model. The AIM is the standard. The other models

assist users and developers in understanding and

deploying that standard.



interoperation of application systems. 
Technology used to communicate data must be

cost-effective, flexible, and portable. As a result, stan-
dards (formal and de facto) play an important role in
developing these technologies. The information infra-
structure described here depends on three standards:

• The World-Wide Web, which encapsulates commu-
nications protocols to organize and access data
across the Internet [11]. 

• The STEP standards for exchange of product
model data, which allow the semantics of manufac-
turing information to be understood by multiple
applications [6]. 

• CORBA, which allows applications to use one
another’s resources by supporting message calls
between objects through a network [1].

Figure 1 shows an abstract view of an information
infrastructure for virtual industrial enterprises. Con-
nected through this communication mechanism are a
number of servers, repositories, and browsers. Some or
all of these components are duplicated at each corpo-
ration in a virtual enterprise. The specific collection of
servers for a particular corporation depends on the
goals of that corporation. (See the second sidebar,
“Using the Information Infrastructure,” for an exam-
ple of how the infrastructure is applied in practice.)

48 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Web
Client

Web
Server

Database
Server

STEP
Data

Application
Server

Application
Server

COBRA over Internet

http

Figure 1.
Architec-
ture for the
information
infrastruc-
ture

Figure 2.
Some STEP
definitions
used in the
database

ENTITY product
id : identifier;
name : label;
description : text;
frame_of_reference : SET [1:?] OF product_context;

END_ENTITY

-- Product is the EXPRESS entity used in AP203 to describe a product [ISO94c].  This entity is an entry
point into databases described by AP203.  All of the entities that describe a product (including its geometry)
may be found from this entity, but the navigation can be complex because the pointers in a STEP model
describe constraints so they are sometimes arranged in the wrong direction for navigation.

                                              Figure 2a.  A Product Entity in EXPRESS

ENTITY composite_curve
SUBTYPE OF (bounded_curve);
segments : LIST [1:?] OF composite_curve_segment;
self_intersect : LOGICAL;

DERIVE
n_segments : INTEGER := SIZEOF(segments);

     closed_curve   : LOGICAL := segments[n_segments].transition <> discontinuous;
WHERE

WR1: ((NOT closed_curve) AND (SIZEOF (QUERY (temp <* segments |
temp.transition = discountinuous)) = 1)) OR
((closed_curve)AND (SIZEOF (QUERY(temp <* segments |
temp.transition = discountinuous)) = 0));

END_ENTITY; -- composite_curve

-- An entity describing a geometry data type.  This entity uses many of the features of EXPRESS including
the use of derived attributes (keywork: DERIVE) to describe attribute values that can be computed from the
necessary set of attrubutes, and the use of local constraints (keyword:  WHERE) to describe rules that cannot
be encapsulated using data structures.

                                            Figure 2b.  A Composite Curve in EXPRESS



Implementation
An information infrastructure for virtual industrial
enterprises should have the following qualities:

• Performance. The data needed for an operation
should be delivered in a single communication,
because every additional communication causes
additional delay.

• Concurrency. The data delivered should contain
only necessary information, because delivering
(and locking) unnecessary information prevents
others from working concurrently on the database.

• Comprehension. The systems that receive the data
should be able to process that data.

Systems can process data only when they understand
the internal organization of the data. The complexity
of manufacturing data is a key issue in manufacturing
applications [10]. A small administrative database for
a university may be defined using as few as 20 rela-

tions. Databases for product information seem to start
at the equivalent of 300 relations and grow larger as
the product being modeled becomes more complex.
The number of definitions needed for manufacturing
applications is also a significant cost concern. If an
application contains 300 definitions and requires 100
lines of code on average for each definition, the appli-
cation contains 30,000 lines of definition code. Manu-
facturing applications are difficult to write and
maintain because of this abundance of code.

The STEP standard is designed to allow different
manufacturing applications to share product data.
The STEP designers created normalized object mod-
els, called “information models,” for manufacturing
applications. These models are written in an object-
oriented data-specification language called EXPRESS
[7, 12]. The models are normalized for the same rea-
sons relational databases are normalized—to make
the data more accurate and to make it easier for mul-
tiple applications to share the data [3]. Normalizing

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 49

Using the Information Infrastructure

S uppose that a vehicle manufacturer forms a virtual

enterprise with one or more smaller supplier com-

panies to produce a customized version of one of

its vehicles. We concentrate on the vehicle manufacturer and

a supplier that provides a customized door for the vehicle.

The figure below describes how the door supplier can access

and display a geometric shape stored in a database belong-

ing to the vehicle manufacturer using four steps:

• The user uses a World-Wide Web browser to navigate to

a page containing data of interest and selects an icon for

a geometric shape.

• The web server communicates with the database serv-

er, and the user is asked if he or she wants to check this

object out of the database server.

• The checkout is validated, and an identifier for the

shape is sent to an application server, or shape server.

• The application server requests the data needed to ser-

vice the request from the database server and processes

the request by displaying the shape.

Web
Client

Web
Server

Database
Server

Vehicle
Data

Shape
Server

Assembly
Server

CORBA  over   Internet

http

1 2

Tools at
supplier site

Tools at
contractor site

1. User navigates to a page containing data of interest using a World 
     Wide Web browser and selects an icon for a geometric shape.

2. The Web server communicates with the database server and the user is
     asked if he wants to check this object out of the Database Server.

3.  The checkout is validated and an identifier for the shape is sent to an 
     Application Server (Shape Server).

4.  The Application Server requests the data needed to service the request
     from the Database Server and processes the request by displaying the shape. 

3 4



the object models in STEP is necessary but expen-
sive—necessary because manufacturing data needs to
be shared by as many applications as possible, and
expensive because normalization often makes a
model harder to process (see Figure 2a). 

As an experiment, we created a STEP database for
an axle of the Humvee all-terrain vehicle. The data-
base was created by translating a Pro/Engineer CAD
system model of the axle to STEP. The information
model for the database contains 500 data definitions.2

A file containing the database for the axle contains
two megabytes of data, stored as 80,000 instances. If
this experiment is scaled up to create a complete
database for a motor vehicle, we postulate that the
database will be 1,000 times larger. Note that this
database covers only the mechanical assembly data
for a Humvee vehicle. When STEP expands to

include other kinds of data, the number of defini-
tions in the database and the number of data
instances increase further.3

The information infrastructure requires applica-
tions to process information defined by STEP. On
one level, this can be achieved by translating infor-
mation described by EXPRESS into the IDL language
of CORBA. (See the third sidebar, “Relationship
Between the STEP and OMG Standards.) On anoth-
er level, an application system must be able to process
the information described by the STEP model. For
example, a CAD system must find the data in a STEP
database needed to display a shape. The following
IDL specification defines an operation a CAD system
might offer to other systems that want to display geo-
metric shapes.

interface CAD {
BOOL display (in shape S);
};

When an application requests this operation, the sys-
tem that displays the shape must find all the details
about the shape. This can be difficult because the
information required may be linked to other infor-
mation through a variety of relationships in the data-
base. For example, each instance of the product in
Figure 2a may contain product versions defined by
product definitions using shapes [8]. The infrastruc-
ture needs to find this information and send it to the
server in a form that can be processed efficiently. 

Figure 3 describes the architecture we used to
build an application server. The top half of the figure
shows the process used to define the interfaces of the
server. The bottom half shows how an instance of an
application server responds to client requests by pro-
cessing a combination of STEP and CORBA data.

The top half of Figure 3 shows two EXPRESS models:

• The first, called the Application Interpreted Model
(AIM), is defined by STEP and describes the full
STEP database. 

• The second, called the Application Reference
Model (ARM), is also defined by STEP, but for
information purposes only. This model describes
the objects in the AIM that can be processed by
the application servers. When a client requests an
operation on one of these objects (using CORBA),
the application server receives the request and
processes it by reading the details of the object as
described by the AIM. The details are delivered to
the application server by a database server.4 The

50 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Relationship Between 
the STEP and OMG
Standards

The STEP standard and the OMG standards have

been developed by two nearly disjointed stan-

dards communities. Yet the integration of the two

standards promises to satisfy urgent needs in the industrial

sector, as well as to enhance the two standards communi-

ties. STEP gains a new implementation method in the form

of distributed objects, and OMG gains a facility that serves

the broad (and expanding) domain of product information.

The current approach to integration entails three efforts: 

• Mapping EXPRESS to IDL;

• Mapping STEP services to the object services of OMG;

and 

• Consolidating the EXPRESS and IDL language

bindings.

The goal of consolidation is to provide compile-time

portability between the C++ language bindings of

EXPRESS and of IDL. The idea is that a mapping from

EXPRESS to IDL specifies the mapping of EXPRESS con-

structs common to all language bindings (e.g., primitive

types, application entities, collection types). This mapping

forms the basis for a number of programming language

bindings (via IDL) to STEP. However, these bindings do not

support the complete range of EXPRESS semantics; the

remaining semantics may be implemented in application

code by subtyping from constructs in the IDL bindings.

The end result is that IDL-binding applications can be

compiled into STEP-binding implementations and that

STEP-binding applications can be supported by imple-

mentations whose base functionality is provided by an

IDL implementation.

2 The information model, known as AP203 [8], defines information for
three-dimensional configuration-controlled design.

3 As this issue went to press, more than 30 models were in the process of
being defined by STEP. They range from the relatively general model
described by AP203 to more specific models for sheet metal die design
(AP207) and printed circuit board design (AP210).

4 The delivery protocol conforms to the specifications described by the OMG
persistent object service [1].



delivery is shown by the large arrow on the left
side of Figure 3. The CORBA request from the
client to the server is shown by the large arrow on
the right side of Figure 3.

Suppose a client requests an operation on
an object. This object may have been found
by searching a World-Wide Web page, by
querying a relational database, or as a result
of another computation. An application
server that can service the request is
invoked by CORBA5 and given a reference
to the object. This reference contains
pointers into the AIM data. The adaptor in
the server requests delivery of the detailed
data addressed by these pointers from the
database server; the details are processed
using the STEP input/output (I/O)
library; and the operation is executed using
the application code of the CAD system.

An EXPRESS compiler automates three
functions for the application server:

• It generates code from the AIM model.
This code is used by the application serv-
er to define the STEP I/O library that
reads and traverses the data delivered by
the database server. 

• The EXPRESS compiler generates code
from the ARM model to define an
Object Adaptor6 for the application serv-
er. This adaptor lets the application serv-
er receive client requests for the range
of objects defined by the relevant por-
tion of the ARM model. 

• It generates IDL from the ARM model so

that a client can request operations from the serv-
er. This IDL is the third model shown in the top
half of Figure 3. Only the portion of the IDL that
defines data structures, such as shape, is generated
by the EXPRESS compiler. 

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 51

Figure 4. Code fragments that illus-
trate the operation of EXPRESS-V

Figure 3. Defining
an application server
for the Infrastructure

VIEW shape
FROM (shape_definition_representation AS aim_s)
WHEN TRUE;

        off_shape  := aim_s;

        WHEN  ('PRODUCT_DEFINITION'  IN
             TYPEOF  (aim_s.definition.definition);

        BEGIN
                               with_product_definition := aim_s.definition;
        END;

        user_name  := off_shape.definition.name;

        - - Expressions to calculate properties and relationships not shown

END_VIEW:

               Figure 4a.  Partial EXPRESS-V mapping for an ARM Object.

ENTITY shape
        off_shape  :  shape_definition_representation; - - pointers to AIM
        with_product_definition  :  property_definition;

        user_name  :  STRING;             - - user level properties
        key  :   STRING;

        describe  :  LIST OF assembly; - - relationships to other ARM objects
        shape_in  :  LIST OF part;

END_ENTITY;

               Figure 4b.  Partial EXPRESS Definition for an ARM Object.

interface shape {
        attribute shape_definition_representation off_shape;
        attribute property_definition with_product_definition;

        attribute string user_name;
        attribute string key;

        attribute sequence<assembly> describes;
        attribute sequence<part> shape_in;

};

               Figure 4c.  Partical IDL Description for an ARM Object.

EXPRESS
AIM Model

EXPRESS
ARM Model

Client
IDL

STEP
I/O Library

STEP
Object

Adaptor

CAD
System

1 2Define
Library

Define
Adaptor

COBRA
Requests

Application Server

STEP
data

Client

Define

Interface
3

5 If multiple application servers service the request, one is
selected through protocols defined by CORBA [1].

6 In CORBA, an Object Adaptor makes resources in an appli-
cation available to external systems via IDL.



The methods that can be applied to a data structure
are added to the IDL by programmers and database
administrators. Any method can be added to the
IDL—provided an application server contains code
to process the method. For example, a server that
contains a CAD system can display a shape.

The model used to define the IDL interfaces for
the application server can be any EXPRESS model.
We used the ARM defined by STEP, because a large
number of applications can process the objects
described by the model. However, any model can be

used—provided the rela-
tionship between the AIM
model and the ARM model
is defined by a database
administrator. For exam-
ple, one application may
have a view of the product

database that refines that database into collections of
shapes organized into assemblies—the view we
used—while another application may refine the data-
base into a view that recognizes only parts manufac-
tured through a casting process.

The relationship between the AIM model and the
ARM model is defined by a database administrator
using a language called EXPRESS-V [13]. This lan-
guage maps data instances between different
EXPRESS models. Figure 4 shows code fragments to
illustrate the operation of EXPRESS-V. Figure 4a
shows an EXPRESS-V mapping that creates a shape
object; Figure 4b shows the EXPRESS definition for
the shape object, and Figure 4c shows the IDL
description for the same shape object generated from
the EXPRESS code by the EXPRESS compiler. 

The EXPRESS-V code in Figure 4a shows how an
instance of a shape object is created whenever a

shape_definition_representation7 entity is
found in an AIM database. The instance con-
tains the attributes shown in Figure 4b. The
exact content depends on a number of con-
ditions formulated in the EXPRESS-V code.
(Only a fragment of the code is shown.) The
contents are divided into three types of data,
each created from the AIM data for the ARM
data by the EXPRESS-V code:

• A series of pointers into the AIM. The
AIM pointers address the underlying data
that defines the ARM object. These point-
ers make it easier for a process to traverse
that AIM data because they address all
content directly.

• A series of STRING attributes. These
attributes describe “user properties” that
can be inserted into indexes and catalogs,
such as World-Wide Web browsers and
relational databases, to make the ARM
objects easier to locate. 

• A series of relationship pointers. These
pointers address other ARM objects relat-
ed to an ARM object because of underly-
ing relationships in the AIM. For
example, if a shape is used to define a
version of a product, this product is
addressed by the shape_in relationship.
These relationships are useful when the
database is being traversed.

The infrastructure shown in the figures
was tested using the Humvee axle example
already described. In the experiment, a
STEP database was built for the axle using
STEP data translated from the Pro/Engi-
neer CAD system. The original data con-

52 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Figure 4. Code frag-
ments that illustrate
the operation of
EXPRESS-V

7 See ISO 10303-203 [7] for a definition of the shape_defini-
tion_representation entity.

VIEW shape
FROM (shape_definition_representation AS aim_s)
WHEN TRUE;

        off_shape  := aim_s;

        WHEN  ('PRODUCT_DEFINITION'  IN
             TYPEOF  (aim_s.definition.definition);

        BEGIN
                               with_product_definition := aim_s.definition;
        END;

        user_name  := off_shape.definition.name;

        - - Expressions to calculate properties and relationships not shown

END_VIEW:

               Figure 4a.  Partial EXPRESS-V mapping for an ARM Object.

ENTITY shape
        off_shape  :  shape_definition_representation; - - pointers to AIM
        with_product_definition  :  property_definition;

        user_name  :  STRING;             - - user level properties
        key  :   STRING;

        describe  :  LIST OF assembly; - - relationships to other ARM objects
        shape_in  :  LIST OF part;

END_ENTITY;

               Figure 4b.  Partial EXPRESS Definition for an ARM Object.

interface shape {
        attribute shape_definition_representation off_shape;
        attribute property_definition with_product_definition;

        attribute string user_name;
        attribute string key;

        attribute sequence<assembly> describes;
        attribute sequence<part> shape_in;

};

               Figure 4c.  Partical IDL Description for an ARM Object.



tained 92,000 STEP AIM entity instances resolved
into 84 ARM object instances by an EXPRESS-V
process. Two application servers were implement-
ed—one displayed STEP shapes, and the other dis-
played STEP shapes and assemblies. The first server
contained the AutoCAD CAD system, and the other
server contained the Pro/Engineer CAD system.
World-Wide Web pages were built so that users could
request operations on the ARM objects from any
workstation on the Internet. 

Open Issues
The architecture shows promise, but many issues
need further investigation. For example:

• Performance. The architecture partitions a data-
base into ARM objects describing views of the AIM
database. Our prototype supports materialized
views in which the AIM instances belonging to an
ARM instance are computed before a transaction is
executed. However, depending on the view, some
operations may require delivery of several ARM
objects to a client while others require only one
object. For example, an assembly operation might
require all shapes in that assembly to be delivered
to its process, while an operation that displays a
shape requires only that shape. In the prototype,
both applications cannot be supported efficiently if
the goal is to minimize the number of transmis-
sions to a client without sending unnecessary data.

• Concurrency. The architecture lets multiple users
change a database concurrently. Concurrency
implies that different users may give different values
to the same data instances in a database. Contradic-
tory changes can be prevented through concurren-
cy control or allowed through version control.
Version control is interesting because of potential
overlaps in the changed data. For example, one
user may change the scope of an authorization
while another user changes the definition that has
been authorized. When the two units are integrated
back into the database, conflicts between these
actions must be detected and resolved [5]. 

• Comprehension. Restricted views of product data
are easier to understand, but larger application
bases exist for more general-purpose views. For
example, many CAD applications can display three-
dimensional shapes, but relatively few applications
can process information about near net castings.

These issues suggest that a more sophisticated data-
base server is needed to support multiple, dynamic
views. The demonstration used a simple database
server that divided all of the data in a database into a
set of files—one file per ARM object. 

Figure 5 shows an early version of a database serv-
er we are implementing to support multiple views. In
this architecture, the “enter” component is used to
divide data produced by a CAD system into modules

with keys (see Figure 4). After
division, the enter component
gives the modules to the storage-
control module for storage in a
repository. The storage-control
part of the server is similar to the
original database server, except the new part is
responsible for replacing old versions of modules
with new versions and integrating the new versions
into the repository. This integration requires exten-
sions to EXPRESS-V, so the differences between the
old and new versions can be identified and resolved.

The “view” component in the new database server
is used to support multiple dynamic views. This com-
ponent loads data from the storage view repository as
necessary and computes the view needed by a client.
The data in a view is then transmitted to the client.
An extension designed for EXPRESS-V allows the
data limits of each view to be computed at run time
using a program designed by a database administra-
tor. This program describes which AIM instances are
to be included with an ARM object and which AIM
instances are to be excluded [13]. For example, if a
user selects an assembly object, all of the AIM
instances in all of the shapes in that assembly are
included in the transmission by writing lines of code
to include those AIM instances with the ARM object.

Some views are materialized by the “index” and
“catalog” components, because these components
put information about the ARM objects in the views
onto Web pages and into relational databases. When
a user selects an ARM object using a Web page or a
relational database query, the modules in the storage
view repository containing the information needed
by the object are loaded into the view component,
the appropriate data limit program is executed, and
the data needed to support the object is delivered to
the application server.

Conclusions
If we compare the corporations in a virtual enter-
prise to an orchestra, CORBA defines the instru-

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 53

Figure 5.
Multiview data-
base server

Assemblies

Parts

Persons

Shapes

Versions

Authorizations

Storage
Control

New STEP
Data

Web
Pages

Application
Server

Database
Systems

Enter Index View Catalog

CORBA

Storage View Repository



ments for the orchestra and STEP defines the music.
CORBA is necessary because we need to know which
instruments are available. STEP is necessary because
we want the orchestra to play together. By integrat-
ing STEP and CORBA, we let a database administra-
tor decide which instruments are to be played for
each tune.

Integration of STEP and CORBA must be per-
formed on two levels:

• The languages of the two standards—EXPRESS
and IDL—must be integrated so that IDL objects
can process STEP data. 

• The “points” of integration must be identified. 

A typical STEP file contains many megabytes of data
and hundreds of thousands of data instances. Groups
of these instances define “themes” that can be played
by the orchestra’s IDL instruments. We have
described how these themes can be identified using a
view definition language called EXPRESS-V.

Many more issues can be investigated to make vir-
tual enterprises communicate industrial information
more efficiently. For example, the technologies need-
ed to define a conductor for the orchestra are dis-
cussed in the section “Problem Definition and
Related Work” but are missing from our architecture.
Other issues that can be investigated include the
management of very large databases, version control,
conflict resolution, and increasing the use of higher-
level semantics.

The project described in this article made the
communication of industrial information within vir-
tual enterprises more efficient by combining STEP
and CORBA. Our contribution has been to apply a
traditional technology—database views—to a new
domain and use it to show how an information infra-
structure for industrial applications can be construct-
ed. In the article’s context, the lesson learned from
STEP is that more complicated databases can be
shared if a richer language is used to describe these
databases. The lesson learned from CORBA is that
distributed applications can interoperate on a net-
work if they define their resources using a neutral
language. The lesson learned from the World-Wide
Web is the power of using a standard data format to
describe information. The lesson learned from our
project is that views allow general-purpose manufac-
turing information to be shared by many different
kinds of specialists.

Acknowledgments
This work has been partially funded by the Nation-
al Science Foundation, Grants IRI-9224783 and
ECS-9422713, and by the National Industrial Infor-
mation Infrastructure Protocols Consortium, Unit-
ed States Air Force, Agreement F33615-94-2-4447.
Any opinions expressed or implied are those of the
authors.

References
1. The Common Object Request Broker: Architecture and Speci-

fication (CORBA) Revision 1.2. OMG TC Doc. 93.12.43, Object
Management Group, Framingham, Mass., Dec. 1993. (Avail-
able by anonymous ftp from ftp.omg.org.)

2. Department of Defense Trusted Computer System Evaluation
Criteria. DoD Document 5200-28-STD, U.S. Department of
Defense, 1985.

3. Elmasri, R. and Navathe, S. Fundamentals of Database Systems, 2d
ed., Benjamins/Cummings, Redwood City, Calif., 1994.

4. Ganesan, R., and Sandhu, R. Securing cyberspace, Commun.
ACM 37, 11 (Nov. 1994), 29–31.

5. Hardwick, M., Downie, B., Kutcher, M., and Spooner, D. Con-
current engineering with delta files. IEEE Computer Graphics and
Applications 15, 5 (Jan. 1995), 62–68.

6. Industrial Automation Systems—Product Data Representation
and Exchange—Part 1, Overview and Fundamental Principles,
ISO 10303-1. International Organization for Standardization,
Geneva, Switzerland, 1994.

7. Industrial Automation Systems—Product Data Representation
and Exchange—Part 11, Description Methods: The EXPRESS
Language Reference Manual, ISO 10303-11. International
Organization for Standardization, Geneva, Switzerland, 1994.

8. Industrial Automation Systems—Product Data Representation
and Exchange—Part 203, Application Protocol: Configuration
Controlled Design, ISO 10303-203. International Organization
for Standardization, Geneva, Switzerland, 1994.

9. McCusker, T. Workflow takes on the enterprise. Datamation 39
(Dec. 1993), 88.

10. Morris, K.C., Mitchell, M., Dabrowski, C. and Fong, D. Database
management systems in engineering. In The Encyclopedia of Soft-
ware Engineering. Wiley, New York, 1994, pp. 282–308.

11. Obraczka, K., Danzig, P. B., and Li, S.-H. Internet resource dis-
covery services. IEEE Computer, 26, 9 (Sept. 1993), 8–22.

12. Schenck, D.A. and Wilson, P.R. Information Modeling the
EXPRESS Way. Oxford University Press, Oxford, England, 1994.

13. Spooner, D., Hardwick, M., and Wen, J. The EXPRESS-V lan-
guage manual. Tech. Rep., Laboratory for Industrial Informa-
tion Infrastructure, Rensselaer Polytechnic Institute, Troy, NY,
1995 (http://www.rdrc.rpi.edu).

About the Authors
MARTIN HARDWICK is a professor in the Computer Science
Department and principal investigator in the Laboratory for Indus-
trial Information Infrastructure at Rensselaer Polytechnic Institute.
Author’s Present Address: Laboratory for Industrial Information
Infrastructure, Rensselaer Polytechnic Institute, Troy, NY 122180-
3590; email: hardwick@rdrc.rpi.edu

DAVID L. SPOONER is a professor in the Computer Science
Department and principal investigator in the Laboratory for Indus-
trial Information Infrastructure at Rensselaer Polytechnic Institute.
Author’s Present Address: Laboratory for Industrial Information
Infrastructure, Rensselaer Polytechnic Institute, Troy, NY 122180-
3590; email: spooner@cs.rpi.edu

TOM RANDO is a principal engineer in General Dynamics’ Electric
Boat Division. Author’s Present Address: General Dynamics, Electric
Boat Division, 76 Eastern Point Road, Groton, CT 06340-4948.

K.C. MORRIS is a computer scientist at the National Institute of
Standards and Technology. Author’s Present Address: National
Institute of Standards and Technology, Building 220, Room A127,
Gaithersburg, MD 20899--0001.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0200 $3.50

54 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM


