
STEP Tools Software

ST-Developer
for Java Reference

Manual

 ®

Contributors

Written by Joe Fritz.

 Copyright 1991-2007 STEP Tools, Inc. — All Rights Reserved.

This document contains proprietary and confidential information of STEP Tools, Inc. The contents of this
document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without
the prior written permission of STEP Tools, Inc.

ST-Developer, ST-Machine, ST-Viewer, and the ST prefix are trademarks of STEP Tools, Inc. STEP Tools
is a registered trademark of STEP Tools, Inc. Other brand or product names are the trademarks or registered
trademarks of their respective holders.

STEP Tools, Inc.
14 First Street
Troy, New York 12180

Phone (518) 687-2848
Fax (518) 687-4420
E-Mail info@steptools.com
Web. http://www.steptools.com

Contents
Contents . iii

1 — Getting Started . 1
1.1 Overview . 1
1.2 A Simple Example . 2
1.3 Pre-installed Application Protocols . 3

2 — Reading, Writing, and Traversing Data . 5
2.1 Overview . 5
2.2 Models and Populations . 5
2.3 Managing Entity Instances . 6
2.4 Accessing Entity Instances by Type . 7
2.5 Reading Part 21 Files . 8
2.6 Writing Part 21 Files . 8
2.7 Entity Instance Identifiers . 9
2.8 STEP Header . 10

3 — From EXPRESS to Java Classes . 11
3.1 Overview . 11
3.2 Command Line . 12
3.3 Namespaces . 12
3.4 Primitive Types . 13
3.5 EXPRESS Schemas . 13

3.5.1 Population . 14
3.5.2 Schema . 15

3.6 Entity Types . 15
3.6.1 Single Inheritance . 16
3.6.2 Multiple Inheritance . 17
3.6.3 Complex Instances . 19
3.6.4 Views . 20
ST-DEVELOPER FOR JAVA REFERENCE MANUAL III

 CONTENTS

IV
3.7 Enumeration Types . 20
3.8 Select Types . 21

3.8.1 Creating Select Instances . 22
3.8.2 Selection Naming Conventions . 23
3.8.3 Nested Selects . 23

3.9 Aggregation Types . 26
STEP TOOLS, INC.

1 Getting Started
1.1 Overview

The ST-Developer for Java programming environment consists of a EXPRESS
compiler that can generate Java classes (express2java), and a set of foundation
classes (stdev.jar) that provide services such as reading and writing instances to
STEP Part 21 exchange files.

You can build a Java application around any EXPRESS information model. The
express2java compiler generates pure Java classes for every definition in the model,
which you can then use to create and manipulate data sets. We include pre-gener-
ated classes for all STEP Application Protocols (ap203.jar, ap214.jar, etc), and other
common models (IFC, CIS/2), so you may not even need the compiler to get started!

All of the classes that we generate or provide are pure Java, so they will work on
any platform with a JVM. Just drop the jar files into your class path and go!

Below are some simple examples and following chapters describe the interface in
more detail. Reading, Writing, and Traversing Data (Chapter 2, pp. 5) describes how
instance data is grouped in memory and how to control the reading and writing of
files. From EXPRESS to Java Classes (Chapter 3, pp. 11) describes how EXPRESS
constructs are represented in the generated Java classes, how to get and set values,
and other operations on the instance data.
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 1

1 GETTING STARTED

2

1.2 A Simple Example

This is a Java version of the “tutorial1” demo included with the ST-Developer C++
API. This creates a small data set based on a simple “picture” schema with points
and lines.

import java.io.IOException;

import com.steptools.stdev.*;
import com.steptools.stdev.p21.Part21Writer;
import com.steptools.schemas.picture.*;

public class tutorial1 {
 public static void main (String[] args) throws IOException {

 Model mod = new Model(Schema.SCHEMA);
 Population pop = (Population)mod.getPopulation();

 /* Create a point using the default constructor
 * and use the update methods to set its values. */
 Point point1 = pop.newPoint();
 point1.setX(1.0);
 point1.setY(0.0);

 Point point2 = pop.newPoint ();
 point2.setX(2.5);
 point2.setY(4.0);

 Point point3 = pop.newPoint ();
 point3.setX(5.0);
 point3.setY(0.0);

 /* Create a Line Object */
 Line line = pop.newLine();
 line.setEnda(point1);
 line.setEndb(point2);

 /* Create a Circle with Center (0,0), radius 1.5 */
 Point point4 = pop.newPoint();
 point4.setX(0.0);
 point4.setY(0.0);

 Circle circle1 = pop.newCircle ();
 circle1.setRadius(1.5);
 circle1.setCenter(point4);

 /* Create a Text Object centered at point3 */
 Text text = pop.newText ();
 text.setLabel ("A Little Picture");
 text.setCenter(point3);
STEP TOOLS, INC.

 1 GETTING STARTED

 /* Create another Circle Object */
 Circle circle2 = pop.newCircle();
 circle2.setRadius(1.5);
 circle2.setCenter(point2);

 Part21Writer writer = new Part21Writer();
 writer.write("tutorial1.stp", mod);
 }
}

To compile, you will need the location of the stdev.jar file. All jar files provided
with ST-Developer are located in the installation “lib/java” directory. The ROSE
environment variable is normally set to the ST-Developer installation directory, so
we can use $ROSE/lib/java or %ROSE%\lib\java when setting our class path.

Our sample EXPRESS schema is in picture.exp. Call the EXPRESS compiler to
generate the Java source files. The *.java source files will be put in the java_classes
subdirectory:

> express2java picture.exp

Next we will compile the source files with the Java compiler to create *.class files.
Create a directory called obj to hold the output. Note that the source files are under
a special namespace for the “picture” schema.

> mkdir java_objs
> javac -classpath "%ROSE%"\lib\java\stdev.jar -d java_objs \
 tutorial1.java \
 java_classes\com\steptools\schemas\picture*.java

Run the application. We need to set the class path to find both the ST-Developer
base classes (stdev.jar) and the classes for our schema.

> java -classpath "%ROSE%"\lib\java\stdev.jar;java_objs tutorial1

The demos directory includes two sample applications that demonstrate how to use
the interface. See the README.txt for tutorial1 for instructions on how to compile
and run that sample application

1.3 Pre-installed Application
Protocols

In the previous example, we generated the Java classes for our own example sche-
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 3

1 GETTING STARTED

4

ma, but when you build your applications, you are more likely to work against one
of the STEP application protocols, like AP203 or AP214. ST-Developer ships with
pre-built Java libraries for the common APs and other models like CIS/2 and IFC.

You can start programming immediately, just by adding the appropriate library to
your classpath, such as ap203lib.jar, ap214lib.jar, or others. The ST-Developer on-
line documentation has the complete list of APs available as well as class listings,
browsable EXPRESS definitions, recommended practices and more.

ap201lib.jar com.steptools.schemas.explicit_draughting
ap202lib.jar com.steptools.schemas.associative_draughting
ap203lib.jar com.steptools.schemas.config_control_design
ap209lib.jar com.steptools.schemas.structural_analysis_design
ap214lib.jar com.steptools.schemas.automotive_design
ap215lib.jar com.steptools.schemas.ship_arrangement_schema
ap216lib.jar com.steptools.schemas.ship_moulded_form_schema
ap218lib.jar com.steptools.schemas.ship_structures_schema
ap224lib.jar com.steptools.schemas.feature_based_process_planning
ap225lib.jar com.steptools.schemas.building_design_schema
ap227lib.jar com.steptools.schemas.plant_spatial_configuration
ap232lib.jar com.steptools.schemas.technical_data_packaging
ap238lib.jar com.steptools.schemas.integrated_cnc_schema
cislib.jar com.steptools.schemas.structural_frame_schema
ifclib.jar com.steptools.schemas.ifc2x2_final
STEP TOOLS, INC.

2 Reading, Writing, and
Traversing Data
2.1 Overview

The ST-Developer for Java library includes foundation classes that provide data
management and serve as the base which is extended by the EXPRESS compiler.
These classes provide the high-level data management, store metadata for the EX-
PRESS schema, and implement a late-bound API to the STEP data.

Unless otherwise indicated, all classes and interfaces are declared in the com.step-
tools.stdev namespace. Definitions in the schema namespace are generated by the
EXPRESS compiler under com.steptools.schemas.<schname>, where schname is
the name of the schema.

2.2 Models and Populations

STEP instances are organized into model and populations. A model coresponds to
an entire a STEP Part 21 file, and a population corresponds to the HEADER or DATA
section within the file. Most models will contain a header and a data population,
but some might contain several data populations (the second edition of Part 21 al-
lows more than one data section). Populations contain the STEP entity instances.
Each population is associated with exactly one EXPRESS schema.

A model is represented by the Model class in com.steptools.stdev. A population is
represented by a generated class named Population in the schema namespace. The
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 5

2 READING, WRITING, AND TRAVERSING DATA

6

Population class extends the PopulationBase class in com.steptools.stdev. There is
no schema-specific model class, since a schema can contain instances from several
schemas. Any method of Model that returns a population object is declared to return
PopulationBase, which you may need to cast down to the intended type.

To create a Model with a Population, pass the schema to the constructor for the Mod-
el. The Population can then be obtained by calling getPopulation() on the Model. The
following example shows how to create and populate a model. In this example, the
schema is not imported in order to emphasize which definitions come from the ST-
Developer class library, and which are EXPRESS compiler generated classes.

/* In this example, no schemas are imported.
* actual code is likely to be much less verbose.
*/
Model mod = new Model
(com.steptools.schemas.config_control_design.Schema.SCHEMA);
 com.steptools.schemas.config_control_design.Population pop
 = mod.getPopulation();

/* Create a instance */
com.steptools.schemas.config_control_design.Cartesian_point point
= pop.newCartesianPoint();

Generally, a Model will only contain a single Population of user instances. The Part
21 interface uses an additional Population to hold the STEP header information. It
is possible, however, to create a Model with more than one Population. This can be
used, to create a Part 21 file with multiple data sections. To create a Model with more
than one Population, use the default, no argument, constructor for Model, and use
the newPopulation method to create each Population in the model. Each Population
must have an identifier, which is a java.lang.Object that is specified as a parameter
to the newPopulation method. For models saved in Part 21 files, this identifier must
be a string that gives the name of the data section in the Part 21 file.

To get a default Population from a Model, use one of the getPopulation methods.
With no arguments, or with a null parameter getPopulation return the default Popu-
lation of the Model. If you specify an argument it is interpreted as an identifier,and
getPopulation returns the Population with the specified identifier, or null if no Pop-
ulation exists with that identifier.

2.3 Managing Entity Instances

STEP entity instances are represented by interfaces generated by the EXPRESS
compiler. For every entity in a schema, the compiler creates a corresponding inter-
face in the schema namespace. These generated interfaces extend the EntityInstance
STEP TOOLS, INC.

 2 READING, WRITING, AND TRAVERSING DATA
interface.

The schema-specific Population class contains a method to create entity instance in
the schema. This method is named new<Entname> where Entname is the name of
the entity, as mapped to Java (first letter is capitalized, all others lowercase).

To create an entity instance in a Population, call the appropriate new method on the
Population.

To remove an entity instance from a Population call the removeInstance method.
The instance is removed from the Population, but it will not get deleted from mem-
ory until the garbage collector notices that the instance is unreferenced.

2.4 Accessing Entity Instances by
Type

The Population classes provides several methods to find instances by type. This is
the most common way to access the data after loading a Model from a file on disk.
The getExtent and getFolder methods each return an EntityExtent containing all the
entity instances of a given type. The EntityExtent that the getExtent method returns
also contain instances of all subtypes of the specified type. The EntityExtent class
implements the java.util.Set interface, so you can obtain an Iterator, and traverse
over the instances.

The following code traverses over all the product entity instances in a Population.

import com.steptools.schemas.config_control_design.*;
import com.steptools.stdev.*;
import java.util.*;

/* much further down - inside a class */
void processProducts(Population pop) {
 EntityExtent prods = pop.getExtent(Product.DOMAIN);
 Iterator itor = prods.iterator();
 while (itor.hasNext()) {
 Product prod = (Product) itor.next();
 /* Now do something with the product */
 }
}

ST-DEVELOPER FOR JAVA REFERENCE MANUAL 7

2 READING, WRITING, AND TRAVERSING DATA

8

2.5 Reading Part 21 Files

The Part21Parser class reads a Part 21 file into memory. To read a file, create an
instance of Part21Parser, then call one of the parse methods to read the Model. For
flexibility, the parse method is overloaded to take either a file name, a java.io.File
object, or a java.io.Reader object. Whichever version is called, a Model is returned.
The Part21Parser object may be reused to read multiple files.

The following code demonstrates how to read a Part 21 file, given the file name.

/* at the top of your code: */
import com.steptools.stdev.*;
import com.steptools.stdev.p21.*;

/* inside a class: */
Model read_file (String filename) throws STDevException, IOException {
 Part21Parser parser = new Part21Parser();
 return parser.parse(filename);
}

The Part 21 file header contains string that identifies the STEP schema. Normally
the schema is found by loading the class named com.steptools.schemas.<schema-
name>.Schema. You can override this behavior, by subclassing Part21Parser, and
overriding the getSchema method. The following code demonstrates how to read
every Part 21 file as if it were an AP203 file:

import com.steptools.stdev.p21.*;

class AP203Parser extends Part21Parser {
 public SchemaBase getSchema(Stirng name) {
 /* The schema object is in a static field of the Schema class */
 return com.steptools.schemas.config_control_design.Schema.SCHEMA;
 }
}

2.6 Writing Part 21 Files

The Part21Writer class is used to write a Model to secondary storage. To write a Part
21 file, create an instance of Part21Writer, and call one of the write methods. The
write method is overloaded to take either a file name, a java.io.File object, or a ja-
va.io.Writer object for maximum flexibility. The same Part21Writer can be used to
write multiple models to secondary storage.
STEP TOOLS, INC.

 2 READING, WRITING, AND TRAVERSING DATA
The following example demonstrates how to write a Model to secondary storage:

/* at the top of your code: */
import com.steptools.stdev.*;
import com.steptools.stdev.p21.*;

/* inside a class: */
Model write_file (Model mod) throws STDevException, IOException {
 Part21Writer writer = new Part21Writer();
 return writer.write("test.stp", mod);
}

If you need to the control the name of the schema that gets written in the header of
the file, you can subclass Part21Writer and override the getSchema method.

2.7 Entity Instance Identifiers

Every entity instance in a Part 21 file has an identifier. In the Part 21 file, the iden-
tifier is a “#” character followed by a number. ST-Developer includes the EntityID-
Table to track the identifiers in a Model. The EntityIDTable is created when a Model
is read from or written to a Part 21 file, or is can be created dynamically with the
EntityIDTable.forModel static method. Identifiers in the EntityIDTable are of type ja-
va.math.BigInteger.

To find an EntityInstance by identifier, use the getInstance method of the EntityID-
Table instance. The following example shows how to find an instance:

void EntityInstance findByID (Model mod, BigInteger id) {

 /* Get the EntityIDTable for the model. This method will get the
 * table associated with the model. This will create the table if it
 * does not already exist.
 */

 EntityIDTable tab = EntityIDTable.forModel(mod);
 return tab.getInstance(id);
}

To get the identifier for an EntityInstance, use the getId method. This method takes
a second parameter, with, if true, will assign an identifier to the instance otherwise,
the method returns zero.
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 9

2 READING, WRITING, AND TRAVERSING DATA

10
2.8 STEP Header

The HEADER section of a Part 21 file contains a timestamps, author, organization,
and related information. In memory, the header is represented as a Population of the
header_section_schema, which is defined in the Part 21 specification. While you
can directory access to population, it is more convient to use the com.step-
tools.stdev.p21.Header class.

The Header class includes methods getFileName() and getFileDescription() that get
the file_name and file_description instances, respecively, from the Part 21 header.
If these instances do not exist, these methods will create them. In addition, a mun-
ber of attributes of these entities are declared as lists of strings. These methods in-
sture that these lists exist by creating them is they are set to null.

This example shows how you could add a string to the description of a file:

import com.steptools.stdev.p21.*;
import com.steptools.stdev.*;

void addDescription (Model mod, String desc) {

 Header head = Header.forModel(mod);
 return head.getFileName().getFileDescription().getDescription()
 .add(desc);
}

The following example returns the “originating system” attribute:

String getOrig (Model mod) {

 Header head = Header.forModel(mod);
 return head.getFileName().getOriginating_system();
}

STEP TOOLS, INC.

3 From EXPRESS to
Java Classes
3.1 Overview

This chapter describes how EXPRESS data structures are converted to Java classes
and interfaces by the express2java compiler. The EXPRESS information modeling
language is used to define the data structures in STEP Application Protocols.

The compiler is available as the command line express2java tool on all platforms.
On Windows, it can also be run through the EXPRESS/Java Converter control panel
found on the ST-Developer control panel. The options and outputs are described in
the following sections.

Figure 3.1 — EXPRESS to Java Control Panel
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 11

3 FROM EXPRESS TO JAVA CLASSES

12
3.2 Command Line

express2java [options] expfile1 [expfile2 ...]
-help Display usage information

-o <path> Set the output location. If not specified, the output will be written to
java_classes

-forceschema <name> Use a different name for the final package branch. By de-
fault, the name of the EXPRESS schema is used.

The EXPRESS to Java compiler reads a text file containing EXPRESS definitions,
parses the definitions, and checks them for consistency. If multiple files are given,
the tool behaves as if all files were concatenated together into a single file.

3.3 Namespaces

ST-Developer provides several namespaces under com.steptools for the Java class-
es that are provided either by the ST Developer base classes or by the classes gen-
erated by the EXPRESS compiler.

The com.steptools.stdev namespace contains the basic definitions for the STEP
data and provides the base classes to manage the data, and to provide a late-bound
interface to the instance data. The classes and interfaces in this interface include En-
tityInstance, Domain, and PopulationBase.

The com.steptools.stdev.keystone namespace provides definitions for EXPRESS
primitive types (except String, double and int – which are provided by Java) and for
single dimensional aggregates of such types.

The com.steptools.stdev.p21 namespace contains the classes that read and write
Part 21 file and transfer STEP instance data between the Java classes provided by
ST-Developer and Part 21 files.

The EXPRESS compiler generates a number of Java definitions for each EXPRESS
schema that it processes. All of the definitions for are placed in a namespace of the
form com.steptools.schemas.<schname>. Where schname is the name of the sche-
ma as defined in the EXPRESS “SCHEMA” entry. For example, for AP203 the
namespace is com.steptools.schemas.config_control_design and for AP214, it is
com.steptools.schemas.automotive_design.
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.4 Primitive Types

The EXPRESS primitive types consist of integer, real, boolean, logical, string and
binary. These types are mapped to the corresponding Java type as specified in the
table below. All of these types are either provided by the Java environment, or the
ST-Developer class library.

As indicated in the table, attributes of type integer, real, and string are mapped to
the corresponding Java type. For all the other types, ST-Developer provides a class
in the com.steptools.keystone namespace to represent the EXPRESS data type.

Although Java has the primitive type bool, is not used for boolean values because it
has no way to represent the STEP notion of an “unset” value.

3.5 EXPRESS Schemas

For each schema the EXPRESS compiler generates two classes in the schema
namespace: one is named Schema and one is named Population. Theses classes pro-
vide the meta-data for the late-bound methods to use, and also include methods for
creating entity instances.

Since every schema-specific namespace contains a Population and and a Schema
class; thus if you import the definitions from more than one schema, there will be a
conflict. For example, consider the import statements:

import com.steptools.stdev.*;
import com.steptools.schemas.config_control_design.*;
import com.steptools.schemas.automative_design.*

There is a conflict for the Population and Schema symbols, and so you must use a

EXPRESS Java

INTEGER int

REAL double

STRING String

BOOLEAN com.steptools.keystone.ExpBoolean

LOGICAL com.steptools.keystone.Logical

BINARY com.steptools.keystone.Binary
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 13

3 FROM EXPRESS TO JAVA CLASSES

14
fully qualified class name to reference the schema-specific class, or else you will
need to keep the code that imports the definitions from one schema in a different
Java source file from code that references a different schema. However, since most
applications only deal with a single schema at a time, this should generally not ef-
fect your code.

Using the above declarations, you can reference the AP214 schema as follows:

com.steptools.schemas.automative_design.Schema

3.5.1 Population

The Population holds the entity instances in a model. For each data section in a Part
21 file, there will be one population instance to contain the entity instances in the
section. The schema-specific Population class extends the abstract com.step-
tools.stdev.PopulationBase class.

The Population class is used to create persistent STEP entity instances. For every
entity in the schema, the EXPRESS compiler generates a method which creates an
instance of it. This method is named new<Entname> where Entname is the capital-
ized name of the corresponding EXPRESS entity. Given the EXPRESS schema:

SCHEMA test;

ENTITY foo;
 name: STRING;
END_ENTITY;

ENTITY bar;
 length : REAL;
END_ENTITY;

END_SCHEMA;

The compiler will generate the following Population class. (This is a simplified ex-
ample. The actual class includes code and additional members for internal use.)

package com.steptools.schemas.test;

import com.steptools.stdev.PopulationBase;

public class Population extends PopulationBase {
 Foo newFoo();
 Bar newBar();
}

STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.5.2 Schema

The Schema class represents the EXPRESS schema as a whole to the run-time sys-
tem. Unlike the Population class, there is only one instance of the Schema class for
an EXPRESS schema. This static instance is stored in the static final field named
SCHEMA of the Schema class. The following code gets the Schema for AP203:

import com.steptools.stdev.*;
import com.steptools.schemas.config_control_design.*;

/* then inside some method: */
Schema ap203_sch = Schema.SCHEMA;

/* Do something with the schema */
Population pop = new Population(ap203_sch);

3.6 Entity Types

Each ENTITY type is mapped to a Java interface in the namespace corresponding
to the schema. The name of the interface consists of the EXPRESS name with the
first letter converted to uppercase, and all of the other letters in lowercase.

The interface for the entity provides a get and a set method for each attribute. Thus,
for an attribute named items, there are methods named getItems and setItems. For
example, consider the following EXPRESS entity definition:

ENTITY action;
 name : label;
 description : text;
 chosen_method : action_method;
END_ENTITY; -- action

The EXPRESS compiler generates a Java interface that includes the following
members.

public interface Action extends EntityInstance {
public static final StaticEntityDomain DOMAIN /* stuff deleted */
 void setName(String val);
 String getName();

 void setDescription(String val);
 String getDescription();

 void setChosen_method(Action_method val);
 Action_method getChosen_method();
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 15

3 FROM EXPRESS TO JAVA CLASSES

16
};

In the EXPRESS, the label and text types are defined types where the underlying
type is String. In the Java code, such simple defined types are fully resolved to the
underlying primitive type. The get and set methods provided by the interface con-
form to the naming conventions for JavaBeans classes.

The final static field named DOMAIN contains the type information for the entity.
This can be used in late-bound applications to query the structure of the EXPRESS
information model, or it can be used to find all the object of a given type.

Since the entity is mapped to an interface and not to a class, there is no constructor
to create an instance. Instead, you must call the newXXX method on the Population.

3.6.1 Single Inheritance

When an EXPRESS entity has a SUBTYPE OF clause that specifies a single super-
type, it is mapped to a Java interface that extends the interface that corresponds to
its supertype, rather than the base interface EntityInstance. The calendar_date entity
is defined as follows:

ENTITY calendar_date
SUBTYPE OF (date);
 day_component : day_in_month_number;
 month_component : month_in_year_number;
WHERE
 WR1: valid_calendar_date(SELF);
END_ENTITY; -- calendar_date

The Java corresponding interface includes the following members:

public interface Calendar_date extends Date {
public static final StaticEntityDomain DOMAIN;
 void setDay_component(int val);
 int getDay_component();

 void setMonth_component(int val);
 int getMonth_component();
};

Since the interface extends the Date interface, all of the methods of Date are also
available in the Calendar_date interface.
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.6.2 Multiple Inheritance

When an EXPRESS entity has a SUBTYPE OF clause that specifies two or more
supertypes, there are several possible ways to map it to a Java interface.

When possible, the single inhertiance method documented above is used, except
that the Java interface will extend all of the interfaces associated with the entity's
supertypes. For example: consider the follow entity:

ENTITY poly_loop
SUBTYPE OF (loop, geometric_representation_item);
 polygon : LIST [3:?] OF UNIQUE cartesian_point;
END_ENTITY; -- poly_loop

This maps to the following Java interface:

public interface Poly_loop extends Loop, Geometric_representation_item {
public static final StaticEntityDomain DOMAIN;
 void setPolygon(ListCartesian_point val);
 ListCartesian_point getPolygon();
};

Unfortunately, it is not always possible to map entities with multiple inheritance in
this simple manner. Specifically, when different supertypes each declare an attribute
with the same name. In this case, there are two EXPRESS attributes that map to the
same Java accessor methods, and so an alternative representation must be used. The
following EXPRESS definitions have such a conflict:

ENTITY foo;
 conflict: INTEGER;
 f_att: STRING;
END_ENTITY;

ENTITY bar;
 conflict: INTEGER;
 b_att: STRING;
END_ENTITY;

ENTITY sub
SUBTYPE OF (foo,bar);
 size : INTEGER;
END_ENTITY;

In this example, sub inherits the attribute named conflict from both foo and bar. It
is not possible to generate a corresponding Java interface using the above rules, so
instead we get the following interfaces for the supertypes.

public interface Foo extends EntityInstance {
 void setConflict(int val);
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 17

3 FROM EXPRESS TO JAVA CLASSES

18
 int getConflict();

 void setF_att(String val);
 String getF_att();
};

public interface Bar extends EntityInstance {
 void setConflict(int val);
 int getConflict();

 void setB_att(String val);
 String getB_att();
};

For the subtype, the following interface is generated:

public interface Sub extends EntityInstance {
 void setFooConflict(int val);
 int getFooConflict();

 void setBarConflict(int val);
 int getBarConflict();

 void setF_att(String val);
 String getF_att();

 void setB_att(String val);
 String getB_att();

 Foo asFoo();
 Bar asBar()
};

For attributes with name clashes, like the conflict example, a qualified accessor is
provided. The name of a qualified accessor consists of get or put followed by the
name of the entity that defined the attribute (before any redeclaration), followed by
the capitalized schema name, followed by the capitalized attribute name. The other
attributes (foo_att and bar_att in this example are left unqualified.

There is still the problem of calling a method that takes an argument of type Foo
when you have an instance of type Sub. Normally, Java would cast the value to the
supertype as requested, but in this case, Java does not know that an “extends” rela-
tionship exists between the interfaces. A cast method is generated for each EX-
PRESS supertype which could appear in the “extends” clause. This cast method is
named after the target class, with “as” prepended. The cast method returns a view
of the underlying object, so any changes made are immediately reflected in the orig-
inal object.
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.6.3 Complex Instances

Complex entity combinations (sometimes called “AND/OR” instances) are instanc-
es with a set of types rather than a single type. This is just multiple inheritance, but
the EXPRESS schema does not define an ENTITY for the combination.

ST-Developer Java libraries do not have specific classes or interfaces for the com-
binations. Instead, they are handled through the late-bound interface provided by
the EntityInstance interface.

To create a complex instance, call the newInstance method of a Population, speci-
fying all the supertypes of the complex instance. The following example contains a
method that constructs a complex instance.

/* These import are assumed to be in effect
import com.steptools.schemas.config_control_design;
import com.steptools.stdev.*;
import java.util.List;
*/

public EntityInstance create_millimeter_unit (Population pop) {
 /* Must be a SI_UNIT and LENGTH_UNIT combination */
 EntityDomain[] supers = {Length_unit.DOMAIN, Si_unit.DOMAIN};
 EntityInstance ret = pop.newInstance(supers);
 return ret;
}

To work with data defined by one of the supertypes of a complex instance, use the
castTo method of EntityInstance. The castTo method is declared to return EntityIn-
stance, so you must also use a Java cast to convert to object to the requested sub-
type. The following example builds upon the previous one to

public EntityInstance create_millimeter_unit (Population pop) {
 /* Must be a SI_UNIT and LENGTH_UNIT combination */
 EntityDomain[] supers = {Length_unit.DOMAIN, Si_unit.DOMAIN};
 EntityInstance mm = pop.newInstance(supers);

 /* Set the SI_UNIT attributes */
 Si_unit mm_as_si_unit = (Si_unit) mm.castTo(Si_unit.DOMAIN);
 mm_as_si_unit.setPrefix (Si_prefix.MILLI);
 mm_as_si_unit.setName (Si_unit_name.METRE);

 return mm;
}

ST-DEVELOPER FOR JAVA REFERENCE MANUAL 19

3 FROM EXPRESS TO JAVA CLASSES

20
3.6.4 Views

Due to differences between the Java and EXPRESS languages, the binding provides
view objects when necessary. This has already been demonstrated above with the
asSuper methods in some multiple inheritance cases, and also in the case of com-
plex instances. Generally, a view object can be used interchangeably with its under-
lying instance. Changes to the view are instantly reflected in the underlying object.
The castTo method can be applied to any view of an instance to retrieve any other
view of the instance. The isa method, likewise, returns the same value regardless of
which views of an instance it is called on.

You must use the castTo method before applying a Java cast, whenever there is a
possibility that a view is involved. The best rule of thumb is to use castTo any case
where you are casting an EntityInstance down the inheritance hierarchy. If you do
not use a castTo where you need to, the system throws a ClassCastException.

3.7 Enumeration Types

EXPRESS enumeration types in are represented using the type-safe “enum” design
pattern. For each enumeration, the EXPRESS compiler generates a class which con-
tains a static final field for each item in the enumeration. The following EXPRESS
definition:

TYPE ahead_or_behind = ENUMERATION OF (ahead, behind);
END_TYPE; -- ahead_or_behind

Results in the following Java class. (this is a simplified version of the class):

public class Ahead_or_behind extends Enumeration {
 public static final Ahead_or_behind AHEAD;
 public static final Ahead_or_behind BEHIND;
}

An attribute of this type can be set as follows following code:

offset.setSense(Ahead_or_behind.BEHIND);

Also note that due to the type-safe enum pattern used here, it is always safe to com-
pare any instance of Ahead_or_behind to the constants Ahead_or_behind.AHEAD,
Ahead_or_behind.BEHIND or any other instance of Ahead_or_behind.
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.8 Select Types

An EXPRESS select type represents a union of several a set of underlying types,
known as selections. In Java, a select type is mapped to a subclass of com.step-
tools.stdev.Selection. For each selection, the class contains a get method and a que-
ry (is) method. The get method consists of the keyword “get” prepended to the name
of the desired type. This will return the value in the select, or throw SelectTypeEx-
ception if the underlying value is of a different type.

The select class includes a nested class member named Selection. This class serves
as an enumeration which identifies the type of the select. The select class include
one instance of Selection for each selection type defined in the EXPRESS. The Se-
lection of a select instance can be determined by call the selection() method.

Consider the following EXPRESS definition.

TYPE axis2_placement = SELECT (axis2_placement_2d, axis2_placement_3d);
END_TYPE; -- axis2_placement

This will result in the following class. (the actual class includes additional members
that have been omitted for clarity.):

public abstract class Axis2_placement extends Select {
 public static final class Selection extends SelectionBase;

 public static final Selection SELAxis2_placement_2d;
 public static final Selection SELAxis2_placement_3d;

 public SelectionBase selection();

 /* Accessor methods */
 public Axis2_placement_2d getAxis2_placement_2d()
 throws SelectTypeExceptionl

 public Axis2_placement_3d getAxis2_placement_3d()
 throws SelectTypeException

 /* Type query methods */
 public boolean isAxis2_placement_2d();
 public boolean isAxis2_placement_3d();
}

Using this example, we can process an instance of Axis2_placement with the fol-
lowing method.

void process_2d_placement(Axis2_placement_2d pl);
void process_3d_placement(Axis2_placement_3d pl);
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 21

3 FROM EXPRESS TO JAVA CLASSES

22
void process(Axis2_Placement pl, PrintStream out) {
 if (pl.isAxis2Placement_2d()) {

out.println ("Have 2D placement");
process_2d_placement (pl.getAxis2_placement_3d());

 }
 else if (pl.isAxis2Placement_3d()) {

out.println("Have 3D placement");
process_3d_placement (pl.getAxis2_placement_3d());

 }
}

3.8.1 Creating Select Instances

A select instance is an immutable object. Once created, the value of a select cannot
be changed. An entity attribute holding a select is changed by creating and assign-
ing a new select instance.

The EXPRESS compiler generates a method in both the Schema and Population
classes to initialize each select in the schema for each possible type. These methods
are named “new” followed by the name of the select type, any intermediate types
and, if the underlying is a primitive, the name of the selection. Given the following
EXPRESS definition:

TYPE measure_value = SELECT
 (area_measure,
 context_dependent_measure,
 count_measure);
END_TYPE; -- measure_value

The Schema and Population classes contain the following methods:

public static Measure_value
 newMeasure_valueArea_measure (double v);

public static Measure_value
 newMeasure_valueContext_dependent_measure (double v);

public static Measure_value
 newMeasure_valueCount_measure(double v);

Using these methods, you can create a Measure_value as follows:

void Measure_value create (Population pop) {
 Measure_value val = pop.newMeasure_valueAreaMeasure(5.76);
}

STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
3.8.2 Selection Naming Conventions

The elements of EXPRESS select types must be entity or named defined types. The
name of the methods are determined by the names of the entities or defined types in
the information model. Consider the following EXPRESS type:

TYPE measure_value = SELECT
 (area_measure,
 context_dependent_measure,
 count_measure);
END_TYPE; -- measure_value

This results in a class that includes the following members:

public class Measure_value extends Select {
 public static final class Selection extends SelectionBase {
 }
 public static final Selection SELArea_measure;
 public static final Selection SELContext_dependent_measure;
 public static final Selection SELCount_measure;

 public double getArea_measure();
 public double getContext_dependent_measure();
 public double getCount_measure();

 public boolean isArea_measure();
 public boolean isContext_dependent_measure();
 public boolean isCount_measure();
}

Note that the accessor, and query methods, and names of the selection enumerators
are based in the name of the EXPRESS defined types (e.g. area_measure), and not
the underlying primitive types (e.g. real). The return types of those attributes are the
primitive types, however.

3.8.3 Nested Selects

In an EXPRESS a select type may contain selections which are themselves select
types. In this case, all of the selections of the included select types are incorporated
into the class for the outermost select type as if they were declared in the outer select
type. If there are any duplicate selections, only a single version of the duplicate se-
lection produced. This behavior is consistent with the EXPRESS semantics as in-
terpreted in the Part 21 specification.

For example, consider the following EXPRESS definitions:
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 23

3 FROM EXPRESS TO JAVA CLASSES

24
TYPE characterized_definition = SELECT
 (characterized_product_definition,
 shape_definition);
END_TYPE; -- characterized_definition

TYPE characterized_product_definition = SELECT
 (product_definition,
 product_definition_relationship);
END_TYPE; -- characterized_product_definition

TYPE shape_definition = SELECT
 (product_definition_shape,
 shape_aspect,
 shape_aspect_relationship);
END_TYPE; -- shape_definition

The characterized_definition select type includes two other select types within it.
This class for the EXPRESS compiler generates for this type is equivalent to what
would be generated if the select members were expanded as follows:

TYPE characterized_definition = SELECT
 (product_definition,
 product_definition_relationship,
 product_definition_shape,
 shape_aspect,
 shape_aspect_relationship);
END_TYPE; -- characterized_definition

Note that the characterized_product_definition and shape_definition selections do
not appear in the combined select. The nested example above will produce the fol-
lowing “new” methods in the the Schema and Population classes.

public static Characterized_definition
 newCharacterized_definition (Product_definition v);

public static Characterized_definition
 newCharacterized_definition (Product_definition_relationship v);

public static Characterized_definition
 newCharacterized_definition (Product_definition_shape v);

public static Characterized_definition
 newCharacterized_definition (Shape_aspect v);

public static Characterized_definition
 newCharacterized_definition (Shape_aspect_relationship v);

EXPRESS also allows a second form of nested select type. In this case, the nested
select is enclosed by a simple defined type. Note that this usage doe not occur in
any of the STEP integrated resources. For example:
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
TYPE outer = SELECT
 (nested,
 length);
END_TYPE;

TYPE inner = SELECT
 (length,
 color);
END_TYPE;

TYPE length = REAL;
END_TYPE;

TYPE nested = inner;
END_TYPE;

In outer, the nested element is a defined type whose underlying type is a select. In
STEP, this is considered a distinct type, and so inner cannot be folded into outer, as
was shown in the previous example. A value of type outer can be:

nested.length
nested.color
length

For the compound types, the name of the Java definition is obtained by capitalizing
the first letter of each type, and concatenating the names together. This results in the
following class for outer.

public class Outer extends Select {
 public static final class Selection extends SelectionBase {
 }

 public static final Selection SELNestedLength;
 public static final Selection SELNestedColor;
 public static final Selection SELLength;

 public double getNestedLength();
 public Color getNestedColor();
 public double getLength();

 public boolean isNestedLength();
 public boolean isNestedColor();
 public boolean isLength();
}

This example will produce the following “new” methods in the the Schema and
Population classes:

public static Outer newOuterNestedLength(double v);
public static Outer newOuterNested(Color v);
public static Outer newOuterLength(double v);
ST-DEVELOPER FOR JAVA REFERENCE MANUAL 25

3 FROM EXPRESS TO JAVA CLASSES

26
3.9 Aggregation Types

Aggregation types in EXPRESS represent collections of values. ST-Developer pro-
vides some predefined aggregates in the com.steptools.stdev.keystone namespace.
All other aggregates are generated by the EXPRESS compiler in the namespace of
the schema that uses the aggregate. The built-in aggregates consist of list, bag, set
and arrays of boolean, integer, logical, real and strings.

The aggregate classes (both built-in and generated) implement the java.util.List in-
terface. This means that STEP aggregates can be search, sorted and processed using
the utility methods provided by the Java Collections Framework.

The class names concatenate the aggregate type (e.g. List, Bag, Set or Array) with
the name of the underlying element. Thus a List of Foo is mapped to a class named
ListFoo.

Since aggregates implement the Java Collections List interface, each aggregate
class provides the following methods: add, addAll, addAll, clear, contains, contain-
sAll, equals, get, hashCode, indexOf, isEmpty, iterator, lastIndexOf, listIterator, re-
move, removeAll, retainAll, set, size, subList, toArray. These methods are loosely
typed, so they throw a ClassCastException if an attempt is made to insert an object
that does not belong in the aggregate.

For aggregates of double and integer, you must use the Java wrapper classes Integer
or Double when you put a value using the loosely typed interface. Likewise, the
get() method is declared to return an Object so doubles and integers will be returned
in a wrapper object. (All other possible types are already subtypes of Object, so they
can be cast to the desired type.)

The aggregate class also provides strongly-typed version of the add, get and set
methods. The add and set methods are overloaded to take a parameter of the ele-
ment type. The strongly-typed get method is named getValue().

Consider the following EXPRESS:

TYPE length_measure = REAL;
END_TYPE; -- length_measure

ENTITY cartesian_point
 coordinates : LIST [1:3] OF length_measure;
END_ENTITY; -- cartesian_point

The following example creates and populates a cartesian_point instance containing
a list of doubles.
STEP TOOLS, INC.

 3 FROM EXPRESS TO JAVA CLASSES
Cartesian_point make_point(Population pop, double x, double y, double z) {
 Cartesian_point ret = pop.newCartesian_point();
 ListReal coords = new ListReal();
 coords.add(x);
 coords.add(y);
 coords.add(z);
 ret.setCoordinates(coords);
 return ret;
}

ST-DEVELOPER FOR JAVA REFERENCE MANUAL 27

3 FROM EXPRESS TO JAVA CLASSES

28
 STEP TOOLS, INC.

	Contents
	Getting Started
	1.1 Overview
	1.2 A Simple Example
	1.3 Pre-installed Application Protocols

	Reading, Writing, and Traversing Data
	2.1 Overview
	2.2 Models and Populations
	2.3 Managing Entity Instances
	2.4 Accessing Entity Instances by Type
	2.5 Reading Part 21 Files
	2.6 Writing Part 21 Files
	2.7 Entity Instance Identifiers
	2.8 STEP Header

	From EXPRESS to Java Classes
	3.1 Overview
	Figure 3.1 — EXPRESS to Java Control Panel

	3.2 Command Line
	3.3 Namespaces
	3.4 Primitive Types
	3.5 EXPRESS Schemas
	3.5.1 Population
	3.5.2 Schema

	3.6 Entity Types
	3.6.1 Single Inheritance
	3.6.2 Multiple Inheritance
	3.6.3 Complex Instances
	3.6.4 Views

	3.7 Enumeration Types
	3.8 Select Types
	3.8.1 Creating Select Instances
	3.8.2 Selection Naming Conventions
	3.8.3 Nested Selects

	3.9 Aggregation Types

