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The research presented in this thesis describes a framework for database implem

tion of EXPRESS information models.  EXPRESS models describe complex structure

correctness conditions for engineering activities, and are defined by the ISO-10303 

dard for Product Data Exchange (STEP).  These models are a substantial engineeri

source, and industry desires to use them to integrate design and manufacturing proc

Databases built around STEP models are essential because they provide content th

grated engineering processes understand.

The Standard Data Access Interface (SDAI) is a STEP API for EXPRESS-defined 

Prototypes have attempted to provide SDAI access by implementing each SDAI ope

as one or more native operations directly upon the database.  A direct binding can be

as it requires completely new software for each database. This work proposes severa

implementation architectures that offer alternatives to a direct binding. 

To evaluate the real-world performance of implementations, this work defines a s

representative benchmarks on the STEP AP-203 information model.  AP-203 contai

formation such as CAD geometry and product configuration that is common to all of

STEP models.    The STEPStone benchmarks cover information that is modeled in 

istence dependent style (PartStone, part versions), a navigational style (NURBStone,

etry), and a mix of the two (BOMStone, bill of material).
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The results of timing experiments using these benchmarks are presented.  The e

ments evaluate the performance of direct-binding SDAI implementations built on relat

and object-oriented databases, and examine the effect of various optimizations on b

performance.  Analysis of the timing results provide the relative cost of access for eac

tem, and allow us to determine when each implementation style will be most advantag

In addition, these experiments provide insight about the use of SDAI access versus 

tional access strategies.
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1.1  Motivation

Design and manufacturing companies want to integrate their engineering proces

around product databases, but engineering databases are expensive and difficult to 

Integration around product databases can enable concurrent engineering — a proces

multiple engineers work on different facets of a product concurrently [Winn88].   Howe

integrated product databases are not yet common in industry.

One reason for this is because engineering applications have unusually complex

mation models.   These information models are complex because engineering applic

manipulate simulations of the real world.  Models for areas such as CAD geometry, 

ances, materials, and manufacturing plans are structurally and semantically rich.  Ap

tions are similarly complex, and are tightly bound to the models.  Consequently, devel

can only afford to build tools around successful models.  To date, these have been t

metric models of popular CAD systems such as AutoCAD, CATIA, Pro/Engineer, and

igraphics.

Often, the information models exist only as program language structures taken fr

primary application, usually a CAD system. Without a well-defined model, subsequen

plications must be modified whenever the primary application changes.   In practice,
 1
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small, highly focused, applications are ever developed by anyone other than the prim

plication vendor.

The resulting situation is that only special-purpose databases, controlled by CAD

dors, are used to describe complex products.   Manufacturers do not have any contr

their product databases, which is clearly undesirable for strategic reasons.  Also, ap

tions that improve segments of a market cannot be applied to an industry that is locke

vertical applications.  The dominance of special-purpose databases and vertically-in

ed applications is a major reason why the general-purpose engineering database ma

mains small [Hard95b].

Industry has begun to address this problem by developing standard engineering 

mation models.  The ISO-10303 Standard for Product Data Exchange (STEP) contai

mal descriptions of the information used by the engineering activities in a product lifec

These models are the result of significant investments of time and expertise, and rep

the agreement of many interested parties on the scope, content, and correctness co

of the information.

Documenting engineering information models requires a formalism that can hand

complex structures and correctness conditions. The STEP models are written using t

PRESS language.  EXPRESS and other formalisms make it easier to describe an a

information model, but do not dictate how the models should be implemented using va

database technologies.

Because formal information models for engineering information are only now beg

ning to appear, the literature does not adequately address ways in which databases

provide structurally complex information to engineering applications.  The research p

sented in this thesis addresses the issues surrounding this problem.
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1.2  General Approach

The STEP information models have been used for file exchange between applica

but have not yet been widely used to define shared engineering databases.   Exchan

done using a file format (Part 21) that can be quickly added to existing applications. 

tabase implementations are expected to provide access to data using the Standard D

cess Interface (SDAI), a STEP API for EXPRESS-defined data.

The SDAI is a set of protocols, still under development, the goal of which is to red

the cost of complex engineering applications by making them portable across differen

age technologies.  The SDAI protocols contain a description of the operations that m

provided (functional specification), and several bindings that describe how these oper

are made available in different programming language environments.

Some prototype systems have attempted to provide SDAI access by implementing

SDAI operation as one or more native operations directly upon the database.  This ap

can be costly, as it requires completely new SDAI binding software for each database

thermore, the target database system may not handle the full range of the EXPRES

tures.  Unsupported structures can often be simulated using other structures, but en

and decoding data at run-time may reduce the performance of SDAI operations.

This work investigates the ways in which SDAI access to a database can be prov

and proposes a framework that offers a range of implementation architectures.   This 

work introduces alternate architectures that permit more code reuse and offer differe

of capabilities.

We survey the implementation costs using systems built on a variety of database

gain insight into operational costs, we test a selection of real-world operations again

tems based on Oracle and ObjectStore.  Oracle is a relational system that holds data

malized tables and relies on query-based access.  ObjectStore is an object-oriented
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that stores data in clusters and has an interface tuned for navigational access.   Tog

they represent both extremes of database systems used by engineering application

The operational tests are based on the STEP AP-203 information model.  AP-20

tains information, such as CAD geometry and product configuration, that is common 

of the STEP models.  A set of representative benchmarks on this model are presente

STEPStone benchmarks cover information that is modeled in an existence-dependen

(PartStone, part versions), a navigational style (NURBStone, geometry), and a mix o

two (BOMStone, bill of material).

1.3  Results

The work presented in this thesis offers guidance to those who must implement 

neering databases around complex models.  In particular, this work presents a syste

survey of implementation architectures, a set of benchmarks that simulate how engin

applications access a database, and recommendations drawn from experiments with

ber of database systems.  These results use EXPRESS, the SDAI, and AP-203, but c

applied to other modeling formalisms or engineering areas. 

In summary, this work makes the following contributions:

• Definition of a framework for database implementation of EXPRESS models.

These implementation architectures can be grouped into upload/download, ca

and direct bindings.  The implementation cost for the architectures are illustra

using systems built on a variety of databases.

• Definition of a representative set of benchmarks for evaluating the operationa

costs of database implementations.  The benchmarks were developed using 

203, but can be applied to any of the STEP models.



5

ms 

sts of 

ture.

ing a 

y im-

 in-

 help 

oncur-

.

 ex-

facing 

of the 

 tech-

wn-

 imple-

s. 
• Measurements of SDAI binding operational characteristics on database syste

that are commonly used by engineering applications.

• Recommendations for implementors based on capabilities and the relative co

implementation and operation for each database and implementation architec

These contributions should simplify engineering database construction by provid

well-defined framework, examples, and recommendations.  In addition, this work ma

prove the quality of implementations by ensuring design decisions appropriate to the

tended use of the system.  In the larger view, it is hoped that these contributions will

industry to integrate design and manufacturing processes and reap the benefits of c

rent engineering.

1.4  Thesis Organization

Chapter Two is a historical review of STEP, EXPRESS, and information modeling

Chapter Three describes the framework for SDAI database implementations.  We

amine the major tasks of an implementation project and investigate design decisions 

an implementor.  This chapter also reviews earlier work as it pertains to each stage 

implementation process. 

Chapter Four estimates the implementation costs for each of the implementation

niques described in the previous chapter by surveying working form SDAI, upload do

load, cached and direct SDAI implementations built on a variety of databases.

Chapter Five describes a set of benchmarks to evaluate the operational costs of

mentations.   We discuss the AP-203 information model and each of the benchmark
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Chapter Six describes the equipment and data sets used for the benchmark mea

ments, and presents the measurement results.  Each benchmark was run on the tes

mentations under a variety of conditions and with a number of optimizations.

Chapter Seven discusses the measurements and looks at the effect of various fa

such as implementation architecture, cost per access, and various optimizations, as 

tives to SDAI operations.

Chapter Eight summarizes the conclusions and contributions of this work and disc

areas of future interest.

Chapter Nine lists references to the literature cited in this document.
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2.1  Overview

This chapter provides background information on engineering information model

Section 2.2 presents relevant background material on the EXPRESS language and in

tion modeling.  Section 2.3 describes the STEP standard, including the organization 

STEP models and the two primary implementation methods: File Exchange and the

dard Data Access Interface (SDAI).  Section 2.4 describes other notable projects tha

used the EXPRESS language to develop information models.  Section 2.5 discusse

relevant standards groups, such as OMG and ODMG.

2.2  Information Modeling and the EXPRESS  
Language

This section presents some background material on EXPRESS and information m

ing.   For a complete treatment of the subject, the reader is encouraged to refer to S

and Wilson [Sche94] or the EXPRESS reference manual [ISO94b].
 7
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2.2.1  Information Modeling

Raw data is not information.   Two parties can only exchange data in conjunction

an agreement on the meaning of the data.   Consider the number “1964.”   This num

data without information.   The data becomes useful if we add the information that it

year (1964), or the number of tissues used during an average head cold (1964).   Alt

the data is the same in both cases, the information is different.

An information model is an agreement on the meaning of data.  Early CAD stand

such as IGES [IGES80], usually focused on data exchange without a formal descript

the underlying information model.  EXPRESS has been designed to represent these

mation models in a formal manner.

An information model addresses the underlying meaning of data regardless of te

ogy.  A model describes meaning through structure and correctness constraints.   It do

specify encoding techniques for data values.  When two parties agree upon an inform

model, they can map the model into a particular exchange technology.   For example,

applications shared an information model for years, they might transmit the data desc

the year 1964 as the 32-bit integer “0x000007AC,”  as the IEEE 764 single precision

ing point number “0x44F58000,” or as the ASCII string “0x31 0x39 0x36 0x34.”  Eac

these examples uses a different data exchange technology, but they all correspond 

same information model.

The EXPRESS language is used to describe technology independent information

els.  Because of this, issues like representation precision and execution speed are n

sidered as modeling issues.  As we will see, these concerns will only be addressed w

information model is eventually mapped into the data model of an underlying storag

mechanism.
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2.2.2  Why EXPRESS is Important

EXPRESS is a formal language for specifying information requirements.   EXPR

is an ISO standard (ISO 10303-11 [ISO94b]) and has been used by STEP, POSC, D

CFI, and other projects to describe the information requirements of many engineerin

tivities.  EXPRESS has several strengths: 

• The language may be used to describe constraints as well as data structures

lationships.  These constraints form an explicit correctness standard for an inf

tion model.  

• EXPRESS models are computer processable, so software may take advanta

the definitions without human transcription. 

• EXPRESS has undergone the international standardization process, which re

sents significant consensus that the language meets the needs of industry.

2.2.3  History of EXPRESS

The history of EXPRESS begins in 1982.   The Product Data Definition Interface 

DI) project was formed in 1982 to specify an interface between design and manufac

for product definitions [Wils87].   During this project,  Douglas Schenck at McDonne

Douglas developed a data definition language called DSL [Sche94].   This language

the basis for EXPRESS.

In December of 1983, the International Standards Committee began work on the

dard for the Exchange of Product Model Data (STEP).  This new standard was to def

integrated product information model.  At the time, IDEF1X [IDEF85, Loom87, Bruc9

NIAM [Nijs82, Nijs89], and Entity-Relationship [Chen76] diagrams were in wide use 

modeling.    Lexical modeling languages such as SQL [Date89], DAPLEX [Ship81], 

GEM [Zani83] were also available.
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IDEF1X and NIAM diagrams were popular with the early STEP modelers, but ult

mately proved unacceptable for several reasons.  Neither language was an internati

standard and could not be normatively referenced by the STEP standard.  It was seen

ficult to drive either IDEF1X or NIAM through the standardization process because o

groups had ownership of them.

Furthermore, IDEF1X and NIAM were diagrammatic in nature and there was a n

for a lexical form which would be easy to read, write and process.  In response to this

Doug Schenck and Bernd Wenzel introduced a prototype of the EXPRESS language

STEP effort in 1986.

The language went through many revisions, and many concepts for structure an

straints were experimented with and refined.  Development was done concurrently wi

use of the language by the STEP modelers, so feedback was rapid and focused.  EX

is a very pragmatic language because of these influences.

Throughout these many revisions, EXPRESS acquired design concepts from Ad

gol, C, C++, Euler,  Modula-2, Pascal, PL/I, and SQL.  The language developed an o

oriented flavor, with objects, inheritance, and a rich collection of types.

In the years since the early days of STEP, other modeling techniques have appe

There are extensions to the Entity Relationship model, such as the Entity Category M

[Lars89],  the Two Stage ER [Hsu89], and the Enhanced ER Model [Elma89].  Techn

such as OMT [Rumb91], Booch, and Shlaer-Mellor have also come into use.  These

tions are covered in detail by Schenck and Wilson [Sche94, Wils91] and by Hull and 

[Hull87].    Recently, the Unified Modeling Language (UML) was developed by Booch

cobson, and Rumbaugh to blend OMT diagrams, Booch diagrams, and other visual m

ing techniques [Booc98].   Many of these techniques enjoy popularity, and recent wo

Sanderson has shown transforms from many of these notations to EXPRESS [Sand
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2.2.4  Language Concepts

The function of EXPRESS is to describe information requirements and correctnes

ditions necessary for meaningful data exchange.  For example, an EXPRESS inform

model might describe a balanced binary tree as binary tree structures with constrain

must be met by an instance such that it is balanced.

EXPRESS is not an implementation language like C++ nor a functional interface

scription language like CORBA/IDL.  Our example model does not need to describe

items are inserted into or deleted from a binary tree in order to exchange an instanc

tree.

An EXPRESS information model is organized into schemas.  These schemas co

the model definitions and serve as a scoping mechanism for subdividing large inform

models.   Within each schema are three categories of definitions:

• Entity Definitions  — Entity definitions describe classes of real-world objects wi

associated properties.  The properties are called attributes and can be simple 

such as “name” or “weight,” or relationships between instances, such as “owne

“part of.”   Entities can also be organized into classification hierarchies, and in

attributes from supertypes.   The inheritance model supports single and multip

heritance, as well as a new type, called AND/OR inheritance.

• Type Definitions  — Type definitions describe ranges of possible values.  The la

guage provides several built-in types, and modeler can construct new types u

the built-in types, generalizations of several types, and aggregates of values.

• Correctness Rules  — A crucial component of entity and type definitions are loc

correctness rules. These local rules constrain relationships between entity ins

or define the range of values allowed for a defined type.  Global rules can also 

statements about an entire information base.  
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• Algorithmic Definitions  — An information modeler may also define functions an

procedures to assist in the algorithmic description of constraints.

The missing features of EXPRESS are also interesting.  The language does not i

a construct for creating entity instances or an assignment statement for setting attribu

ues. Therefore, it cannot be used to create or modify a database.  Furthermore, EXP

does not allow definition of methods, so it is not an object-oriented programming langu

EXPRESS is a specification and requirements language, not a procedural language

2.2.5  Summary

EXPRESS provides a rich collection of types and inheritance organizations  to ca

data structure.   Entities represent real-world objects and can be organized into comp

heritance graphs.  There are simple values such as reals, integers, and strings, nam

to capture the meaning behind simple values, enumerations to describe a range of sy

values, several varieties of aggregate, and unions of different types.

EXPRESS can describe complex functional and algorithmic constraints.  There a

ways to capture existence dependencies, keys, optional values, derived values, con

on relationships, instances and the entire information base.  The language contains

set of expressions, structured programming constructs, and a library of built in funct

2.3  Standard for the Exchange of Product 
Model Data (STEP)

The Standard for Exchange of Product Model Data (STEP) defines specifications

the representation and exchange of digital product information.  STEP was born in D

ber of 1983, when the International Standards Organization (ISO) formed the TC184
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committee.  This group was to define a product data standard that incorporated expe

from national efforts such as IGES [IGES80], VDAFS [VDAF86], SET [SET85], ESPR

CAD*I [Kros89], and PDDI [Birc85, PDDI84].   The origins of the STEP effort are doc

mented in [Wils93], and a history of the early national efforts can be found in [Wils87]

the time of this writing (1998), the STEP effort is still very active.   Many portions of ST

have been published as international standards, but many more are still under develo

2.3.1  Structure of STEP

Digital product data must contain enough information to cover a product’s entire 

cycle, from design to analysis, manufacture, quality control testing, inspection, and pr

support functions.  In order to do this, STEP must cover geometry, topology, toleranc

lationships, attributes, assemblies, configuration and more.

To accomplish this ambitious goal, STEP has been divided into a multi-part stand

The STEP parts cover general areas, such testing procedures, file formats, and prog

ming interfaces, as well as industry-specific information.  STEP is extendable.  Indust

perts use EXPRESS to detail the exact set of information required to describe produ

that industry.  These Application Protocols form the bulk of the standard, and are the ba

for STEP product data exchange.

Figure 2.1 shows the parts of the STEP Standard.   The infrastructure parts, such

Description Methods (EXPRESS) and Implementation Methods (file and programmin

terface), have been separated from the industry-specific parts (application protocols).

of the infrastructure is complete, but the industry-specific parts are open-ended.  Ap

tion protocols are available for mechanical and electrical products, and are under co

tion for composite materials, sheet metal dies, automotive design and manufacturing

shipbuilding, the AEC industry, process plants, and others.  Over time, many industrie

develop their own application protocols.  
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2.3.2  STEP Information Models

STEP is based on information models.  These models concentrate the standardi

efforts on information content, rather than implementation technology.   This insures

efforts involved in developing the standard will not be discarded upon a change in co

ing technology.  There are three classes of STEP information models:

• Application Protocols (APs).

• Integrated Resources (IRs).

• Application Integrated Constructs (AICs).

Figure 2.1 — High Level Structure of STEP

Application Protocols
#201 Explicit Drafting
#202 Assoc. Drafting

#203 Config. Ctl. Design
...

Application
Integrated Resources

#101 Drafting
#102 Ship Structures

...

Integrated Resources
#41 Miscellaneous

#42 Geom & Topology
#43 Features

....

Description Methods
#11 EXPRESS
#12 EXPRESS-I

Implementation Methods
#21 Physical File

#22 SDAI Operations
#23 SDAI C++

#24 SDAI C

Conformance Testing
#31 General Concepts

#32 Test Lab Reqs.
#33 Abstract Test Suites

...

Infrastructure Information Models
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The Application Protocols are industry-specific information models for exchangin

data about activities in the life cycle of a product.   These protocols are built from ge

information models called Integrated Resources.  In addition, STEP defines collectio

common definitions that can be shared between Application Protocols.  These Applic

Integrated Constructs are important when using data defined by several APs.

Application Protocols (APs)

The STEP standard defines an open-ended number of Application Protocols (AP

industry-specific product data exchange.   These APs are formal documents that cove

of activities in the life cycle of a product.  Every AP defines a set of activities, informa

requirements within this scope, and a formal schema for these requirements that is 

an integrated product model shared between all APs.

The STEP application protocols are designated as the 200-series documents.   A

current APs are shown below.  Some of these have reached international standard s

while others are still under development.

Part 201 Explicit Draughting
Part 202 Associative Draughting
Part 203 Configuration Controlled Design
Part 204 Mechanical Design Using Boundary Representation
Part 205 Mechanical Design Using Surface Representation
Part 206 Mechanical Design Using Wireframe Representation
Part 207 Sheet Metal Dies and Blocks
Part 208 Life Cycle Product Change Process
Part 209 Design Through Analysis of Composite and Metallic 

Structures  
Part 210 Electronic Printed Circuit Assembly, Design and 

Manufacturing  
Part 211 Electronics Test Diagnostics and Remanufacture  
Part 212 Electrotechnical Plants  
Part 213 Numerical Control Process Plans for Machined Parts  
Part 214 Core Data for Automotive Mechanical Design Processes  
Part 215 Ship Arrangement  
Part 216 Ship Moulded Forms  
Part 217 Ship Piping  
Part 218 Ship Structures  

Table 2.1 — STEP Application Protocols



16

209 

ws this 

anufac-

y.  For 

of 

uct.  

M 

r the 

 de-

ation 

1X, 

ity.  

 prod-

4f]) 

OFs 

iv-
Each AP covers a portion of a product lifecycle.   For example, APs 202 through 

handle aspects of the design and analysis of mechanical parts.   AP-214 further narro

scope to automotive parts.    APs 210, 211, and 220 cover aspects of circuit board m

ture.  Application protocols can also be developed outside of the standards communit

example, the European Space Agency is developing an AP for the thermal analysis 

spacecraft [Koni95].  

As mentioned above, each AP covers a set of activities in the life cycle of a prod

The statement of this scope is called the Application Activity Model (AAM).   The AA

is normally documented using IDEF0 diagrams.

The next portion of an AP describes the pieces of product information required fo

activities, called the Application Reference Model (ARM).   This model is concise and

scribes requirements in terms of basic Application Objects that a user of the AP inform

would be concerned with.   The application objects can be described by NIAM, IDEF

or EXPRESS-G diagrams.

Application objects can be grouped into subject areas called Units Of Functional

The UOFs describe a logically complete subset of information about some particular

uct aspect.  For example, the AP for configuration-controlled designs (AP-203 [ISO9

contains 36 application objects, distributed among nine units of functionality.  The U

are Authorization, Bill Of Material, Design Information, Design Activity Control, Effect

ity, End Item Identification, Part Identification, Shape, and Source Control.

Part 219 Dimensional Inspection Process Planning for CMMs  
Part 220 Printed Circuit Assembly Manufacturing Planning  
Part 221 Functional Data and Schematic Representation for Process 

Plans
Part 222 Design Engineering to Manufacturing for Composite 

Structures  
Part 223 Exchange of Design and Manufacturing DPD for Composites  
Part 224 Mechanical Product Definition for Process Planning  
Part 225 Structural Building Elements Using Explicit Shape Rep  
Part 226 Shipbuilding Mechanical Systems  

Table 2.1 — STEP Application Protocols
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Within each UOF are application objects that represent the information needed t

scribe that product aspect.  For example, the Design Activity Control UOF tracks pro

modifications.  The application objects in this UOF are: Change Order, Change Req

Start Order, Start Request, Work Order, and Work Request.

Finally, an AP document contains a conceptual schema that describes the ARM in

of a library of pre-existing definitions.  This Application Interpreted Model (AIM) is alwa

described with EXPRESS, and is based on the definitions from the integrated resour

scribed in the next section.  AIMs are not permitted to define new entities.  They are

permitted to refine definitions already present in the integrated resources.   This restr

prevents the same concepts from being modeled in different ways by different APs. 

Integrated Resources (IRs)

The Integrated Resources (IRs) are the heart of STEP.   These conceptual schem

scribe an integrated product model for all APs.   There are two types of IRs.   Generi

grated resources (40-series documents) describe very general characteristics of pro

across all industries.   The application integrated resources (100-series documents)

the integrated resources down to the needs of a particular industry.  A list of current IR

shown below.  Some of these have reached international standard status while othe

still in various stages of development.

Part 41 Product Description and Support
Part 42 Geometric and Topological Representation
Part 43 Representation Structures
Part 44 Product Structure Configuration
Part 45 Materials
Part 46 Visual Presentation
Part 47 Shape Tolerances
Part 48 Form Features
Part 49 Process Structure and Properties
Part 101 Draughting Resources
Part 102 Ship Structures
Part 103 Electrical/Electronics Connectivity

Table 2.2 — STEP Integrated Resources
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The resources vary in their level of detail.  For example, Part 41 [ISO94d] covers 

uct identification.  Since a product could be a camshaft or an office building, these d

tions are very general and are normally refined by an AP or application integrated reso

On the other hand, Part 42 [ISO94e] describes geometry, which is well-defined out o

context of any particular application, so this part is normally used without additional re

ment.

Application Integrated Constructs (AICs)

STEP recently introduced a construct for describing the interoperable segments 

initions shared by multiple APs.   The constructs, called Application Integrated Const

(AICs), are sets of refined definitions that must be used as a single unit, without any

tional refinements.

2.3.3  STEP Physical File Exchange

STEP defines a number of implementation methods for exchanging and manipul

information described by application protocols.  The first implementation method to b

fined was a straightforward ASCII file format for exchanging EXPRESS-defined data s

This exchange file format is Part 21 of the standard [ISO94c].  A STEP exchange file

tains a header section with identifying information, as well as a data section, which co

the information to be transferred.  The skeleton of a STEP file is shown below:

ISO-10303-21;                       /* opening keyword */
HEADER;                             /* header section */
[ ... header information ... ]
ENDSEC;

DATA;                               /* data section */

Part 104 Finite Element Analysis
Part 105 Kinematics

Table 2.2 — STEP Integrated Resources
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[ ... entity instances ... ]
ENDSEC;
END-ISO-10303-21;                   /* closing keyword */

The HEADER section information from a Part 21 file describes identifying informati

about the file.  An example header is shown below:

HEADER;
FILE_DESCRIPTION (
   ('Sample NURBS geometry for a Boeing 707',    /* description */
    'for the Common STEP Tasks tutorial'), 
    '1');                                        /* impl level */
FILE_NAME (
    'ap203_database',                            /* name */
    '1995-05-18T14:18:59-04:00',                 /* timestamp */
    ('Blair Downie'),                            /* author */
    ('STEP Tools Inc.',                          /* organization */
     'Rensselaer Technology Park', 
     'Troy, New York 12180', 
     'info@steptools.com'), 
    'ST-DEVELOPER v1.4',                         /* preprocessor */
    '',                                          /* originating system */
    '');                                         /* authorization */
FILE_SCHEMA (('CONFIG_CONTROL_DESIGN'));         /* schema */
ENDSEC;

The DATA section of a file contains entity instances.   Each instance has an integer

tifier.   These #nnn  numbers are used to refer to objects within the file.  These number

unique within a file, but need not be preserved over time.

Entity instances are normally written using an “internal mapping” where the nam

the entity type is followed by a list of attributes in superclass-to-subclass order.  The

lowing are some entities written using the “internal mapping.”

#57=DATE_AND_TIME(#58,#59);
#58=CALENDAR_DATE(1993,17,7);
#59=LOCAL_TIME(13,47,28.0,#29);

EXPRESS AND/OR complex entities instances have more than one type, so the

be written to a STEP file using a different encoding, called an “external mapping.”   T

technique encodes an object as a list of individual types, where each type contains o
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attributes defined by that type.  The example below shows the entry for an object that i

a B-Spline Surface with Knots and a Rational B-Spline Surface:

#10 = (
   BOUNDED_SURFACE ()
   B_SPLINE_SURFACE (3, 3, ((#20, #60, #100, #140), 
        (#30, #70, #110, #150), (#40, #80, #120, #160), 
        (#50, #90, #130, #170)), $, .F., .F., .F.)
   B_SPLINE_SURFACE_WITH_KNOTS ($, $, (0., 0., 0., 0., 1., 1., 1., 1.), 
        (0., 0., 0., 0., 1., 1., 1., 1.), $)
   GEOMETRIC_REPRESENTATION_ITEM ()
   RATIONAL_B_SPLINE_SURFACE (((1., 1., 1., 1.), (1., 1., 1., 1.), 
        (1., 1., 1.,1.), (1., 1., 1., 1.)))
   REPRESENTATION_ITEM ()
   SURFACE () );

All of the supertypes are present, even the ones that have no attributes.

STEP physical files are tightly bound to the EXPRESS schema they were written

against.   Because the ordering of attribute values is determined from the EXPRESS

ma, changes to the schema may cause problems with files written against the origin

sion.

2.3.4  STEP Data Access Interface (SDAI)

The second STEP implementation method is an access protocol for EXPRESS-d

databases, called the Standard Data Access Interface (SDAI).   The goal of this prot

to reduce the cost of integrated product databases by making complex engineering a

tions portable across database implementations.

The SDAI is described by several  ISO standards documents.  STEP Part 22 [ISO

contains a functional description of the SDAI operations, while Parts 23 [ISO95b] an

[ISO95c] describe how these operations are made available in the C++ and C langua

vironments.  Bindings for CORBA/IDL and Java are also being considered.  All of th

documents are currently under development.
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In addition to operations, SDAI applications can access an EXPRESS-defined se

model — an internal data set that describes the state of the SDAI session.  The sessi

el is created and modified as side effects of various SDAI operations.  It keeps track o

data sets, transactions, access modes, error logs and so forth.  Some SDAI binding

provide a dictionary of EXPRESS definitions.   The form of this data dictionary mode

itself described using EXPRESS.

The SDAI also describes a logical database organization consisting of repositorie

models, and schema instances.   Each repository represents physical data storage, such a

file or relational database.   An SDAI model is a named cluster of entity instances.  A mod

is stored within one repository.   A schema instance is a collection of many models, possibl

from different repositories, that acts as the boundary for global rule checking and int

model references.

In general, the SDAI language bindings can be classified into two groups, early an

binding, depending on whether the EXPRESS data dictionary is available to the soft

environment.  An early binding has no data dictionary, while a late binding makes the

PRESS definition for each object available to an application at run-time.  

SDAI Early Bindings

An early binding system creates specific programming language data structures 

each definition in an EXPRESS model.  For example, an early binding, such as the 

C++, contains specific classes for each definition in AP-203.  An advantage to this app

is that the C++ compiler can perform extensive type checking on an application.  Sp

semantics or operations may also be captured as operations tied to a particular data

ture.

The classes for an early binding are normally generated by an EXPRESS compile

tities are converted to classes, types are converted to either classes or typedefs, and
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PRESS inheritance structure is mapped onto the C++ classes.  Each class has acce

update methods for the stored attributes, and constructors to initialize new instances

low is a simple EXPRESS definition that would be translated to an SDAI C++ class:

ENTITY Point;
    x : REAL;
    y : REAL;
END_ENTITY;

An application can use class methods to create instances, populate them, and writ

to a STEP repository.  An application can also open a repository and view the conte

instances of these classes.  The example SDAI C++ code below creates a Point  object and 

fills in some of its attributes:

/* Create a point using the default constructor
 *  and use the update methods to set its values. */
SdaiModelH mod;
PointH point1 = SdaiCreate(mod,Point);
point1->x (1.0);
point1->y (0.0);

The object is created using a special version of the “new” operator and the attribu

ues are set using generated member functions.

SDAI Late Bindings

An SDAI late binding, such as the SDAI C, uses an EXPRESS data dictionary fo

cess to data values.  Generated data structures are not used.  Only one data structur

for all of the definitions in an EXPRESS model.

Data values are found by queries against the data dictionary.   Applications use a

simple functions to get and retrieve values by attribute name rather than by using sp

ized functions for each value. The example SDAI C code below creates a Point  object and 

fills in some of its attributes:

/* create new instances */
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SdaiAppInstance point1;
point1 = sdaiCreateInstanceBN (myModel, "Point");
sdaiPutAttrBN (point1, "X", sdaiREAL, 1.0); 
sdaiPutAttrBN (point1, "Y", sdaiREAL, 0.0);

In general, late bindings are useful in programming environments that do not use s

type checking, and in software that works on data from a common subset of multiple

PRESS schemas.  The EXPRESS model in the dictionary may change somewhat w

necessarily affecting an application.

Another advantage is simplicity.  An average AIM may contain upwards of 200 de

tions, each of which would become classes that must be generated, compiled and li

into an early-bound application.  A data dictionary-driven binding requires less initial w

and lends itself to faster prototyping, although the lack of compile-time type checking

disadvantage that will surface in larger systems.

2.3.5  STEP Summary

Some key reasons why STEP is important:

• STEP is a standard that can grow.  It is based on a language (EXPRESS) and

extended to any industry.  A standard that grows will not be outdated as soon

is published.

• STEP product models contain EXPRESS constraints as well as data structure

mal correctness rules will prevent conflicting interpretations.  STEP CASE too

use these descriptions to create more robust, maintainable systems.

• STEP is international, and was developed by users, not vendors.  User-driven

dards are results-oriented, while vendor-driven standards are technology-orie

STEP has, and will continue to, survive changes in technology and can be us

long-term archiving of product data. 
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The reader is encouraged to consult [Owen93] or [ISO94a] for more discussion a

the contents of the STEP standard, and the use of EXPRESS information models with

standard.

2.4  Other Engineering Initiatives Using 
EXPRESS

The following engineering initiatives have also built EXPRESS information mode

These models do not use the same integrated library of definitions as the STEP mode

could still be implemented using the techniques described in this thesis.

2.4.1  Petrotechnical Open Software Corporation (POSC)

The Petrotechnical Open Software Corporation (POSC) is a consortium of Petro

companies that has been established to define, develop, and deliver, an open syste

ware Integration Platform (SIP) for use across the petroleum exploration and product

dustry.  This SIP will be a set of standards for vendor software and is expected to im

system integration, reduce training time, and reduce software costs.  The SIP will co

a set of comprehensive information models, specific exchange file formats, and user

face “look and feel” specifications that software developers can use to improve intero

bility [POSC92a].

POSC and STEP have similar product data exchange goals, and POSC has adop

PRESS as their information modeling language [POSC92b]. STEP is defining applic

protocols for many industries and products, while POSC is concentrating on one indu

It is reasonable to expect the POSC information models to eventually be incorporate

STEP as Application Protocols.
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The POSC organization has defined a file format called RP-66 for the exchange o

mic data.  This format is based upon a fixed information model but has a performance

in some situations.  This specialization may make it difficult for vendors to respond to

evolving needs of the user community, so POSC will also need a more general purpo

change format, such as the STEP Part 21 physical file format.

2.4.2  CAD Framework Initiative (CFI)

The CAD Framework Initiative (CFI) is a consortium of companies that has been e

lished to define a means for CAD tools to create, access, or modify electronic design

in other tools or databases. The initial scope of the project is limited to hierarchical e

cal connectivity information for tools such as logic simulators, timing, analyzers, layo

tools, and so forth [CFI92].

CFI has chosen to define their connectivity information model using EXPRESS.  

top of this model, they have layered a programming interface called the Design Rep

tation Programmers Interface (DR PI). The DR PI operations understand the seman

the data to a greater degree than that in the EXPRESS, so that DR PI methods can 

to manipulate and change a circuit database during a design session.

2.4.3  DARPA Initiative in Concurrent Engineering (DICE)

 In traditional design, one engineer works on a design at a time.  As enterprises 

larger, engineers become more specialized and concurrent engineering becomes mo

tical [Winn88].  The DARPA Initiative in Concurrent Engineering (DICE) project was 

gun in 1988 to create a support framework for handling concurrent design and manuf

of mechanical and electrical components.   As a part of this project, EXPRESS was u

define a Product, Process, and Organization (PPO) information model.
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2.5  Other Standards Efforts

The following two vendor organizations are producing technology standards that

be of some interest in the context of engineering databases and EXPRESS. 

2.5.1  Object Management Group (OMG)

The Object Management Group (OMG) is a software industry consortium develo

specifications for large-scale distributed applications (open distributed processing) u

object-oriented methodology [OMG93].

The OMG was founded in April 1989, and is composed of large and small vendo

(IBM, Canon, DEC, Philips, Olivetti, AT&T, Sun Microsystems, Informix, ICL, Enfin Sy

tems, Architecture Projects Management, Apple Computer, O2 Technology, etc.) as w

end-user companies (Citicorp, American Airlines, British Telecom, John Deere, etc.)

Work in the consortium originally focused on specifications for an Object Request

ker (ORB), for handling distribution of messages between application objects.  In late 

several members of the OMG consortium proposed the Common Object Request B

Architecture (CORBA).   This specification adds an object-oriented interface to the Re

Procedure Call (RPC) mechanism.  This makes it possible for object-oriented applica

to dynamically call each other’s methods at run time.  Dynamic calling allows a servi

be replaced at run time without affecting the operation of other applications.

The first phase of CORBA described the basic request broker architecture and ga

plications an Interface Description Language (IDL) that can describe their services to

applications. The next phase of CORBA is seeking to define a set of standard servic

all applications. One of these services is persistence. Other services include change

agement, version control, relationship management, and data interchange.
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If the OMG effort is successful, then database systems will be required to divide 

services so that applications only have to pay for the ones that they need. However, 

gree to which this can be done is controversial. Today there are few, if any, examples 

tems that have divided their services in the way detailed by the OMG.

2.5.2  Object Database Management Group (ODMG)

The Object Database Management Group (ODMG) is a working group of ODBM

vendors who are cooperating to further refine the OMG specifications into an interfac

all vendors can support, allowing application portability and interoperability [ODMG9

They are working on an object definition language (ODL) which is an extension to th

OMG IDL and an object query language (OQL) which provides declarative access fo

ries.  The OQL language is an extension of SQL.

The ODBMS vendors can be distinguished by the degree to which they are willin

trade performance for functionality. The high performance databases only provide p

tence. They do so by intercepting memory faults, so these databases require minimal

es to existing programs.  The high function databases require many changes to applic

but in return they extend object definitions to provide a greater range of services suc

version control, relationship management, constraint execution and so on.

This tension has split the ODMG members into two camps. The functionality camp

more members (and therefore has more votes in ODMG) but its market size is small

tabase vendors in the functionality camp include Objectivity and Versant.  Object De

(ObjectStore) belongs to the speed camp and opposes efforts to add functionality re

ments to the ODMG specifications.



3 Framework for 
EXPRESS Database 
Implementations
o a 

ple-

g sec-

tion 

st be 

Section 

ust 

EEE 

 that 

ssing 
3.1  Overview

EXPRESS information models describe logical structures that must be mapped t

software technology before they can be used.  Section 3.2 reviews the four STEP im

mentation levels.   We focus on the third level — database technology.  The remainin

tions study implementation decisions and propose a framework of SDAI implementa

architectures based on how they handle data access.

3.2  STEP Implementation Levels

EXPRESS information models describe logical structures.   These structures mu

mapped to a software technology before they can be used.   Consider the example in 

2.2.1.  An information model may describe the notion of “years,” but this description m

be mapped into a specific technology — such as an ASCII string, 32-bit integer, or I

764 number — before it can be used.

This technology independence is a strength when developing information models

could be used for a long time.  A model might be implemented using many data proce
 28
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technologies and would remain relevant as new technologies appear.  Four levels of

mentation technology have been identified for EXPRESS models [Wils90].  These le

are shown in Figure 3.1.   

3.2.1  Level One — File Exchange

A Level One implementation is the least complex. At this level, EXPRESS-define

product data is passed between applications using flat files.   The STEP Part 21 form

been defined for this purpose, although other encoding specifications could be used

An application must simply read and write files.  It does not need any other feature

particular, there are no constraints upon the representation of product data within the

cation.   It may read the EXPRESS-defined data file using a dedicated parser and im

ately convert the instance data into some other structure.   The application does not n

use the EXPRESS model for operating on data, only for reading and writing files. 

Level One implementations were the first to appear and are now quite common.  

CAD vendors have built Part 21 interfaces that support the exchange of AP-203 data.

PDM vendors are also beginning to add file exchange interfaces to their systems.

Figure 3.1 — STEP Implementation Levels

Level Two
Working Form

Level One
Flat Files

Level Three
Database

Level Four
Knowledge-

base
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3.2.2  Level Two —þWorking-Form

A Level Two implementation has all features required by Level One, plus the abili

manipulate data based upon the EXPRESS information model.   A working-form app

tion communicates with other applications using exchange files.  However, when an 

cation reads a file into memory, the data is made available to the code in a form orga

and described by the EXPRESS model.

The SDAI has been developed as a standard API for working-form applications. 

SDAI functions allow programs to manipulate any product data defined by an EXPR

model.  Other programming bindings could also be used, as long as they are based

EXPRESS models.

A number of working-form implementations have been built, such as the ST-Deve

ROSE and SDAI libraries [Hard91] and the NIST SCL [Clar90,Saud95].  Working-for

bindings are often used just for their Level One file exchange properties.  In fact, mo

the CAD system Part 21 interfaces have been built around working-form bindings.

3.2.3  Level Three — Database

A Level Three implementation has all features required by Level Two, plus the ab

to work with data stored in a Database Management System (DBMS).   Databases or

large quantities of information [Gall84] and an integrated product database may stor

that covers many aspects of the engineering life cycle.  Multiple applications can acce

product data, and may take advantage of database features such as query processi

The implementation should also be able to read and write exchange files and ma

product data available using either the SDAI or another API that presents data as EX

PRESS-defined structures.   A database implementation may support validation of s

EXPRESS constraints, but need not support them all.
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Limited work has been done on SDAI database implementations.  As we will discu

Section 3.4, several groups have looked at mapping EXPRESS-definitions into data

structures, but few have attempted to provide SDAI access to the structures.   The first

database prototype was based on Objectivity [Whit91].  Herbst describes some work

ObjectStore [Herb94] and Erlangen University has investigated a number of systems

[Kreb95a].  The following chapter describes SDAI systems constructed at Rensselae

STEP Tools using the ObjectStore, OpenODB, Oracle, and Versant database system

3.2.4  Level Four — Knowledgebase

A Level Four implementation has the features of all lower implementations, as we

full support for EXPRESS constraint validation.    A knowledgebase system should r

and write exchange files, make product data available to applications as EXPRESS-d

structures, work on data stored in a central database, and should be able to reason a

contents of the database. 

Knowledgebase systems encode rules using techniques such as frames, seman

and various logic systems, and then use inference techniques such as forward and ba

chaining to reason about the contents of a database.  Consult [Brac85] for more inform

on knowledge representation systems.

Knowledgebase implementations do not exist, although some interesting prelimin

work was done by the PreAmp project [Gadi94, Mull93].   The PreAmp project built an

210-based system for analyzing the manufacturability of electronic circuit boards.  Th

component of this was a “manufacturability advisor,” which loads AP-210 data into a

tellicorp Kappa database, where rules analyze aspects of the design.
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3.2.5  Summary

EXPRESS information models describe logical structures that must be mapped t

implementation technology before use.  The file and working-form implementations 

the fewest requirements and are widely available.  Database and knowledgebase imp

tations have more requirements and are not common.  The following sections focus on

to satisfy the requirements for database (Level Three) implementations. 

3.3  Database Implementation Process

In order to construct an engineering database around an EXPRESS information m

we must:

• Define the database structures from EXPRESS.

• Provide SDAI access to the database.

The first task has been well-researched and is summarized in Section 3.4. 

The second task requires several design decisions.  An implementor must decid

to transfer data between database and application.  Section 3.5 identifies three archite

file upload and download with working-form SDAI, cached SDAI, and direct SDAI.   Ot

decisions are discussed in Section 3.6, such as how to make EXPRESS structure def

available and how constraints might be validated. 



33

ons 

guage 

dels.  

9], 

 rela-

tional 

k, hier-

richer 

identify-

  Work 

heim 

an-

I bind-

stems 

chal-

res of 

rma-

al-

lation-
3.4  EXPRESS to Database Schema

Implementors must convert an EXPRESS information model into schema definiti

for the target database.  This conversion requires a mapping from the EXPRESS lan

into the data model (DDL) of the target database system.

The literature contains mappings from EXPRESS to many of the popular data mo

For example, McDonnell/Douglas [Egge88], Rutherford Appleton Laboratory [Mead8

NIST [Morr90], and Rensselaer [Ragh92] have shown mappings of EXPRESS to the

tional model.  Erlangen University has shown a mapping to the Postgres extended rela

model [Kreb95b]. 

Sanderson and Spooner describe mappings between EXPRESS and the networ

archical, and relational models.  This work also shows that EXPRESS is semantically 

than these models [Sand93].  Sanderson has also shown a general mechanism for 

ing information loss between data models [Sand95].

Some object-oriented database systems use programming languages as a DDL.

on C++ mappings has been done by the Norwegian Institute of Technology in Trond

[Totl92], STEP Tools [STI92c], and NIST [Clar90].  Additional work on programming l

guage mappings has been done by STEP WG11 during the development of the SDA

ings [ISO95b, ISO95c].

An implementor can use an existing mapping if applicable, but some database sy

may require a new EXPRESS to DDL mapping. EXPRESS information models can 

lenge the capabilities of existing database systems.  In particular, the following featu

EXPRESS may require encoding or other manipulations to preserve the original info

tion within the native data model:

• Entities  — Entity instances do not require unique keys formed from attribute v

ues.  Instead, each instance has an implicit identifier, which is used to store re
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ships.   Systems that rely on unique keys for identification will probably need to

additional identifier data to entities.

• Inheritance  — The EXPRESS inheritance model is rich.  It includes single inhe

ance and multiple inheritance.  It also supports AND/OR inheritance, where a

stance may have a set of types.   Since inheritance implies duplication of attri

between supertypes and subtypes, normalization [Date86] may be needed for

database systems.

• Primitive Types  — EXPRESS supports seven primitive types — integer, real, n

ber, string, binary, boolean, and logical.  New types can be defined by adding

straints to existing types.   Encoding may be needed for some of the primitive 

or defined types.

• Enumerations  — Each set of enumerated values is in a separate name space.

all database systems support enumerations as a primitive type.   For example

might require simulation as a foreign key to a separate table of enumerators.

• Selects  — The EXPRESS select type is analogous to a strongly typed union a

used to group disjoint types.  Selects can be formed from any number of base 

and can be nested to arbitrary depth.  Few database systems support a union

It may be necessary to simulate this structure using a vector with discriminan

other technique.

• Aggregates  — EXPRESS supports ordered and unordered aggregates formed

any base type and nested to arbitrary depth.  These types of structures are on

ported by non-first normal form databases. Even with these, some aggregate

may need to be simulated.
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A mapping from EXPRESS to a database schema should address each of these

structs.  Depending upon the database, an implementor may also be able to address

attributes, local and global constraints, unique, or inverse clauses.

3.5  SDAI Access Architectures

SDAI binding software uses the database DML to transfer EXPRESS-defined da

tween database and application.  The most important design decision facing an imp

tor is how to transfer data between database and application.  Based on the quantity 

and time of transfer, we identify three architectures:

• Entire model, off-line batch transfer — File Upload/Download SDAI Binding.

• Entire model, on-line batch transfer — Cached SDAI Binding.

• Individual values, on-line transfer — Direct SDAI Binding.

We discuss the characteristics of each architecture in the following sections.

3.5.1  Upload/Download Access

A file upload/download SDAI binding operates on an entire SDAI model at one ti

The size and composition of the model is not rigidly determined, but it should contai

data needed for a single application run.  When SDAI access is desired, the model i

tracted from the database and written to a file, usually in Part 21 format.  The file is r

into main-memory and manipulated by an application built around a working-form SD

binding.  When the application is finished, the updated file can be loaded back into th

tabase.
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A file upload/download binding is composed of two pieces.  The first is a transfer

gram that moves EXPRESS-defined data between the database and exchange file.  T

ond is a working-form SDAI binding that can read an entire Part 21 data set into mem

manipulate it, and write it back out to a file when finished.  Since working-form bindin

operate on main memory data, they can offer extremely fast performance.  Figure 3.2 

the structure of an upload/download interface.  

This SDAI architecture does not take advantage of many database features.  Ap

tions written using the native database interface could use queries, locking, and suc

SDAI applications can only use the database as a form of file system.

When the SDAI model is extracted, the database can be locked on a per-model b

prevent conflicting updates, but locking on a smaller level would not be possible. Co

rent update on a data set would be difficult, since copies of the data would be separa

time and space once they have been extracted.  Delta scripts have been proposed a

implement concurrent update in such a situation [Hard93, Hard95a].

This architecture has a high latency since an entire model must be extracted from

database before an SDAI application can begin work.   However, the extract process 

performed before the data is needed, which may be of use if the process is particular

consuming.

Figure 3.2 — Upload/Download SDAI Binding Structure

DATABASE
Part 21
Files

Import/
Export

Programs

SDAI
or other
Working

Form
Binding

SDAI
or other

Application
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The load and extract programs should only require O(N) database accesses.  The

grams must touch every instance in an SDAI model, perhaps through a two pass alg

that creates instances and then fills in references.  Once a model has been extracted

ing-form SDAI can read the file and access data at main-memory speeds.  The file co

processed by several programs.  If many programs need access to static data, this te

could be used to alleviate demand on the database server.

The model only needs to be loaded back into the database if it has changed.  Th

program could replace the entire model or it could try to identify and replace only wha

changed.

An upload/download binding should not be too difficult to construct. The upload a

download programs operate in a batch fashion, so they can be coded using straightf

algorithms.  For example, they could transfer data using several passes or use globa

mation about the data set.   A new working-form SDAI library could be implemented

it is far more cost effective to reuse an existing one.

3.5.2  Cached SDAI Access

A cached SDAI binding also operates on an entire SDAI model. Unlike the file up

download binding, the model is transferred to and from a main-memory cache.  Once

main-memory cache, the data can be manipulated by an application built around a wo

form SDAI binding.  When the application is finished, the cached model can be loaded

into the database.  Figure 3.3 shows the structure of a cached SDAI binding interfac

A cached binding architecture shares most characteristics of a file upload/downlo

binding.  Since the binding software does not read and write an intermediate file, a c

binding will have a slightly lower latency than a file upload/download binding.
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If the database is fast, the cache load time may be close to the file read/write tim

this case, a cached binding would be faster and more much convenient than a file u

download binding. 

If the database is slow and the cache load time is much larger than the file read/w

times, the savings would be minimal.  A cached binding must extract data while the 

cation is running and must extract a separate copy for each application.  A file uploa

download binding can extract data overnight if necessary, and can amortize the cost

traction over several applications that use the same data.

A cached SDAI binding should require only slightly more effort to implement than

file upload/download binding. The upload and download operations must be develop

functions rather than as stand-alone programs.   These must be integrated into an e

working-form binding, but they can still use straightforward algorithms.   It may be de

able to develop a file upload/download binding first, then evolve it into a cached bindi

necessary.

It may also be possible to construct a cached binding that operates on several di

types of database.   The modified working-form SDAI could have upload and downlo

braries for several database systems.  Once loaded into the memory cache, an app

could simultaneously manipulate data from many different systems.

Figure 3.3 — Cached SDAI Binding Structure

SDAI
Application

Modified
Working Form

SDAI
Binding

DATABASE
Working Form

Cache
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3.5.3  Direct-Binding SDAI Access

A direct SDAI binding operates on one data value at a time.  Applications manipu

the database directly, with no intermediate cache.  Each operation in the SDAI bindi

implemented as one or more native operations directly upon the database.  Figure 3.4

the structure of a direct SDAI binding interface. 

This architecture has low latency since no information must be extracted from th

tabase before an SDAI application can begin work.   This SDAI architecture can take

advantage of database features.   Concurrent updates and fine-grained locking can 

to the full extent supported by the database.

Previously, we noted that file upload/download and cached bindings require O(N

tabase operations.  Generally, a direct SDAI requires a constant number of database

tions for each SDAI operation.   An application built with an O(log) algorithm will requ

O(log) database operations while an O(N2) algorithm would require O(N2) database calls.

A direct SDAI binding could be difficult to construct.  Each operation must be imp

mented using native database methods.  Isolated operations may require more com

gorithms than batch code, particularly if the data is heavily encoded. The binding may

need to keep state information between calls so that cursors can be opened or close

the mapping between SDAI object identifiers and database identifiers can be preser

Figure 3.4 — Direct SDAI Binding Structure

SDAI
Application DATABASE

Direct SDAI
Binding
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3.5.4  Access Summary

These architectures offer a range of implementation costs and capabilities.   Uplo

download and cached binding systems can be built with straightforward algorithms a

isting code, but can not take advantage of many database features.  From the applic

point of view, they have a high latency, but good performance once the data is loade

The direct binding systems require complex algorithms and quite a bit of new code

they can make more database features available to an SDAI binding.  They offer low

cy, but are more heavily influenced by the speed of the underlying database system

The relative merits of each architecture must be evaluated in light of the databas

tem, information model, and user requirements.   Capabilities and costs increase as

progresses from an upload/download to a direct binding.  The architecture must be ju

against expected SDAI applications.  If low latency or concurrent update is required,

rect binding must be used.  If neither capability is essential, a file or cached SDAI bin

could provide access at a more reasonable cost. The pros and cons of the architectu

summarized in Table 3.1.  

File Upload/
Download

Cached Direct

Concurrent Update No No Possible

Coarse-Grained 
(Model) Locking

Possible Possible Possible

Fine-Grained 
(Instance) Locking

No No Possible

Database Calls
O(N) accesses
O(N) updates

off-line

O(N) accesses
O(N) updates

on-line

As required by 
algorithm

Latency
High, but could be 

pre-fetched
High Low

Table 3.1 — Characteristics of SDAI Access Architectures
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3.6  Other Design Considerations

Once the style of data access has been identified, an implementor must consider 

two more design factors.  The first is how the database access software will be adap

different EXPRESS structure definitions, and the second is how the software will ha

EXPRESS constraints.

3.6.1  EXPRESS Binding Style 

The SDAI database access software should be written so that it can be adapted 

with different EXPRESS schemas.  This can be done by writing or generating specific

ware for each information model (early binding), or by writing general-purpose softw

that works from a data-dictionary representation of each information model (late bind

These approaches are illustrated in Figure 3.5.

Code Generation (Early Binding) 

This approach creates custom software for every information model.  An EXPRE

compiler can generate programming language data structures and functions for eac

System With High 
Operation Cost

OK, if data can be 
pre-fetched

Poor Depends on amount 
of data accessed

System With Low 
Operation Cost

Good Good (very cost 
effective, low 

implementation 
cost)

Good

File Upload/
Download

Cached Direct

Table 3.1 — Characteristics of SDAI Access Architectures
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nition in the model.  The compiler can generate load/unload programs, or libraries o

transfer functions.

The code generated by an EXPRESS compiler can use the public database API

documented features that offer performance enhancements.  There is no significant p

for using the undocumented features, since the compiler can be updated and code r

ated if features are changed or eliminated.

Many database APIs are in C, but C++ is a good language choice for generated 

C++ has strong type checking, supports inheritance, allows methods to be attached t

es, and can inter-operate with an existing C API.

Data-Dictionary (Late Binding) 

This approach creates one body of general-purpose software that consults a data

nary for each information model.  The software accesses the database through calls 

the data-dictionary with names of types and attributes.  This approach works well fo

tems that have strong data-dictionary support.

An interface that require extensive encoding of the EXPRESS model might perfo

better with code generation.  Encoding means that the data must be assembled or di

bled when moving between interface and database.  A late-bound interface must do t

nipulation by interpreting the data-dictionary at run-time, while generated code can b

compiled for extra speed.

EXPRESS compilers can generate programs from easily changed templates, so

erated interface may be easier to optimize than a dictionary interface.  Furthermore,

being generated, programs can be changed by hand to optimize access or storage o

entity types or attributes.  The general-purpose core of a dictionary-based system mu

all structures uniformly, and makes no provisions for fine-tuning particular entities or

tributes.  
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It is possible to use a mixed approach, where code generation is used for some 

tures and a data-dictionary for the rest.  For applications that only deal with part of a

formation model, this approach allows for strong type checking and other benefits of

generation while reducing the number of unused definitions that must be managed. 

ever, a database interface does not normally benefit from this technique, since an int

generally uses everything in an information model.

An implementor should consider the size of information models.  Models can con

several hundred definitions.  For example, the relational table definitions for AP-203

quire over 1800 lines of generated SQL.  This many definitions may strain a databas

Figure 3.5 — Code Generation vs. Data-Dictionary Software

Info Model A

Data Dictionary Program

Info Model B

Info Model C

DATABASE

D
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D
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o
n
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EXPRESS-Defined Data
(Part 21 File or SDAI Appl.)

Info Model A
Generated Program

Info Model B
Generated Program
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Generated Program
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tem, and the implementor may need to adjust various parameters or add extra table

to handle the definitions.

Experience will determine whether existing database systems can even handle s

large information models.  Limitations in these systems may require that subsets of 

mation models be used.  Another approach that might be explored is to use an EXP

view mechanism to create information models that are simpler and less taxing on a 

ular system [Hard94].

The choice of binding style depends mostly on the database services provided b

underlying system. The characteristics of each style are summarized in Table 3.2. In

tions where a system could use either, the code generation style should be given pre

if customizability is important.  A code generation system might also be more efficien

such as with static vs. dynamic SQL.    

3.6.2  Constraint Validation

A key feature of EXPRESS is the explicit representation of constraints.   Full sup

for constraints is feature of knowledgebase implementations, but database implemen

Code Generation Data-Dictionary

System
 Requirements

Any System Run-time access 
through Data 
Dictionary

Cost to Implement
Moderate (modify 

EXPRESS 
compiler)

Moderate (new 
EXPRESS-driven 
transfer software)

Customizability
High.  Code for 

each instance can be 
changed

Low.  All instances 
are treated alike

Table 3.2 — Characteristics of Binding Styles
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may also provide limited support.   Depending upon the database system, the softwa

be able to validate some of the constraints. 

The different access styles can affect how and when constraints might be evalua

Batch validation is the only option for upload/download software.   Constraints can be

uated interactively by software using a cached or direct SDAI binding.  Validation migh

done by code generated for each constraint or by a dictionary-based EXPRESS inte

3.7  Framework Summary

Before any work can begin, an implementor must understand and be able to dra

respondence between the database data model and the range of structures represen

EXPRESS.  Once a mapping has been selected or developed, work can begin on th

base access software.

Reviewing the software design factors, we find a matrix of design decisions.  One

corresponds to the services provided by the software (access style), while the other

sponds to the manner in which the software is written (binding style).  This breaks do

the six possibilities shown in Table 3.3

If an implementation chooses to provide support for constraint validation, we hav

range of approaches shown in Table 3.4.

Access Style

Binding 
Style

Early-Bound   
Upload/Download

Early-Bound   
Cached SDAI

Early-Bound      
Direct SDAI

Late-Bound    
Upload/Download

Late-Bound     
Cached SDAI

Late-Bound        
Direct SDAI

Table 3.3 — Software Design Options
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Upload/Download Cached Direct

Batch Evaluation Batch or Interactive 
Evaluation

Batch or Interactive 
Evaluation

Table 3.4 — Approaches to Constraint Validation
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4.1  Overview

In this chapter, we examine the results of several implementation projects.  Thes

projects illustrate all of the approaches to data access that were described in Sectio

The systems were built on a variety of databases.  We look at the construction of ea

tem and discuss the implementation costs.

Before we discuss the implementation projects, Section 4.2 examines the charac

tics of each database system.  Next, we look at each data access style.  Section 4.3

file upload/download implementations built on Oracle and OpenODB. Section 4.4 dis

es cached SDAI bindings on Oracle and Versant.  Finally, Section 4.5 looks at direct 

bindings on Oracle and ObjectStore.  We briefly describe the construction and EXPR

DDL mappings of each system.  We conclude each section with a discussion of the d

decisions and required implementation effort.  There are many ways to measure imp

tation effort, but we will use lines of code to estimate relative construction costs.
 47
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4.2  Database Systems

The implementations discussed in this chapter were built using the Oracle, Open

ObjectStore, and Versant database systems.  In this section we discuss the character

these database systems.  We also discuss the working-form SDAI library used by th

load/download and cached SDAI implementations.

4.2.1  Oracle

Oracle is the most widely used of the systems examined here.  Oracle and other

tional systems such as DB/2 and INFORMIX are used by engineering organizations to

and manage configuration control data.  The strength of relational systems is in their a

to store large amounts of data in a highly normalized, tabular form, and to perform effi

queries across large data sets.  Relational systems use SQL for both data definition a

manipulation.

4.2.2  OpenODB

OpenODB, from Hewlett Packard, is a hybrid system that combines the recogniz

strengths of relational systems with an object data model.  This system provides an 

management front-end to a relational database, and introduces a new object-oriented

language, based on SQL, called OSQL.  The OpenODB data model is based upon o

types, and functions. Functions can be stored, in which case they behave as traditio

tributes, or they can be computed using OSQL or external software [Open92]. 

4.2.3  ObjectStore 

The ObjectStore object-oriented database system, from Object Design Corporati

tercepts virtual memory page faults to make C++ objects persistent without need for 
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cial class library.  The ObjectStore data model is C++ and a customized compiler is 

for schema capture.  Data-dictionary support and query-based access were original

ited, but have improved in recent versions of the software [Obje94].

4.2.4  Versant

Versant is an object-oriented database system from Versant Object Technology (

nally Object Sciences Corporation).  Versant provides a persistent C++ class library 

central server for data check in, check out, and queries.  A modified C++ compiler c

used for schema capture, but the data model can be separated from C/C++ and supp

gramming bindings to languages like Smalltalk [Vers93].

4.2.5  ROSE

The projects in this chapter used ST-Developer, from STEP Tools, for STEP and

PRESS development support.  This package includes the ROSE C++ and SDAI C wo

form libraries for application development [STI92a, STI92b].  The ROSE library preda

and has influenced, the SDAI C++ specification.  It provides all required SDAI servic

but the organization and naming of some function calls are slightly different.

These libraries provide Part 21 file I/O, EXPRESS data-dictionary access, progra

ming access, and in-memory working-form cache management.  The Oracle and Ope

projects added customized code generation software to the ST-Developer EXPRES

piler.  ST-Developer also contains an EXPRESS interpreter, which was used for cons

validation.
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4.3  File Upload/Download Implementations

The first two implementations are based upon Oracle and OpenODB.  These impl

tations provide access by loading and extracting files that can be used by an SDAI wo

form binding.  The Oracle and OpenODB implementations are general-purpose; they

be used with any EXPRESS information model.

4.3.1  Oracle Upload / Download

The file upload/download interface to Oracle was implemented using code genera

A specially modified EXPRESS compiler generates three programs for each EXPRE

formation model.

The first program defines the database schema using SQL “CREATE TABLE” sta

ments.  The remaining two programs use embedded SQL and the ROSE C++ librar

move EXPRESS-defined data between a STEP Part 21 file and an Oracle database

The upload program reads a Part 21 file into memory and makes SQL calls to cr

objects in the Oracle database.  The download program uses SQL queries to select

set and extract attribute values from the database.  The program creates in-memory 

which are later written as a STEP Part 21 file.

EXPRESS Mapping to Oracle SQL

The Oracle implementation uses the mapping from EXPRESS to the relational m

described by [Ragh92].   Each entity is mapped to a table with columns for attributes.

table has a column with a unique identifier for each instance. Attributes with primitive

ues are stored in place, and composite values like entity instances, selects, and agg

are stored as foreign keys containing the unique instance identifier.
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Inheritance is normalized out of the tables.  The table for each entity type contain

local attributes defined by the entity, and uses the instance identifier as the primary k

complete entity instance, with all inherited attributes, can be reconstructed by a join o

identifier across all tables in the type hierarchy.

The Oracle primitive data types are not as extensive as those of EXPRESS.  Boo

and logicals are approximated as integer values; enumerations are stored as strings; 

types of primitives are treated as the base primitive type.  The corresponding EXPRES

Oracle types are shown in Table 4.1.

The only aggregate structure that Oracle supports is a table of tuples.  The EXPR

aggregates are simulated by using a foreign key to group all elements in a particular

gate instance.  An additional index column preserves the ordering of lists and arrays

The relational model does not directly support the union construct, so EXPRESS

lects are simulated by a table with a column for each possible member type.  Only on

umn in each tuple contains a value.  The remaining columns are null.  

EXPRESS imposes no limit on the length of type or attribute names, and many in

mation models define entities and attributes with long names.  Oracle restricts the len

table and column names to 30 characters.  Name length conflicts are resolved throu

abbreviation algorithm.

EXPRESS Type ORACLE Type

REAL float/double

INTEGER integer

BOOLEAN integer

LOGICAL integer

STRING varchar

BINARY number

ENUMERATION varchar

Table 4.1 — Mapping from EXPRESS to the Oracle Primitive Types
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4.3.2  OpenODB Upload / Download

The file upload/download interface to OpenODB was also implemented using co

generation.  A specially modified EXPRESS compiler generates three programs for 

EXPRESS information model.

The first program defines the database schema using OSQL “CREATE TYPE” an

“CREATE FUNCTION” statements.  These statements are executed using iosql  — the 

OpenODB OSQL interpreter.  This defines database structures for the information m

using the mappings described below.

The second and third programs use the OpenODB Oaci programming interface a

ROSE C++ library to transfer EXPRESS-defined data between a STEP Part 21 file a

OpenODB database.  These programs operate in the same way as the Oracle uploa

download programs.

EXPRESS Mapping to OpenODB OSQL

The OpenODB data model is object-oriented and supports object types with iden

and associated stored or computed functions (attributes). EXPRESS entity types map

to OpenODB object types.  Each explicit attribute can be represented as a stored fu

The OpenODB inheritance model supports EXPRESS single and multiple inherita

EXPRESS AND/OR inheritance can be represented by adjusting the types of instan

ing the OSQL “ADD TYPE” and “REMOVE TYPE” statements.

The OpenODB data model supports many features of EXPRESS, but not all of th

Some EXPRESS constructs must be simulated.  OpenODB supports almost all of th

PRESS primitive types.  Logicals and enumerations must be simulated using object 

Instances of these object types were used to represent each of the enumerated valu
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fined types of primitives are treated as the base primitive type.  Corresponding EXPR

and OpenODB types are shown in Table 4.2.

As with Oracle, EXPRESS selects are modeled as a tuple of possible types.  On

column for the type in use contains a value.  All others are null.

OpenODB supports EXPRESS unordered aggregates (Bag and Set).  Ordered a

gates (List and Array), are simulated as a bag of tuples with index and element colu

Nested aggregates are simulated as a bag of tuples with an element column and mu

index columns.

The OSQL language can define both computed and stored functions.  EXPRESS

verse attributes map to functions containing OSQL queries.  Mappings for EXPRES

rived attributes, local rules, and uniqueness constraints were not defined, but may b

addressed by future projects.

4.3.3  Upload/Download Analysis

The upload/download implementations were straightforward to build and maintai

The upload and download programs were developed by writing programs for a grou

sample types.  Next, the programs were parameterized, and an EXPRESS compiler

EXPRESS Types OpenODB Types

REAL float/double 

INTEGER integer

BOOLEAN boolean

LOGICAL class (three instances)

STRING(N) char (var n)

BINARY(N) binary (n div 8)

ENUMERATION class (fixed instances)

Table 4.2 — Mapping from EXPRESS to the OpenODB Primitive 
Types
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modified to generate copies of the programs with specific types.  The parameterized

plates can be modified as needed for customized programs.

To understand the relative implementation costs, consider the amount of code req

to build each system.  The Oracle code generator required about 3000 lines of comp

tensions with another 2000 lines of template code.   The OpenODB generator required

lines of compiler extensions with 4000 lines of template code.  As we will see, this is 

reasonable when compared to a direct SDAI implementation.

Code generation was used to take advantage of the Oracle query optimizer.  A da

tionary approach would require dynamic SQL, which is not as efficient and is not por

across relational systems.  This was not an issue with the OpenODB implementation

all access is handled through dynamic SQL/OSQL, but code generation was still use

cause of its simplicity.  

The Oracle relational model and EXPRESS are significantly different, which force

implementation software to do a large amount of assembly and disassembly when tr

ring data into and out of Oracle.

The OpenODB model is closer to EXPRESS, and the effort required to map betw

them is correspondingly lower.  It should be noted, however, that the underlying Open

System Software Written for Binding
Implementation 

Effort

OpenODB OpenODB Oaci upload and download 
program templates, OSQL data definition 
templates, EXPRESS compiler generator 

extensions.

6000 lines

Oracle Oracle Pro/C upload and download program 
templates, SQL data definition templates, 
EXPRESS compiler generator extensions.

5000 lines

Table 4.3 — Upload/Download Implementation Studies
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storage engine is based on relational technology.   Therefore, the OpenODB object m

must perform the same assembly and disassembly as the Oracle implementation. 

4.4  Cached SDAI Implementations

Next, we look at cached SDAI implementations based on Oracle and Versant.  T

bindings move data to and from an SDAI working-form cache. The Versant implement

may be used with any EXPRESS information model.  The Oracle implementation only

ports AP-203, although it was derived from the general-purpose upload/download sy

4.4.1  Oracle Cached SDAI

The cached SDAI interface to Oracle was constructed by modifying the upload/d

load system described in Section 4.3.1.   The generated load and extract application

modified to perform additional processing upon the data.  This interface was construc

run the AP-203 benchmarks described in the following chapters.

We already had an implementation of the benchmarks using the ROSE C++ library

upload and download programs also used the library, so we merged the generated co

the benchmarks.  The resulting benchmarks used data brought into memory from O

instead of a Part 21 file.  The benchmarks only required read access, so the upload p

was not merged, although this would not be a difficult task.

The implementation uses the same EXPRESS mapping described in Section 4.3

Since this implementation was based on the upload/download system, it can be clas

as a code generation system.  The generated code was hand-modified and currently

ports only AP-203.  Support of other AP’s would not be difficult, but would require exte

ing the generator software.
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4.4.2  Versant Cached SDAI

The cached SDAI interface to Versant was constructed using a data-dictionary ra

than code generation.  All services are provided by a single library that a developer ca

into an existing SDAI application.

The Versant interface extends an existing working-form SDAI C library [STI92a].  T

original library uses a memory working-form and can read and write Part 21 exchange

as well as create, delete, and manipulate data in main memory using SDAI operation

interface adds the ability to transfer the memory working-form to and from a Versant

base.

When transferring from memory cache to Versant database, the interface library 

nects to the database and compares the EXPRESS data-dictionary against the types

in the Versant data-dictionary.  Versant types for any missing EXPRESS definitions ar

ated using the mapping described below.  Next, Versant data objects are created an

lated using data-dictionary calls to the Versant C API.

When loading the memory cache, the interface library compares the EXPRESS 

Versant data-dictionaries to ensure a match between all types.  If the EXPRESS dat

tionary is missing, it can be regenerated (with some information loss) from the Versan

tionary.  Once the dictionaries have been synchronized, main memory objects are c

by the SDAI library.  The attribute values for these objects are extracted using calls t

Versant C API.

EXPRESS Mapping to Versant C++

The Versant data model is object-oriented and based loosely around C and C++

PRESS entities and inheritance relations are mapped to Versant classes in a manner

to that defined for the SDAI C++ Binding [ISO95b].   Versant primitive types are base
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C and C++, with typedefs for hardware portability.  The EXPRESS primitives are han

according to Table 4.4.   

Unions are not part of the Versant object model, so EXPRESS Selects are simula

classes.  A select class contains attributes for each type in the select, plus an additi

tribute to indicate the active field.   Aggregates are mapped to classes containing a s

tribute and a dynamic vector based on the element type.

4.4.3  Cached SDAI Analysis

The Versant interface was built using data-dictionary calls instead of code genera

This simplified end-user operation of the interface, but made implementation slightly m

complex and added to maintenance effort.  Furthermore, the end-user cannot custom

interface.

A data-dictionary approach was chosen to avoid C++ class problems.  Versant u

C++ class library that is not directly compatible with the SDAI C and ROSE C++ librar

Merging them would require changes to the base classes of each library.  Such chan

known to be disruptive [Snyd86]; this has come to be known as the fragile base class prob-

EXPRESS Types Versant Types

REAL o_float/o_double

INTEGER o_4b

BOOLEAN o_bool (typedef char)

LOGICAL o_bool (typedef char)

STRING Vstr of o_1b

BINARY Vstr of o_1b

ENUMERATION Vstr of o_1b

Table 4.4 — Mapping from EXPRESS to the Versant Primitive 
Types



58

 with-

nload 

the ex-

ble to 

 gen-

only a 

 

on-

mov-

 quite 

y ap-

oding 

RESS 
lem [Mikh97].  Using data-dictionary functions, we were able to access Versant data

out merging the class hierarchies. 

Looking at the relative implementation costs, we see that the Versant load and u

routines required only a moderate amount of work.  Adding the database features to 

isting working-form binding required about 3000 lines of code.

The cached Oracle binding required even less implementation effort.  We were a

leverage the existing upload/download implementation with only a few changes. The

erated AP-203 upload and download programs were large (about 65,000 lines), but 

few hundred extra lines were needed to merge these programs with the working-form

benchmark code.

Finally, the similarity between the Versant data model and EXPRESS simplified c

struction of a data-dictionary system. Only minimal manipulation was needed when 

ing data into and out of the cache.   As we have noted, the Oracle relational model is

different from EXPRESS and requires more manipulation.  An Oracle data-dictionar

proach would require the software to store enough information to reproduce the enc

at execution time.  With code generation, the encoding can be determined by the EXP

compiler at generation time and the software can be simplified.

System Software Written for Binding
Implementation 

Effort

Oracle Modify the upload/download software.  
Requires Oracle Pro/C upload and download 

program templates, SQL data definition 
templates, EXPRESS compiler generator 

extensions.

~100 lines changes 
plus 5000 lines 

upload/download 
software

Versant Versant batch transfer software, data-
dictionary synchronization.  Integrate with 

existing working-form binding.

3000 lines

Table 4.5 — Cached SDAI Implementation Studies
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4.5  Direct SDAI Implementations

Finally, we look at direct SDAI implementations based on Oracle and ObjectStore

These bindings provide SDAI access using direct calls into the underlying database.

ObjectStore binding may be used with any EXPRESS information model while the O

binding is a hand-built research prototype that only supports AP-203.

4.5.1  Oracle Direct SDAI

The Oracle direct binding for AP-203 was implemented using code generation.  P

scripts, rather than an EXPRESS compiler, generate functions with embedded SQL 

The binding only implemented SDAI features necessary for the AP-203 benchmarks

scribed in following chapters.  The benchmarks required attribute access and entity 

functions for a subset of the AP-203 types.  A complete binding would have required

nificantly more effort.

This implementation used the same EXPRESS to SQL mapping as the other Ora

bindings.  This enabled us to populate the database using the upload and download

grams from Section 4.3.1. 

Applications connect to the Oracle database in the usual way.  Once connected,

find all objects of a particular type using entity extent functions.  Objects are identifie

a unique foreign key value.  Since inherited attributes are normalized into separated 

each SDAI object identifier is a foreign key that sews together many tables into a com

object.  Each generated SDAI attribute access function performs a simple select on 

these tables and foreign keys to find a single row.
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4.5.2  ObjectStore Direct SDAI 

The ObjectStore implementation was developed as a direct SDAI binding. The inte

was implemented using code generation.  An EXPRESS compiler generates a C++ cl

each structure in an information model.  The ObjectStore database system intercept

er references to make C++ data persistent.  This technique requires minimal change

existing application.  The ROSE library was modified to create objects in persistent O

Store memory rather than transient heap memory.  

An application developer can use the modified library to perform ROSE C++ opera

on an ObjectStore database.  Some ObjectStore functions must still be used to set s

access points or control ObjectStore transactions.

EXPRESS Mapping to ObjectStore C++

The ObjectStore data model is C++.  ObjectStore persistence is a property of me

allocation so any class library can be made persistent. We used the ROSE C++ clas

scribed in [STI92b] as a basis for the EXPRESS structures.  Entities and inheritance

are mapped into a C++ class hierarchy using the approach defined by the SDAI C++

[ISO95b].

The EXPRESS primitives are mapped into C++ primitive types according to Table

The members of C++ enum  types must be unique across all types, but EXPRESS allow

many enumerations to contain the same member.  A naming convention is used to ma

C++ enum  members unique.

Select types are modeled as subtypes of a special RoseUnion class. These subt

capsulate a normal C union attribute and keep track of which union member is curren
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Aggregates are modeled as parametrized C++ classes.  These classes are deriv

a hierarchy that starts at RoseAggregate and continues on to separate classes for L

Bag, and Array.  Subclasses of these are defined for each possible element type.

4.5.3  Direct SDAI Analysis

The ObjectStore binding was built using code generation.  Code generation was

datory because ObjectStore databases can only be defined or accessed using C++ c

ObjectStore has a limited data-dictionary, but data must still be defined as classes.

The nature of ObjectStore enabled us to produce an SDAI direct binding with an 

cially low level of implementation effort. ObjectStore implements its own virtual mem

system and intercepts page-faults to make ordinary C++ applications persistent. By a

the memory allocation portions of the working-form SDAI library we were able to lever

many man-years of effort and over 40,000 lines of existing code.  It is reasonable to e

a direct binding on a different C++ OODBMS — such as Versant — to require at leas

same amount of effort as a working-form binding.

Because it operates directly upon the database, this interface can take advantag

transaction and locking features provided by the underlying system.  Furthermore, th

EXPRESS Types ObjectStore Types

REAL float/double

INTEGER int

BOOLEAN BOOLEAN (typedef char)

LOGICAL LOGICAL (typedef char)

STRING char *

BINARY BINARY class

ENUMERATION enum 

Table 4.6 — Mapping from EXPRESS to the ObjectStore Primitive 
Types
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terface can be customized by extending the generated C++ classes with new memb

tions. 

The Oracle direct binding only implemented the subset of the SDAI operations req

for the benchmarks.  Even with these simplifications, construction required a great d

effort.  The benchmarks required definitions for 51 entities.  The attribute access and 

extent functions for these required 6500 lines of code.  To provide the same for all 36

initions in AP-203 would have required approximately seven times as much effort (45

lines).  Adding support for update functions could double this total  (91,000 lines).  Fin

a binding should also provide a session model, Part 21 file handling, and other requir

vices.

The Part 21 load and extract programs were reused from Section 4.3.1, but were

around a working-form binding.  Providing the same capabilities directly on top of Ora

without use of a working-form binding, would require an EXPRESS data-dictionary, 

System Software Written for Binding
Implementation 

Effort

ObjectStore Modify existing working-form library to use 
ObjectStore memory allocation calls.

200+ lines

Oracle Oracle Pro/C attribute access and entity extent 
functions, generated by Perl scripts.  Only for 

51/366 of the AP-203 entities.  Requires 
upload and download programs and SQL data 

definitions for AP-203. 

Full binding requires above services for all 
AP-203 types.  Also attribute update functions, 
session model, Part 21 parser and writer, SQL 
data definition templates, EXPRESS compiler 

generator extensions.

6500 lines (partial)
5000 lines (upload/

download tools)

91,000 lines 
(estimate for full 

binding) 

Table 4.7 — Direct SDAI Implementation Studies
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21 parser, and other facilities.   Constructing these services could require a significan

tion of the effort associated with a working-form binding.

4.6  Implementation Summary

In this chapter, we examined the SDAI database implementations shown in Table

These implementations covered all three access styles.    

Table 4.9 summarizes the implementation costs for the systems as well as the a

of existing general-purpose code that could be reused.  The alternate bindings (uplo

download and cached) required a small amount of effort (~5000 lines) and were able t

advantage of a large amount of existing code (working-form binding and EXPRESS 

piler).  

The ObjectStore direct binding required a very small amount of effort (~200 lines)

was also able to take advantage of an existing working-form binding and EXPRESS

piler.   However, these results are mostly due to the unique virtual-memory model us

ObjectStore.  

Most database systems use a traditional API, like the Oracle Pro/C API, so the O

system is a better example of the implementation effort required for a direct binding.

Oracle and 
OpenODB

Early-Bound 
Upload/Download

Oracle
Early-Bound

Cached

ObjectStore and 
Oracle Early-Bound 

Direct

Late-Bound    
Upload/Download

Versant 
Late-Bound

Cached

Late-Bound
Direct

Table 4.8 — SDAI Architectures Covered by the Implementation 
Studies
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Oracle direct binding was only partially implemented and required a large amount of e

(11,500 lines).  It required 6500 lines for access and entity extent functions covering 

entities, plus 5000 lines for the upload/download and SQL definition programs.   Expan

the binding to cover update functions, all AP-203 entities, a session model, and othe

quirements would require several times as much code. 

We note that the cost for implementing each access style rises with the number o

tures it provides.  The upload/download and cached bindings are inexpensive to pro

and can reuse an existing working-form binding.    These bindings provide SDAI acc

but are not useful for situations requiring concurrent update.  A direct binding is more

ly, and generally cannot reuse code, but can make greater use of database features

System
Binding

Architecture
Implementation 

Effort
Code 
Reuse

ObjectStore Direct 200+ lines 40,000 lines
(working-form binding)

OpenODB Upload/
Download

6000 lines 40,000 lines (binding)

Oracle Upload/
Download

5000 lines 40,000 lines (binding)

Cached 5000+ lines 40,000 lines (binding)

Direct 11,500 lines
(partial + upload/
download tools)
91,000 lines (est. 

full binding) 

none

Versant Cached 3000 lines 40,000 lines (binding)

Table 4.9 — Implementation Cost Summary
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5.1  Overview

To gain insight into operational costs, we must test SDAI bindings against a sele

of real-world operations.  The benchmarks described in this chapter are based on A

which was the first of the STEP application protocols and contains information, such

CAD geometry and product configuration, that is common to all STEP models.

Section 5.2 describes AP-203 and identifies three categories of engineering inform

within the model.  Section 5.3 through Section 5.5 discuss these aspects of AP-203 d

propose benchmark operations.  These STEPStone benchmarks operate on informat

is modeled in an existence-dependent style (PartStone, part versions), a navigationa

(NURBStone, shape/geometry), and a mix of the two (BOMStone, bills of material).

5.2  The AP-203 Information Model

We looked briefly at AP-203 in Section 2.3.2.  This was the first application protoc

be published as an ISO standard [ISO94f, PDES97] and has been used as the basis f

file exchange implementations.  The scope of AP-203 is configuration-controlled 3-D 
 65
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  For 
uct design data for mechanical parts and assemblies.  This information includes the

of parts, revision history, change process & documentation, part classification, appro

supplier & contract information, and security classification.  The Units of Functionalit

(UOFs) defined by AP-203 are detailed in Table 5.1. 

Once AP-203 was selected as the information model, the next task was to identify

resentative set of benchmarks.  Looking at the fourteen UOFs in AP-203, we note thr

ferent styles of engineering information:

• Navigational — Information such as the STEP Shape/geometry UOF.  The re

ences from entity to entity are in the same direction as the expected path of ac

For example, A points to B, which then points to C.  Access from A to C is simply 

a matter of following a chain of references. 

• Existence-dependent — Information such as the STEP Part Identification UO

References are usually in the direction opposite the expected path of access.

Unit of Functionality Contents

shape
(Total of six UOFs)

Geometry and topology of the part.  UOFs cover 
advanced boundary representations, facetted b-
reps, manifold surface with topology, non-
topological surface & wireframe, and wireframe 
with topology 

authorization Part data approvals.

bill_of_material Parts list for an assembly.

design_activity_control Documents revision history of parts.

design_information Material, surface, and process specifications.

effectivity Usage of components in a product.

end_item_identification Describes consumable goods (products).

part_identification Defines parts and part versions.

source_control Supplied part and supplier information.

Table 5.1 — AP-203 Units of Functionality
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example, B points to A.  Access from A to B requires a query or back-pointer.  Thi

style of modeling shows that B is existentially-dependent on A.  If A does not exist, 

then B can not exist. 

• Mixed — Information that contain both styles, such as the STEP Bill of Mater

UOF.

For each information modeling style, we select a representative AP-203 UOF.  In

following sections we define benchmarks that traverse and examine data from each 

We adopted names for the benchmarks based on the underlying UOF and the “ston

vention established by the Whetstone CPU benchmark [Curn76], and its many succ

(Dhrystone, Khornerstone, etc.):

• PartStone — Part Identification UOF, existence-dependent definitions.

• BOMStone — Bill Of Materials UOF, mixed definitions.

• NURBStone — Shape UOFs, navigational definitions.

The benchmarks exercise data access capabilities.  Future versions of the bench

could be extended to include update features, but this is beyond our current scope. T

lowing sections describe each benchmark in detail, including the structure and use o

information, the algorithms, and the algorithm complexity.

5.3  PartStone — Part Identification

The STEP Part Identification UOF describes the concepts of product and produc

sion.  Since the STEP standard was designed to represent product data, all of the A

the part identification definitions.
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In engineering organizations, this type of information is often held by product dat

management (PDM) systems.  A common operation on this type of data is to find all o

versions for a part.  We use this operation as the basis for the PartStone benchmark

The PartStone benchmark must traverse an AP-203 data set and print all version

part.  The benchmark must repeat this operation for each part in the database. The fol

sections examine the structure of STEP part identification data as well as the algorith

use to implement the benchmark traversal operation.

5.3.1  Application Objects

The Part Identification UOF defines three application objects:

PART 
PART_VERSION
DESIGN_DISCIPLINE_PRODUCT_DEFINITION

The PART object describes an engineering artifact.  A PART_VERSION describe

particular version of that artifact.  A DESIGN_DISCIPLINE_PRODUCT_DEFINITION

describes a context for the descriptions of aspects of a part.  For example, AP-203 i

to describe the mechanical design characteristics of a part.  Other APs might descri

ferent characteristics. The PartStone benchmark only uses the PART and PART_VER

application objects.

5.3.2  EXPRESS Definitions

The PART and PART_VERSION application objects are mapped into entities from

STEP integrated EXPRESS models as described in Table 5.2.   An EXPRESS-G rep

tation of these definitions is shown in Figure 5.1.        

In the integrated EXPRESS schemas, PART application objects are represented

stances of product, while PART_VERSIONs are represented as product definition forma-
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tion with specified source (abbreviated pdfwss).  A pdfwss is tied back to a product via th

formation of attribute.   Figure 5.2 shows a small collection of parts and part versions

well as the direction of access used by the PartStone benchmark.   

The code fragment below shows how the Figure 5.2 data would be encoded with

AP-203 Part 21 file.

Figure 5.1 — EXPRESS-G Diagram of the Part Identification 
Entities

Application Object EXPRESS AP-203 Entity

PART product

PART_VERSION product_definition_formation_with 
specified_source
(abbreviated PDFWSS)

Table 5.2 — EXPRESS Entities for Part Identification

identifier String

label String

text String

1, 1 (1, 1)

1, 2 (1)

1, 3 (1, 1)

sourceproduct_definition_formation_
with_specified_source make_or_buy

1, 1, identifier

1, 3, text

product_definition_formation
id

description

1, 1, identifier

1, 2, label

1, 3, text

product_context
(not shown)

product

id

name

description

frame_of_reference
 S[1:?]

of_product



70

rt() 

ion 

f the 

code 
#10=PRODUCT('PN-100','Razor','',$);
#11=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
    'PN-100-1','BabyFace 3.0',#10,$);
#12=PRODUCT('PN-200','Toaster','',$);
#13=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
    'PN-200-1','Toastmaster 5.1',#12,$);
#14=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
    'PN-200-2','Toastmaster 5.2',#12,$);

5.3.3  Benchmark Operations

In the following pseudocode description of the PartStone benchmark, the PrintPa

and PrintVersion() functions print identifying information, such as a name or descript

attribute.  In the following sections, all attribute access is indicated using a function o

form Get<att>().

The central benchmark operation is to print all versions for a single part.  A pseudo

description of this operation is shown below:

void FindVersions (dataset : S, product : p)
begin
    foreach pdfwss : pdf in S do
        if  p = GetOfProduct(pdf) then PrintVersion(pdf)
end

Figure 5.2 — Instance Diagram for Parts and Versions

PDFWSS
"Toastmaster 5.1"

Product
"Toaster"

formation_of

PDFWSS
"Toastmaster 5.2"

PDFWSS
"Babyface 3.0"

Product
"Razor"

Direction of Access
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The complete PartStone benchmark applies the FindVersions() algorithm to all o

products in a data set:

void PartStone (dataset : S)
begin
    foreach product : p in S do
    begin
        PrintPart(p)
        FindVersions (S, p)
    end
end

5.3.4  Complexity Analysis

Consider the PartStone algorithm.  We determine the complexity of the algorithm g

the following values:

P = number of products.
V = number of product versions.

For the purpose of analysis, it can be assumed that print functions and attribute a

operate in constant time. 

First, consider the FindVersions() function.  This must examine each version in th

tabase, so the function is O(V).   Next, we call the function for each product in the data

which raises the complexity of the PartStone algorithm to O(PV).  We observe that in

tice, the number of versions for a particular part is normally small, and for the purpos

this argument, can be considered constant.  So:

V = KP where K is the median number of versions

PartStone is O(PV) --> O(P * KP) --> O(P 2)

So the PartStone benchmark is O(P2).  It is tempting to improve the FindVersion() al-

gorithm by constructing a sorted list of versions, or by some other global optimizatio

However, we must resist this temptation by recognizing that the benchmark must op

as if it were only printing the versions of a single part.
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5.4  BOMStone — Bill of Materials

The STEP Bill of Materials UOF describes the structured list of materials or com

nents required to build a product.  A bill of material details all of the pieces that go in

product.  It may call out quantities, sub-assemblies, variations within assemblies, allow

substitutions, and so forth.   For example, the ingredients list from a recipe is a very s

bill of materials.  A more complex one might show sub-assemblies, such as one often

in the instructions for home-assembly furniture.

In engineering organizations, this type of information is maintained by product da

management (PDM) systems and manufacturing requirements planning (MRP) syst

As one might imagine by the name, a common operation on this type of data is to pri

list of assemblies and components —þthe bill of required materials for a product.  Th

eration forms the basis of the BOMStone benchmark.

The BOMStone benchmark must traverse an AP-203 data set and print each ass

and its components.  The following sections examine the structure of STEP bill of ma

data as well as the algorithms we use to implement the benchmark traversal operati

5.4.1  Application Objects

The Bill of Materials UOF defines the following seven application objects.  The lis

indented to show when application objects are subtypes derived from a more genera

of application object:

ENGINEERING_ASSEMBLY
    ENGINEERING_NEXT_HIGHER_ASSEMBLY
    ENGINEERING_PROMISSORY_USAGE

ALTERNATE_PART 
COMPONENT_ASSEMBLY_POSITION 
ENGINEERING_MAKE_FROM
SUBSTITUTE_PART
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ENGINEERING_ASSEMBLY describes a parent/child relationship between an a

sembly and one of its components. ENGINEERING_NEXT_HIGHER_ASSEMBLY is

more specific type of relation which allows us to specify a name for the component, 

tity, and unit of measure.  ENGINEERING_PROMISSORY_USAGE describes a rela

ship between components and a sub-assembly that has not yet been defined.

ENGINEERING_MAKE_FROM, ALTERNATE_PART, and SUBSTITUTE_PART 

convey other relationships between the parts.  These indicate how some parts serve

materials for others, or how they may act as replacements under some circumstanc

Finally, the COMPONENT_ASSEMBLY_POSITION relationship associates a ge

metric transform with a part to specify its physical location within an assembly.

The BOMStone benchmark uses ENGINEERING_ASSEMBLY application objec

The other application objects convey important information about individual compon

within an assembly, but do not contribute to the description of the assembly structur

5.4.2  EXPRESS Definitions

The ENGINEERING_ASSEMBLY application objects are mapped into entities fro

the STEP integrated EXPRESS models as described in Table 5.2.   Figure 5.3 show

definitions as an EXPRESS-G diagram.       

Application Object EXPRESS AP-203 Entity

ENGINEERING_ASSEMBLY assembly_component_usage 
(supertype)

ENGINEERING_NEXT
HIGHER_ASSEMBLY

next_assembly_usage_occurrence

ENGINEERING
PROMISSORY_USAGE

promissory_usage_occurrence

Table 5.3 — EXPRESS Entities for Bill of Material Assembly 
Structures
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These relationships connect product definition objects.  A product definition object de

scribes one aspect of a product version, such as the shape.   Using multiple product

tions for each product, we could represent different types of assemblies.  They could

electrical connectivity, physical arrangement, operational units, or manufacturing sub

semblies.  AP-203 describes mechanical assemblies, but an electrical AP could use

ilar mechanism to describe functional components.   The product definitions are tied

together using the following two attributes:

• relating product definition — Points “upwards” in the assembly to the enclosing

product definition.  If we were relating the wheels of a car to an entire car, thi

would point at the car definition.

Figure 5.3 — EXPRESS-G Diagram of the Bill of Material 
Engineering Assembly Entities

product_definition_usage

product_definition

id

description

formation

product_definition_context
(not shown)frame_of

reference

next_assembly_usage_occurrence

promissory_usage_occurrence

2, 2, identifier

2, 4, text

product_definition_formation 
(see part identification diagram)

2, 2, identifierassembly_component_usage
reference_designator

2, 2, identifier

2, 3, label

2, 4, text

product_definition
relationship

id

name

description

relating_product_definition

related_product_definition

text String2, 4 (1, 1)

String2, 3 (1) label

Stringidentifier2, 2 (1, 1, 1)
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• related product definition — Points “downwards” in the assembly to the compo

nent product definition.  In the car example, this would point to the wheel defi

tion.

Each assembly component usage allows a reference designator, which is used to

guish between multiple uses of the same component.  In our car example, we have f

sembly component usages, each relating the same wheel definition to the car defini

The reference designator indicates which is the right front wheel, left front, and so o

These relationships connect the components of an assembly to the whole.  Used

sively, each component can act as a sub-assembly related to various sub-componen

ure 5.4 shows a two level assembly, where an automobile is built from four copies o

wheel sub-assembly.  The wheel sub-assembly is built from a rim, a tire, and a hubca

diagram also shows the direction of access used by the BOMStone benchmark.  

Figure 5.4 — Instance Diagram of a Two Level Automobile 
Assembly

Product_Def
"Hubcap"

Product_Def
"Tire"

Product_Def
"Rim"

Product_Def
"Wheel Assy"

Product_Def
"Automobile"

NAUO
"Left Front"

NAUO
"Rt Front"

NAUO
"Left Rear"

NAUO
"Rt Rear"

NAUO

NAUO

NAUO

Direction of Access

relating
pdef

related
pdef

relating
pdef

related
pdef
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The code fragment below shows how the Figure 5.4 data would be encoded with

AP-203 Part 21 file.

#10=PRODUCT('PN-001','Automobile','',$);
#11=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
   'PN-001-1','Automobile v1',#10,$);
#12=PRODUCT_DEFINITION('initial','Automobile definition',#11,$);
#13=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#12,#22,'Left Front');
#14=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#12,#22,'Rt Front');
#15=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#12,#22,'Left Rear');
#16=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#12,#22,'Rt Rear');

#20=PRODUCT('PN-002','Wheel Assy','',$);
#21=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
   'PN-002-1','Wheel Assy v1',#20,$);
#22=PRODUCT_DEFINITION('initial','Wheel Assy definition',#21,$);
#23=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#22,#32,'');
#24=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#22,#42,'');
#25=NEXT_ASSEMBLY_USAGE_OCCURRENCE('','','',#22,#52,'');

#30=PRODUCT('PN-003','Hubcap','',$);
#31=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
   'PN-003-1','Hubcap v1',#30,$);
#32=PRODUCT_DEFINITION('initial','Hubcap definition',#31,$);

#40=PRODUCT('PN-004','Rim','',$);
#41=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
   'PN-004-1','Rim v1',#40,$);
#42=PRODUCT_DEFINITION('initial','Rim definition',#41,$);

#50=PRODUCT('PN-005','Tire','',$);
#51=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
   'PN-005-1','Tire v1',#50,$);
#52=PRODUCT_DEFINITION('initial','Tire definition',#51,$);

5.4.3  Benchmark Operations

The BOMStone benchmark must traverse a data set and print each assembly an

components as an indented list.  As we saw in the previous section, the assembly st

is stored as assembly component usage instances (actually as the next assembly usage oc-

curence subtype).  These objects are the edges in the assembly graph.
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The central benchmark operation is to find all components of a single product.  Th

quires searching through all assembly component usages for those linked to the prod

the relating product definition attribute.  From this set, we can find the components by 

lowing the related product definition attribute.  We continue recursively to find the sub-

components of each component.  For each product, we print some identifying inform

and indent according to the product’s position in the assembly tree.  The pseudocod

scription of the algorithm is shown below:

void FindAssembly (product_definition  pdef, integer depth)
begin
    PrintIndent (depth)     /* indent according to depth */
    PrintProductDef (pdef)  /* print product and version name */

    /* FIND AND RECURSIVELY PRINT ALL SUB-COMPONENTS */
    foreach assembly_component_usage : acu in S do
    begin
        if pdef = GetRelatingProductDefinition(acu) 
        then FindAssembly (GetRelatedProductDefinition (acu), depth+1)
    end
end 

To print an entire assembly, we must determine which product represent the com

assembly — the “root” of the assembly tree.  To find all top-level products, we searc

product definitions that are not a sub-component of another product.  In terms of the

PRESS definitions, a product is at the top level if there exist no assembly component u

linking the product as component to a larger assembly.  A pseudocode description o

algorithm is shown below.

List FindTopLevel (dataset : S)
begin
    List : toplevel
    foreach product_definition : pdef in S do 
    begin
        foreach assembly_component_usage : acu in S do
        begin
            /* does it belong to an another assembly? */ 
            if pdef = GetRelatedProductDefinition (acu) 
            then next product_definition
        end
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        /* not a component of anything */
        Append (toplevel, pdef)
    end
    return toplevel
end

The BOMStone algorithm combines these functions to print all of the assemblies

data set.  The complete BOMStone algorithm is shown below:

void BOMStone (dataset : S)
begin
    foreach product_definition : pdef in FindTopLevel(S) do 
        FindAssembly (pdef, 0);
end

5.4.4  Complexity Analysis

The BOMStone algorithm operates on assembly structures.  We can view an ass

structure as a directed graph, with product definitions as the nodes of the graph and 

bly component usages as the edges:

P = number of products (nodes)
A = number of assembly component usages (edges)

In the general case, the graph is acyclic since a mechanical part cannot physical

tain itself as a component.   Is could also be a multigraph, if components participate in

than one assembly (as in Figure 5.4).   For the purpose of our analysis we consider t

plified case where assembly is a tree. Given these assumptions, we can represent A i

of P:

A = P - 1     for a one connected component (top-level assembly)
A = P - T     for T connected components

Consider the FindTopLevel() function.  For each product definition, it examines a

sembly component usages, so the function will require O(PA), or O(P2), operations.
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The FindAssembly() function examines all assembly component usages so it is O

or just O(P).  Given that the input data set consists of one or more trees, the FindAsse

function will be called once for each product definition.  Therefore over the entire prog

run it will require O(P2) operations.   The entire BOMStone algorithm is O(P2).

5.5  NURBStone — Part Geometry

The STEP Shape UOFs describe the geometric and topological aspects of a pro

Since geometry and topology are basic physical properties, these definitions are use

most all of the STEP APs.  There are several Shape UOFs, each of which supports di

mathematical representations of geometry, such as planar facets or NURB surfaces

In engineering organizations, this type of information is usually created and man

by CAD systems.  When a CAD system reads a shape description, it must traverse the

geometric model in order to create a visual representation of the model.  We use thi

versal as the basis for the NURBStone benchmark.   

The NURBStone benchmark must traverse an AP-203 data set and print the com

nents of each geometric definition in a recursive-descent manner. The following sec

examine the structure of STEP shape data as well as the algorithms used to implem

benchmark traversal operation.

5.5.1  Application Objects

The six Shape UOFs define the following application objects: 

SHAPE
SHAPE_ASPECT
GEOMETRIC_MODEL_REPRESENTATION
    ADVANCED_BOUNDARY_REPRESENTATION 
    FACETTED_B_REP
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    MANIFOLD_SURFACE_WITH_TOPOLOGY 
    NON_TOPOLOGICAL_SURFACE_AND_WIREFRAME 
    WIREFRAME_WITH_TOPOLOGY 

The Shape UOF defines the SHAPE, SHAPE_ASPECT, and GEOMETRIC_MOD

REPRESENTATION objects, while the other UOFs constrain the type of geometric d

tions permitted for describing a shape.  The NURBStone benchmark only makes use

ADVANCED_BOUNDARY_REPRESENTATION definition.

The SHAPE application object represents the physical form of a part, which is m

matically defined by one or more GEOMETRIC_MODEL_REPRESENTATION objec

A SHAPE_ASPECT calls out a portion of a shape to indicate subdivisions or attach 

tional specifications.  A SHAPE_ASPECT also has one or more associated GEOME

MODEL_REPRESENTATION objects.

5.5.2  EXPRESS Definitions

The ADVANCED_BOUNDARY_REPRESENTATION application object is mappe

into entities from the STEP integrated EXPRESS models as described in Table 5.2.

EXPRESS-G representation of these definitions is shown in Figure 5.5.      

The shape representation entity contains a list of geometric items, as well as a name 

context.   The subtypes of this, such as advanced brep shape representation, do not add any 

attributes.  They merely constrain the contents of the geometric items list to certain t

Application Object EXPRESS AP-203 Entity

GEOMETRIC_MODEL
REPRESENTATION

shape_representation (supertype)

ADVANCED_BOUNDARY
REPRESENTATION

advanced_brep_shape_representation

Table 5.4 — EXPRESS Entities for Bill of Material Assembly 
Structures



81

scrip-

f the 

 it con-

 #27-
of geometry.  Figure 5.6 shows the components of a manifold solid B-REP shape de

tion, as well as the direction of access used by the NURBStone benchmark. 

The code fragment below shows the shape definition for a toroid, containing all o

elements from Figure 5.6.  The data is an advanced B-REP solid, which means that

tains geometric surface details (toroidal surface) and topological details (vertex loop).  To 

be complete, the description must specify units of measure and tolerance (instances

#37), as well as a location within the global coordinate system (the axis2 placement 3d).

#10=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#11,#23),#27);
#11=MANIFOLD_SOLID_BREP('',#12);
#12=CLOSED_SHELL('',(#13));
#13=ADVANCED_FACE('',(#14),#18,.T.);
#14=FACE_BOUND('',#15,.T.);
#15=VERTEX_LOOP('',#16);
#16=VERTEX_POINT('',#17);

Figure 5.5 — EXPRESS-G Diagram of the Geometric Model 
Representation Entities

advanced_brep_shape_representation

shape_representation

representation

name

items S[1:?]

representation_context
(not shown)context_of

items

edge_based_wireframe_shape_representation

faceted_brep_shape_representation

geometrically_bounded_surface_shape_representation

geometrically_bounded_wireframe_shape_representation

manifold_surface_shape_representation

shell_based_wireframe_shape_representation

1, 1, label

1, 1, labelrepresentation_item
name

1, 3, dimension_countgeometric_representation_item
(DER)dim

These subtypes include all of
the STEP geometry definitions, such

as curves, surfaces, solid models, 
transformation matricies, etc.

label String

dimension_count Integer

1, 1 (1, 1)

1, 3 (1)
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#17=CARTESIAN_POINT('',(-22.5,-0.500000000000002,-37.5));
#18=TOROIDAL_SURFACE('',#19,10.,5.);
#19=AXIS2_PLACEMENT_3D('',#20,#21,#22);
#20=CARTESIAN_POINT('',(-7.5,-0.500000000000002,-37.5));
#21=DIRECTION('',(0.,0.,-1.));
#22=DIRECTION('',(-1.,0.,0.));
#23=AXIS2_PLACEMENT_3D('',#24,#25,#26);
#24=CARTESIAN_POINT('',(0.,0.,0.));
#25=DIRECTION('',(0.,0.,1.));
#26=DIRECTION('',(1.,0.,0.));

/* Sets up units (inches, degrees, steradians) and allowable 
 * measurement tolerance (3.9e-7 inches) for the geometry 
 */
#27=(
    GEOMETRIC_REPRESENTATION_CONTEXT(3)
    GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#28))
    GLOBAL_UNIT_ASSIGNED_CONTEXT((#29,#33,#37))

Figure 5.6 — Instance Diagram for the Major Components of a 
Manifold Solid B-REP Shape Description

Representation_Context
(Global Units, Coordinate System,

Uncertainty, etc.)

Shape Representation
(Advanced B-Rep)

Direction of Access

context of items

items

Representation Item
manifold solid brep Representation Item

axis2_placement_3d
(set local coordinate system)

advanced_face advanced_face advanced_face

faces

closed_shell

outer

surface
(elementary, swept,

b-spline, etc.)

Control points, basis
curves, and whatever other

data is needed to define
the surface

face_geometry
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    REPRESENTATION_CONTEXT('ph1m4-ug','COMPONENT_PART')
);
#28=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(3.93700787401575E-07),#29,
   'MODEL_ACCURACY','Maximum Tolerance applied to model');
#29=( CONVERSION_BASED_UNIT('INCH',#31) LENGTH_UNIT() NAMED_UNIT(#30) );
#30=DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.);
#31=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4),#32);
#32=( LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.) );
#33=( CONVERSION_BASED_UNIT('DEGREE',#35) NAMED_UNIT(#34) PLANE_ANGLE_UNIT() );
#34=DIMENSIONAL_EXPONENTS(0.,0.,0.,0.,0.,0.,0.);
#35=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.0174532925),#36);
#36=( NAMED_UNIT(*) PLANE_ANGLE_UNIT() SI_UNIT($,.RADIAN.) );
#37=( NAMED_UNIT(*) SI_UNIT($,.STERADIAN.) SOLID_ANGLE_UNIT() );

5.5.3  Benchmark Operations

The NURBStone benchmark must traverse and print each shape description in a

set.  As shown in Figure 5.6, a STEP shape description forms a tree of instances, w

instance of shape representation at the root.  As one proceeds from the root, complex g

metric types (manifold solid brep) refer to component instances (closed shell, advanced 

face) which refer to surfaces, and so on.  The leaves are geometric primitives that re

nothing else (cartesian point).  

The NURBStone benchmark performs a depth-first search of the shape instance

Each node could be a different type of instance, so the algorithm may require functio

each possible entity type.  The final benchmark resembles recursive-descent parsin

rithm.

Some shape representations contain topology data, which connects surfaces to fo

id models.   The NURBStone benchmark has been defined to traverse only surface g

try instances.  However, future work could extend the scope of the benchmark to als

traverse the topology instances.

Using the convention established in the Section 5.3.3 and Section 5.4.3, we assu

Print<type>() function for each entity type.  We also define a Traverse<type>() functio

each non-leaf entity type.  The general outline for a traverse function is shown below
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void Traverse<Type> (<Type> : obj)
begin
    Print<Type>(obj)
    foreach instance : ref referred to by obj do 
        Traverse<RefType> (ref)
end

The function prints identifying information about the instance, such as a name, co

nates, or a radius.  Next, the function examines all attributes and calls the traversal fu

(or print function the case of leaf types) for each instance referred to by an attribute.

The following example shows the traversal function for shape representation.  This en-

tity has a name attribute as well as references to a representation context and a list of rep-

resentation items.  The EXPRESS-G for shape representation can be found in Figure 5.5.

void TraverseShapeRep (shape_representation : rep)
begin
    PrintShapeRep (rep)   /* prints name */
    TraverseRepContext (GetContextOfItems(rep))
    foreach representation_item : repitem in GetItems(rep) do 
        TraverseRepItem (repitem)
end

The NURBStone benchmark defines traversal and print function for the AP-203 en

shown in Table 5.5. 

axis1_placement axis2_placement
axis2_placement_2d axis2_placement_3d
b_spline_surface b_spline_surface_with_knots
cartesian_point ** circle
conic closed_shell
conical_surface context_dependent_unit**
conversion_based_unit** curve
curve_bounded_surface curve_replica
cylindrical_surface direction **
elementary_surface ellipse
face_surface geometric_representation_context
global_uncertainty_assigned_context global_unit_assigned_context
hyperbola line
manifold_solid_brep measure_value **
named_unit ** offset_curve_2d
offset_curve_3d parabola

Table 5.5 — Entity Types Traversed by the NURBStone Benchmark
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Some of the entities in Table 5.5 are supertypes of other entities.  Traversal func

for supertypes must exhibit polymorphism, i.e. they must examine the instance type

call a more specific traversal function if required.   The following example shows the

versal function for surface, which is the supertype of all geometric surface types.  The

pseudocode describes the algorithm using if-then clauses.   An implementation migh

vide polymorphism in a more efficient manner, such as C++ virtual functions.

void TraverseSurface (surface : s)
begin
    if  IsElementarySurface(s)  then 
        TraverseElementarySurface(s)
    else if IsSweptSurface(s) then 
        TraverseSweptSurface(s)
    else if IsBSplineSurface(s) then 
        TraverseBSplineSurface(s)
    else if IsCurveBoundedSurface(s) then 
        TraverseCurveBoundedSurface(s)
    else if IsRectangularTrimmedSurface(s) then 
        TraverseRectangularTrimmedSurface (s)
    else if IsRectangularCompositeSurface(s) then
        TraverseRectangularCompositeSurface (s)
end

The NURBStone algorithm combines all of these functions to print each shape re

sentations in the data set.  The depth-first traversal begins with shape representation.  The 

top-level benchmark algorithm is shown below:

void NURBStone (dataset : S)
begin

pcurve plane
rational_b_spline_surface rectangular_composite_surface
rectangular_trimmed_surface representation_context
representation_item shape_representation
si_unit ** spherical_surface
surface surface_curve
surface_of_linear_extrusion surface_of_revolution 
swept_surface toroidal_surface
unit ** vector

Leaf entity types are denoted by **

Table 5.5 — Entity Types Traversed by the NURBStone Benchmark



86

ee, we 

  In ad-

 may 

 the 

t.  The 

 a tree, 

ances 

ing” 

equire 

 access 

able 

orithm, 

house-

n, are 

re not 
    foreach shape_representation : rep in S do
        TraverseShapeRep (rep);
end

5.5.4  Complexity Analysis

Maintaining our initial assumption that the shape representation instances are a tr

note that the NURBStone depth-first traversal algorithm touches each instance once.

dition, the print actions for each object are performed in constant time (the exact time

change from type to type.)

So, although a shape representation contains many different types of instances,

benchmark complexity depends only on the total number of instances in the data se

NURBStone complexity is O(N).

If instances were shared between shapes, the shape representation would not be

but rather an acyclic directed graph.  The benchmark algorithm would visit shared inst

more than once, raising the complexity.   We could restore linear complexity by “mark

each instance as it is visited, but we avoid this change since storing the mark would r

updating the database.   As stated in Section 5.2, the benchmark scope is limited to

only.   Of course, we could keep “mark” information in a local data structure with favor

performance, such as a hash table.  This would add to the resource usage of the alg

but in the case of a hash table, would not affect the complexity.

In practice, we observe that instances are rarely shared between shapes. Only “

keeping” data, such as unit declarations and other representation context informatio

ever shared.  In this work, we enforce the constraint against shared objects and so a

required to store “mark” information. 
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6.1  Overview

To gain insight into operational costs, the STEPStone benchmark algorithms wer

against SDAI implementations built on a relational database, object-oriented databas

a main memory cache.  In addition, we looked at load/extract times and explored the

of optimizations on each implementation. Timing measurements were made with dat

ranging in size from 100-100k objects. These measurements required about 500 pro

runs and 220+ hours of compute time on a SPARC 20.

The remainder of this section describes the test systems and timing methods.  S

6.2 through Section 6.4 describes the results from the PartStone, BOMStone, and N

Stone benchmarks.  Section 6.5 describes the results of database load and extract t

6.1.1  SDAI Test Systems

The measurements in this chapter were made using STEPStone benchmarks bu

three different SDAI implementations.  The benchmarks were implemented on Object

using the direct binding described in Section 4.5.2, on Oracle using the direct bindin

scribed in Section 4.5.1, and on a main-memory cache using the ROSE working-form

ing described in Section 4.2.5.
 87
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All timings were done on a Sun SPARC 20 with 128 megabytes of memory.  The

chine was running the Solaris v2.4 operating system.  The database versions were O

v7.3 and ObjectStore v4.0.2.  The SDAI implementations were built using ST-Develo

v1.6, ST-Oracle v1.6.0, and ST-ObjectStore v1.6.0.

6.1.2  Timing Methods

All times measured were total elapsed (wall clock) times rather than CPU usage t

Wall clock times were used to ensure a fair comparison among the benchmarks.  Da

systems often connect to server processes that perform much of the database work.

tunately, the resource usage system calls do not return the CPU usage of server pro

They only return the CPU usage of the initial process.

The total elapsed time is unaffected by distributed processing and provides an ac

measure of real world performance.  The wall clock time will be larger than the actual 

usage, but should remain proportional to the CPU usage as long as care is taken to p

all benchmarks under identical conditions.  The measurements in this work were perfo

only during periods of light machine load.  In addition, the database servers were res

before each program run.

All measurements were rounded to the nearest second.  When multiple measure

were present, they were averaged to the nearest tenth of a second.

6.1.3  Data Sets

The measurements explored the access behavior of the SDAI implementations f

ferent types of data.  It was necessary to run benchmarks with data sets of varying s

while maintaining the essential characteristics as the data set sizes increased. 
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Programs were developed to generate data sets of arbitrary size for each bench

These programs are discussed with the results of each benchmark.   The programs pr

separate files for each data set.  The working-form benchmarks read the files, but the 

and ObjectStore benchmarks read databases built from the files.  The Oracle databas

created using the upload/download tools described in Section 4.3.1.  Before loading,

bles in the database were dropped, the schema was reloaded, and the Oracle cache

processes were restarted.  Similarly, ObjectStore databases were removed and recre

fore each benchmark run.

6.2  PartStone Results

The PartStone benchmark was implemented using each of the three SDAI syste

Timing measurements were made for each system using a series of data sets contai

tween 100 and 20,000 part objects.  The composition of the data sets are described

tion 6.2.1.  In addition to the basic algorithm, we tested optimizations based on the u

characteristics of each system.  The optimizations are discussed in Section 6.2.3.  Th

Stone timings are shown Figure 6.1 and Figure 6.2.

6.2.1  Part Identification Test Data

The mkpart program was developed to generate data sets with an arbitrary numb

parts and versions. To reduce the number of variables, the generated data sets cont

constant number of versions per part.  As described in Section 5.3.4, this allows us 

press the complexity of the PartStone algorithm in terms of the number of parts.  

For the measurements in this work, the data sets contained three versions per pa

PartStone data sets were used.  The sizes were: 100, 500, 1000, 1500, 2000, 2500

10000, 15000, and 20000 part objects.
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6.2.2  PartStone Timings

The basic PartStone algorithm was tested against the Oracle, ObjectStore and w

form implementations.   The Oracle timings were performed with and without extra ind

on heavily-used columns.

The ObjectStore and working-form implementations had similar performance.  Th

times for both systems exhibit growth characteristic of an O(N2) algorithm.   The Oracle 

implementation was significantly slower, and we were unable to complete measurem

on data sets with more than 500 parts.  Addition of indices improved the Oracle beh

slightly, but not enough to complete all measurements.  The extreme behavior of the O

implementation suggests a higher degree of complexity than O(N2). 

The Oracle indices were added on the keys of the product, product definition formation, 

and product definition formation with specified source tables, as well as the of product at-

tribute of product definition formation.  

6.2.3  PartStone Optimizations

Additional timings explored the effect of optimizations based on unique features 

each system.  The focus of most optimizations was the FindVersions() operation.  T

function traverses over all versions (product definition formation objects) to find ones that

reference a particular product.  In EXPRESS, this information can be found through 

to the Usedin() function.  Originally, the SDAI specification did not provide a Usedin()

eration, but recent versions have added optional support for it. 

Each implementation of the PartStone benchmark was modified to perform the U

din() operation as efficiently as possible for the of product relationship between pdfwss and 

product. The C++ classes used by the ObjectStore and working-form implementation 

modified to hold back-pointers for the relationship. The Oracle implementation was m

fied to perform a single SQL join rather than traverse an entire entity extent using SD
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functions.  In addition to Usedin() optimizations, multiple SDAI “get attribute” calls we

collapsed into a single SQL query wherever possible.

Relational Optimizations

As mentioned above, the Oracle implementation was modified to perform the Fin

sions() operation using a single SQL join.  In addition, other SDAI calls were collapsed

single SQL queries where possible.

The modifications had a dramatic effect.  The time required to process 500 parts

from eight hours down to ten seconds.  Performance improved to roughly linear beh

and the benchmark ran to completion in under an hour on even the largest data set.  A

extra indices to the tables did not improve performance.  In fact, the benchmark was s

slower with indices.  To address concerns that this behavior may indicate a poor cho

indices, the timings were repeated with other index combinations.  Times varied slig

but were consistent with the initial observations.

ObjectStore and Working-Form Optimizations

The ObjectStore and working-form systems do not have general purpose query 

ties.  Instead, they must access data by type (find all objects of a particular type) or n

tion (follow a pointer from one object to another).  In place of a query facility, these sys

use C++ classes that can be extended with additional functions or data. 

To improve the FindVersions() function, the C++ class for product entities was modified 

to keep a list of back-pointers for the of product attribute of pdfwss.  The back-pointers were

initialized by traversing over all pdfwss objects at the beginning of the benchmark run.   T

modified algorithm is shown below:

void PartStone_backpointer (dataset : S)
begin
    foreach pdfwss : pdf in S do
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        AppendOfProductBackpointers (GetOfProduct (pdf), pdf)

    foreach product : p in S do
    begin
        PrintPart(p)
        FindVersions_backpointer (S, p)
    end
end

void FindVersions_backpointer (dataset : S, product : p)
begin
    foreach pdfwss : pdf in GetOfProductBackpointers(p) do
        PrintVersion(pdf)
end

This optimization reduces the complexity of the PartStone benchmark to linear ti

The initialization of the back-pointers requires O(V) time, but we can find the version

a part in constant time.   Summed over all parts, the FindVersions() function will touch

version once, requiring O(V) operations.  Since we know that V can be represented 

constant time P, the optimized PartStone algorithm is O(P).

The modifications had a large effect on the observed benchmark times.   As pred

the times for the ObjectStore and working-form implementations grew in a linear fash

The percentage difference between the two systems was much greater with the opti

benchmark than with the original.   On the larger data sets, the difference between th

inal benchmarks was a few percent at best, while with the optimized benchmarks, the

ing-form implementation ran in half of the time of the ObjectStore implementation. 
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Figure 6.1 — PartStone Timings

Figure 6.2 — PartStone Timings,  Detail Showing Benchmark 
Results Under 500 Seconds
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6.3  BOMStone Results

The BOMStone benchmark was implemented using each of the three SDAI syste

Timing measurements were made for each system using a series of data sets contai

tween 100 and 20,000 part objects.  In addition to the basic algorithm, we tested opt

tions based on the unique characteristics of each system.  The optimizations are dis

in Section 6.3.3.  The BOMStone timings are shown Figure 6.3 and Figure 6.4.

6.3.1  Bill of Material Test Data

The mkbom program was developed to generate bill of material data with assembli

arbitrary size. The generated assemblies were composed of product definition objects sewn 

together by next assembly usage occurrences.   Each product definition was also linked to 

a unique product definition formation and product object. 

The generated assembly structures were trees. They did not contain any repeate

shared components.  As described in Section 5.4.4, this allows us to express the com

of the BOMStone algorithm in terms of the number of parts. 

For the measurements in this work, the generated data sets contained assemblie

were 4 items wide and 6 levels deep for 4096 parts per tree.  Ten BOMStone data se

used.  The sizes were: 100, 500, 1000, 1500, 2000, 2500, 5000, 10000, 15000, and

part objects.

6.3.2  BOMStone Timings

The basic BOMStone algorithm was tested against the Oracle, ObjectStore and 

ing-form implementations.   The Oracle timings were performed with and without extr

dices on the most-used columns. 
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The ObjectStore and working-form implementations had similar performance, bu

as close as with PartStone.  The times for both systems showed the growth expecte

an O(N2) algorithm.  As with PartStone, the Oracle implementation was significantly s

er, and we were unable to complete measurements on data sets larger than 1000 p

dices improved the Oracle behavior slightly, but not enough to complete all measurem

The extreme behavior of the Oracle implementation suggests higher degree polynom

havior. 

The Oracle indices were added on keys of the product definition, product definition re-

lationship, and assembly component usage tables, as well as the relating and related prod-

uct definition attributes of product definition relationship.  

6.3.3  BOMStone Optimizations

Additional timings explored the effect of optimizations.  As with the PartStone be

mark, most optimizations involved replacing a traversal with efficient Usedin() functio

ity.  In this case, the FindTopLevel() and FindAssembly() functions were both modifie

perform a Usedin() operation as efficiently as possible.

Relational Optimizations

The Oracle implementation was modified to perform the FindTopLevel() and Find

sembly() operations using SQL joins.  In addition, other SDAI calls were collapsed int

gle SQL queries where possible.

The modifications improved performance, but we were still unable to complete m

surements for all data sets until extra indices were added to the tables.  Without extr

ces, the modified benchmark required almost a full day to process 10,000 parts, but

indices this time went down to about three minutes.
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OODBMS and Memory Optimizations

To improve the FindTopLevel() and FindAssembly() operations, the C++ class for prod-

uct definition was extended to keep back-pointers for the relating and related product defi-

nition attributes of assembly component usage.  The back-pointers were initialized by 

traversing all assembly component usages at the beginning of the benchmark run.   The 

modified algorithm is shown below:

void BOMStone_backpointer (dataset : S)
begin
    foreach assembly_component_usage : acu in S do
    begin
        AppendRelatedPdefBackpointers  (GetRelatedProductDefinition (acu),acu)
        AppendRelatingPdefBackpointers (GetRelatingProductDefinition (acu),acu)
    end

    foreach product_definition : pdef in S do
    begin
        if Empty (GetRelatedPdefBackpointers(pdef))
        then FindAssembly (pdef, 0);
    end
end

void FindAssembly_backpointer (product_definition  pdef, integer depth)
begin
    PrintIndent (depth)     /* indent according to depth */
    PrintProductDef (pdef)  /* print product and version name */

    foreach assembly_component_usage : acu in 
        GetRelatingPdefBackpointers (pdef) do
    begin
        FindAssembly (GetRelatedProductDefinition (acu), depth+1)
    end
end

This optimization reduces the complexity of the BOMStone algorithm to linear tim

Initialization of the back-pointers requires O(A) time, but we can find the owners and 

ponents of a part in constant time.  Over the course of all assemblies, the FindAssem

function will touch each part once, requiring O(P) operations.  The complete algorith

O(A+P), but since A is O(P), the complexity becomes O(P+P), or just O(P).
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The modifications had a large effect on the observed benchmark times.   As pred

the times for the ObjectStore and working-form implementations grew in a linear fash

As with the basic algorithm, the ObjectStore implementation was slower than the wor

form and grew at a slightly larger rate.  
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Figure 6.3 — BOMStone Timings

Figure 6.4 — BOMStone Timings, Detail Showing Benchmark 
Results Under 500 Seconds
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6.4  NURBStone Results

The NURBStone tests used a series of data sets containing between 2300 and 1

geometric objects.  In addition to the basic NURBStone algorithm, several modificatio

the Oracle implementation were tested.  These optimizations are discussed in Section

The results of all NURBStone timings are shown Figure 6.6 and Figure 6.7.  

6.4.1  Shape Test Data

Creation of physically precise shape data from scratch would require the service

CAD system or geometric modeling kernel.  However, the complexity of the NURBS

benchmark does not depend on the composition or numeric accuracy of individual s

representations. The mknurb program was developed to create data sets of varying siz

replicating an existing shape data set. 

The “moon buggy” test part shown in Figure 6.5 was replicated as needed to creat

sets of sufficient size. The moon buggy data set was created for the STEPnet inter-o

bility testing efforts [Down96] and has been used by over a dozen CAD vendors to e

that their software conforms to the standard.  The test part has 20 shape representati

uses most of the AP-203 geometric entity types. The data sets were constructed in a

of sizes between 2300 and 100,000 geometry objects.  The number of “moon buggy” c

and exact sizes of the data sets are shown in Table 6.1.       

6.4.2  NURBStone Timings

As with the previous benchmarks, the basic algorithm was tested against each SD

plementation.   The Oracle timings were performed with and without extra indices on

most-used columns.
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The working-form times were fastest and show linear growth.  The ObjectStore im

mentation was slower and differed from the working-form by a larger margin than with

Generated Data Set Copies Total Instances

ndata-002-3 1 2343

ndata-004-6 2 4686

ndata-007-0 3 7029

ndata-009-3 4 9372

ndata-011-7 5 11715

ndata-014-0 6 14058

ndata-021-0 9 21087

ndata-051-5 22 51546

ndata-100-0 43 100749

Table 6.1 — NURBStone Data Set Sizes

Figure 6.5 — STEPnet Moon Buggy
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other benchmarks.  The ObjectStore times are somewhat linear, but there is a sugge

non-linear behavior at larger data set sizes. 

As with the other benchmarks, the Oracle times were much slower, although we 

able to complete measurements on all data set sizes.  The Oracle times show a defin

linear trend.  Addition of indices resulted large reduction in the times and return to lin

behavior.   The Oracle indices were added to the keys of all geometric entity tables. 

6.4.3  NURBStone Optimizations

Two additional timings runs explored modifications to the Oracle implementation. 

Oracle NURBStone was modified to collapse multiple SDAI calls into single SQL que

where possible.  The modifications were tested with and without additional indices.

The modifications had minimal effect on the performance of the benchmark.  In b

timings, the modified algorithm was only slightly faster than the original.  The benchm

was more strongly affected by the presence or absence of indices than by the cluste

attribute access operations.   



102
Figure 6.6 — NURBStone Timings

Figure 6.7 — NURBStone Timings, Detail Showing Benchmark 
Results Under 120 Seconds
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6.5  Database Load/Unload Results

In order to gain insight into the performance of upload/download and cached bind

we measured the times required to load and extract data sets from Oracle and Objec

The measurements reflect the time required to load the database from a physical file 

as the time required to extract data from the database to a physical file.  In Section 7

combine these numbers with the results of the working-set benchmarks to estimate t

formance of alternate bindings. 

Figure 6.8 and Figure 6.9 show load and extract times for the NURBStone data s

Oracle requires much more time to transfer data than does ObjectStore.  Aside from t

ference in magnitude, extracting data from Oracle appears to be more costly than lo

it, while for ObjectStore, the opposite is true.

In Section 3.5.1, we note that the load and extract programs should behave in O(N

ion.  The load behavior for Oracle is strongly linear, while extraction shows higher-or

behavior.  In fact, we were unable to complete all of the measurements because of th

nitude of the extract times.  Addition of indices improved the extract times slightly, bu

not change their fundamental behavior.   The ObjectStore extract behavior was linear

the load behavior showed signs of higher complexity. 

We repeated the load and extract tests using PartStone and BOMStone data set

ObjectStore results were identical.   The Oracle results were identical except for the

where indices were applied.  Indices reduced extract times to almost the same value

load times.  This was unexpected because indices did not strongly affect the behavi

NURBStone data sets.  This suggests that either the extract software or Oracle indice

depend on the number of entity types in the database.  The PartStone and BOMSto

sets have a small number of entity types (two and four respectively), while the NURBS

data sets use over fifty different types. 
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Figure 6.8 — Database Transfer Times, Computed Using the 
NURBStone Data

Figure 6.9 — Database Transfer Times, Detail Showing Times Under 
500 Seconds
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7.1  Overview

We have defined several benchmarks for STEP database implementations and ha

ed them against SDAI implementations built on top of Oracle, ObjectStore and a ma

memory working form.  These results have given us some insight into four factors th

fect the performance of an SDAI implementation.

7.2  Effect of Access Performance

In Section 5.5.4, we determined that the NURBStone benchmark was an O(N) a

rithm.  Looking at the benchmark results, we expect to see linear behavior.  This is tru

the working-form binding, but we see slightly nonlinear behavior with ObjectStore and

inite nonlinear behavior with Oracle. 

The benchmark complexity analysis assumed that attribute access was a consta

operation. The benchmark results have shown that this assumption is not always val

ing the NURBStone results, we can compute the time required per object.  This time

lated to the cost of access for each system.  It is important to note that these are rel
 105
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Figure 7.1 — Average Access Time per Object, Computed Using the 
NURBStone Benchmark Results

Figure 7.2 — Average Access Time per Object, Detail Showing the 
ObjectStore and Working-Form Values
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costs.  The exact cost of access will vary based on the mix of instructions, but should

line with the results presented here.

Figure 7.1 and Figure 7.2 show the relative costs of access for each system.  The

ing-form has the lowest cost.  The ObjectStore cost is several times as large, and th

some indication that the cost may be non-constant.   The Oracle implementation has

several orders of magnitude larger that grows linearly with the size of the database. 

A variable cost of access increases the complexity of the benchmarks. As discus

Section 5.3.4, the complexity of the basic PartStone and BOMStone algorithms is O(2).   

Assuming each relational access behaves as O(N), the algorithms require O(N2) accesses 

at O(N) each, or O(N3) behavior.  This corresponds with the extreme behavior of the r

tional implementations in Figure 6.1 and Figure 6.3.

According to these results, we would expect the database extract utility to behave

O(N2) fashion.  This appears to be consistent with most of the extract times in Sectio

but not with PartStone and BOMStone extract times on heavily indexed databases. 

tional investigation is needed on the effect of indices and differing numbers of entity t

on access costs.

System Cost per Object Objects per Second

Oracle ~.05-.7 sec/obj 1.4 - 20 obj/sec (depends o
indices and DB size)

ObjectStore  ~.001 sec/obj 1000 obj/sec

Working-Form ~.00025 sec/obj 4000 obj/sec

Table 7.1 — Database Access Costs
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7.3  Effect of Usedin() Optimizations

The PartStone and BOMStone benchmarks required a Usedin() operation to trave

existence-dependent relationship.   This type of relationship is common in the STEP m

and is often used to model associated properties. 

These experiments showed the importance of a well designed SDAI Usedin() alg

rithm.   In the case of the relational system, use of SQL joins reduced higher-order be

to linear time.  Rewriting the ObjectStore and working-form implementations to use b

pointers had a similar effect.

The PartStone results (Figure 6.2) show that even with a much lower cost of acce

non-back-pointer ObjectStore and working-form systems were not able to compete w

Oracle query after 2500 objects.

These optimizations were hand-coded for maximal efficiency.   A general purpos

SDAI Usedin() implementation may not be able to reach the same performance as ha

timized code.  In any case, the benchmark results show this to be a more important 

than access speed for an SDAI binding that must work on the types of product data c

terized by the PartStone and BOMStone benchmarks. 

The back-pointer implementations were faster than SQL joins, but they require th

proper data set to be selected a-priori.  In a very large SDAI database, an SQL join 

be more useful for selecting the proper data sets for later use with a cache.  This tec

is discussed in [Sama90].
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7.4  Effect of Relational Index Optimizations

The indices did not have as large an effect as expected.   Extra indices improved

slightly in most cases.  They had a large effect on the optimized BOMStone benchm

moderate effect on the NURBStone, but only marginal effect on the PartStone.  

In general, indexing seems to be most useful in improving the SQL joins of Used

optimizations.  It also improves SQL select behavior, such as that in SDAI attribute ac

but does not reduce access cost to a constant time.

The extract operations showed varied behavior in the presence of indices.  As no

Section 6.5, indices were most beneficial for PartStone and BOMStone data, but did

strongly affect times for NURBStone data.  More investigation is needed to determin

exact nature of this behavior. 

7.5  Effect of Access Architecture

In the course of this work, we gathered benchmark performance statistics for dire

SDAI bindings on Oracle and ObjectStore, as well measurements of database load 

tract times.  We can combine the load times from Section 6.5 with the working-form b

mark times to estimate the behavior of upload/download and cached bindings.  

SDAI SQL

PartStone Slightly Better Slightly Worse

BomStone Slightly Better Much Better

NURBStone Better Better

Table 7.2 — Effect of Indexing on Benchmarks
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These estimates are accurate for upload/download bindings, but under-estimate t

formance of cached bindings, which do not require a file round trip.  The cost of a file r

trip is small (see Figure 7.2), but as noted in Section 4.4.1, an Oracle cached bindin

constructed and could be used if exact times are required. 

7.5.1  ObjectStore Alternate Bindings

The alternate bindings compare very well to the ObjectStore direct binding.  Figur

shows that, for the basic PartStone and BOMStone algorithms, the bindings are alm

distinguishable.

At smaller times, the cost of the file round trip becomes large compared to the be

mark.  The bindings remain close with the optimized algorithms in Figure 7.4, althoug

direct binding is slightly faster.  In Figure 7.5, with the NURBStone benchmark, the d

binding is faster, but the alternate bindings still have reasonable performance.

These results indicate that an ObjectStore alternate binding would have similar p

mance characteristics to the direct binding, with reduced database functionality, but a

duced implementation cost.  Assuming that the ObjectStore and Versant database s

have similar performance characteristics, these findings validate the cost-effectivene

the Versant cached binding implementation in Section 4.4.2.    
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Figure 7.3 — ObjectStore Alternate vs. Direct Bindings, Basic 
PartStone and BOMStone Algorithms

Figure 7.4 — ObjectStore Alternate vs. Direct Bindings, Optimized 
PartStone and BOMStone Algorithms
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Figure 7.5 — ObjectStore Alternate vs. Direct Bindings,  
NURBStone Benchmark
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7.5.2  Oracle Alternate Bindings

The alternate binding estimates were constructed with best-case times.  The est

used extract times from indexed databases and working-form times with back-pointe

din() optimizations.

On the PartStone (Figure 7.6) and BOMStone (Figure 7.7) benchmarks, the alter

bindings were significantly faster than the direct binding basic SDAI algorithms, but t

were not faster than direct binding optimized algorithms.  On the NURBStone bench

(Figure 7.8), the alternate bindings were slower than the direct binding in all cases.

In Section 7.2 we saw that the cost of an Oracle access operation is several orde

magnitude slower than an ObjectStore access.   This extra cost affects all Oracle bin

but in different ways.   Oracle upload/download and cached bindings have extremely

latencies.  The upload/download binding can side-step the latency by pre-fetching ap

tion data.  

An Oracle direct binding incurs a high cost for each SDAI call, but programs can

advantage of SQL operations to reduce the number of calls.   If an application can us

queries to do a large amount of work in a single call, a direct binding makes the mos

ational sense.  If applications must perform a large number of SDAI calls, particularly

higher-order complexity algorithms, one of the alternate bindings would provide bette

formance.  
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Figure 7.6 — Oracle Alternate vs. Direct Bindings, PartStone 
Benchmark

Figure 7.7 — Oracle Alternate vs. Direct Bindings, BOMStone 
Benchmark
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Figure 7.8 — Oracle Alternate vs. Direct Bindings, NURBStone 
Benchmark
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8.1  Summary

Product databases based on EXPRESS models can reduce industry’s dependen

vertically integrated engineering applications and proprietary product databases.  We

performed the following work to simplify and promote construction of product databa

• Identified several design decisions affecting the structure of EXPRESS datab

and SDAI database bindings.

• Examined the effect of binding architecture on implementation cost by looking

six prototype SDAI database bindings.

• Identified a set of benchmarks for measuring the operational characteristics o

SDAI binding on a STEP AP-203 database.

• Used these benchmarks to measure the baseline performance of implementa

built on Oracle and ObjectStore, as well as the effect of several optimizations

• Examined the effect of binding architecture on operational cost by comparing

performance measurements for direct SDAI bindings on Oracle and ObjectSt

with values calculated for the alternate bindings.
 116
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In the following sections, we summarize the conclusions and contributions of this

search and discuss areas that might benefit from future exploration.

8.1.1  Implementation Framework

We identified two important architecture decisions for SDAI database bindings.  T

first factor is data access style.  The simplest style is an upload/download binding, w

consists of off-line file upload/download tools paired with a working-form SDAI bindin

Next is a cached binding, which moves data to and from a main-memory cache.  The

style is a direct binding, which manipulates data “in place” by calling one or more na

operations for each SDAI operation. 

The second factor that an implementor must consider is whether to use code gene

or data-dictionary access.  This choice depends only on features of the underlying da

and the need for customization of the SDAI binding.  The architecture factors are su

rized in Figure 8.1.   

Figure 8.1 — SDAI Binding Design Decisions
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We examined the SDAI implementations covering the architectures shown in Tab

and noted that the cost for implementing each access style rises with the number of fe

it provides.  The upload/download and cached bindings provide SDAI access, but ar

useful for situations requiring concurrent update.  A direct binding is more costly, bu

make use of more database features and optimizations.  

We conclude that, if the application requirements permit, the most cost-effective im

mentation approach is to use code generation to construct upload/download software

testing and development are complete, the load and extract programs can be integrat

the working-form SDAI to produce a cached binding.  This architecture permits interf

for several systems to be integrated with the binding, as shown in Figure 8.2. 

Experience from these projects shows that code generation requires relatively m

changes to existing EXPRESS compiler software, and the limited scope of upload/d

load software makes it far simpler than a direct SDAI binding.  Furthermore, the cost 

veloping and maintaining a working-form SDAI binding can be distributed across sev

projects.  

Finally, by keeping the database access software simple and separate from the S

binding, future systems can explore the benefits of a client-server model with network

distribution of data.   This is particularly true now that more applications are moving 

wards web-centric designs and a Java SDAI specification is under development.  If e

neering data must be distributed to thin clients, a cached binding becomes very attra

Oracle and 
OpenODB

Early-Bound 
Upload/Download

Oracle
Early-Bound

Cached

ObjectStore and 
Oracle Early-Bound 

Direct

Late-Bound    
Upload/Download

Versant 
Late-Bound

Cached

Late-Bound
Direct

Table 8.1 — SDAI Architectures Covered by the Implementation 
Studies
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A direct binding would require complex client software and network communication 

each SDAI operation, but a cached binding could keep database load and unload so

on the server and transfer data in one burst to a lightweight Java working-form clien

8.1.2  SDAI Benchmarks

We identified a set of benchmarks to measure the operational characteristics of S

implementations.   These benchmarks are based on the STEP AP-203 information m

but can be applied to most STEP information models.   The PartStone benchmark op

on part version information, which is modeled in an existence-dependent style. The N

Stone benchmark operates on product shape information, which is modeled in a navi

Figure 8.2 — Preferred Implementation Architecture

Working Form
Cache

Modified Working Form
SDAI  Binding

DATABASE
SYSTEM A

SDAI
Application

DATABASE
SYSTEM C

DATABASE
SYSTEM B

Import/
Export

Software

Import/
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Software

Import/
Export

Software
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al style.  Finally, the BOMStone benchmark operates on bills of material, which is mod

in a mix of the two styles.

We used these benchmarks to evaluate the performance of ObjectStore and Ora

rect bindings.  In addition, we tested a working-form SDAI binding and measured the

and extract performance of the database systems.  From this information, we were a

determine the performance of upload/download and cached bindings.  These results

summarized in Table 8.2.  

These measurements showed that the access and update performance of Oracle

jectStore behave differently as the database size increases, which may influence the

ability of each binding.  For the ObjectStore system, we saw that upload/download a

cached bindings perform just as well as a direct binding.  This performance, coupled

the low implementation cost, reinforces the desirability of a cached binding.   

For the Oracle system, we saw that the cost of an access operation is several or

magnitude slower than with ObjectStore.   This severely impacts the speed of all bind

but in different ways.   The upload/download and cached bindings result in extremely

latencies, but the upload/download binding can lessen this by pre-fetching the applic

data.   The direct binding will incur a high cost for each SDAI call, but programs can 

advantage of SQL operations to reduce the number of calls.   If an application can us

queries to do a large amount of work in a single call, a direct binding makes the mos

ational sense.  If applications must perform a large number of SDAI calls, particularly

Upload/Download Cached Direct

ObjectStore Fast Fast Slightly Faster

Oracle

Slow, but can be set 
up beforehand for 
interactive code.

Slow. Better than 
direct for complex 

algorithms w/o SQL 
optimization.

Slow.  Better speed if 
SQL optimizations 

are available.

Table 8.2 — Performance of SDAI Bindings
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higher-order complexity algorithms, then one of the alternate bindings would provide b

performance.

We also tested the effect of optimizations on the underlying database.  In particula

note the importance of Usedin() optimizations to any SDAI implementation.  For the O

implementation, experience shows that the addition of indices for SDAI attribute acc

does not have as large an effect as the addition of indices for SQL joins and Usedin

mizations.

8.1.3  Recommendations for Implementors

The results of this research show that implementors must examine the applicatio

quirements for the product database.  If access to data at model granularity is sufficie

applications, one of the alternate binding architectures (cached or upload/download) s

be considered because of the lower implementation cost.   If applications require low

cy for access to individual data values, a direct binding should be used, even though

a greater implementation cost.

The SDAI session architecture provides for access to data stored in multiple repos

(database systems).  Simultaneous access to different database systems will usually

an alternate binding, as shown in Figure 8.2, due to the complexity of adding access

for multiple databases to each SDAI operation.  However, a common access protoco

ODBC, might allow a direct binding to be used with more than one database system

The complexity of applications also affects the choice of binding architecture.  In

eral, SDAI applications that have greater than linear complexity, such as the PartSton

BOMStone tests, will perform as well or better with the low implementation cost alter

binding architectures.  This is because database operations are slower than memory 

The alternate bindings extract data from the database using a linear number of datab

erations, and then perform SDAI algorithm operations at main-memory speeds.  A d
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binding must perform all of the high-complexity algorithm operations at the slower da

base speeds.

Applications that use linear time SDAI algorithms, like the NURBStone benchma

may perform slightly better with a direct binding, although this requires greater imple

tation effort.  Also, higher-order algorithms can be affected by database optimization

particular, optimizations on the Usedin() operation should be given a high priority.  T

offer the potential for large performance gains on algorithms that traverse existence-d

dent information.

8.2  Contributions

The main purpose behind the SDAI is to reduce the cost of engineering applicati

Industry needs the SDAI to make applications portable across different storage tech

gies, and to encourage the development of product databases.   Until now, there ha

no work in the field that discusses how to build an SDAI implementation, or how to a

ipate what the costs of an implementation will be.  This work offers guidance through

following contributions:

• Definition of a framework for database implementation of EXPRESS models.

These implementation architectures can be grouped into upload/download, ca

and direct implementations.  The implementation cost for the architectures ha

been illustrated using systems built on a variety of databases.

• Definition of a representative set of benchmarks for evaluating the operationa

costs of database implementations.  The PartStone, BOMStone, and NURBS

benchmarks were developed using AP-203, but the definitions they are base

are shared by many of the STEP application protocols.
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• Measurements of SDAI binding operational characteristics on database syste

that are commonly used by engineering applications.

• Recommendations for implementors based on application requirements and t

ative costs of implementation and operation for each implementation architec

These contributions should simplify construction of EXPRESS database impleme

tions by providing a well-defined framework and examples.  In addition, the results pre

ed in this work should improve the quality of implementations by ensuring design deci

appropriate to the intended use of the system.  In the larger view, it is hoped that the

tributions will help industry to integrate design and manufacturing processes and rea

benefits of concurrent engineering.

8.3  Future Work

In the course of this work, we have raised some questions that would benefit from

ditional investigation.   For example, results described in Section 6.5 suggest that O

extract software or Oracle indices might depend on the number of entity types in a data

Additional experiments could be run to determine the exact nature of this behavior.  

It would be interesting to investigate the range of algorithms appropriate for implem

ing each of the three high-level SDAI access architectures.  For example, what are th

algorithms for database load and unload programs?  How should a direct binding ma

temporary state information?   How should SDAI models be integrated back into the

base during the upload process?

A number of CAD vendors are considering SDAI bindings to their systems.  Wha

would change if the underlying system were not a general-purpose database, but ra

engineering system with its own data structures?   An implementor would not use a g
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EXPRESS to DDL mapping.  Instead, one must deal with a mapping from specific sy

structures to a specific STEP information model.  A direct binding would be similar to

incremental CAD translator.  If a direct binding must be constructed, do algorithms e

that enable incremental translation without excessive state information?

The work being done by the ODMG organization could reduce the work needed t

plement EXPRESS on object-oriented databases.   If the ODMG interfaces are imple

ed by OODBMS vendors, only one EXPRESS schema mapping and SDAI binding w

be needed for compliant systems.  However, it should be noted that the ODMG work

not address performance issues raised by this document.  Also, it would not be usef

implementations on non-object-oriented systems.   Furthermore, the future of ODMG

be in question since the leading OODBMS vendor (Object Design) appears unwilling

continue work in this area.

The OMG standards are another area of interest.  As noted in Section 2.3.4, an 

binding to the CORBA/IDL language is under development. A CORBA binding could

cilitate the development of network accessible product databases by allowing develop

build data servers based on EXPRESS databases [Hard95c].  This is one of the are

rently being explored by the participants in the National Industrial Infrastructure Proto

Consortium (NIIIP).

This consortium is exploring technologies that may reduce costs for concurrent e

neering and virtual enterprises.  In recent demonstrations, they have used the World

Web and CORBA to make STEP product data available to distributed engineering gr

The Internet, CORBA, and to some extent OLE, are transport technologies that e

wide-area access, but they do not address the meaning of the information that they 

available.  The World-Wide Web is based on transport technologies but uses the HTM

guage to describe distributed documents.  STEP can play the same role as HTML for

data and other technical design information.  Combining the international standard fo
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ital product data with the World-Wide Web and vendor-driven software integration tec

ogies such as OMG’s CORBA or Microsoft’s OLE may extend the massive collabora

of the World-Wide Web to design and manufacturing [Loff95]. 
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