Efficient Database Implementation of
EXPRESS Information Models

Efficient Database Implementation of EXPRESS Information Models
PhD Thesis, David Loffredo

| have made a PDF version of my PhD thesis and defense slides available for download. Although
| am happy to have you download, read, and use this, please note that re-distribution of these doc-

uments are not allowed without permission. If someone else would like a copy, please send them
back to my official page:

http://www.steptools.com/~loffredo/
If you plan to reference any of this material in another document, the proper citation is:

Loffredo, David, Efficient Database Implementation of EXPRESS Information Models
PhD Thesis, Rensselaer Polytechnic Institute, Troy, New York, May 1998.

Questions and comments can be mailed to nwfegdo@steptools.com

Thanks and happy reading!

http://www.steptools.com/~loffredo/

Efficient Database Implementation of
EXPRESS Information Models
by
David Thomas Loffredo
A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Martin Hardwick, Thesis Advisor

Cheng Hsu, Member

Mukkai S. Krishnamoorthy, Member

David L. Spooner, Member

Rensselaer Polytechnic Institute
Troy, New York

May 1998

© Copyright 1998
by
David Loffredo
All Rights Reserved

Contents

(@] 1= | S it .
Listof Tables Vil . .
Listof FIgUres e, iX..
ACKNOWIEdgMENTS Xii
ADStract XIV. .
1 —IntroduCtion 1....
1.1 MOUIVALION . . . oo 1
1.2 General Approach 3
1.3 ReSURS ... 4
1.4 ThesisOrganization 5
2 — Historical ReVIieW 7
2.1 OVeIVIBW .ot 7
2.2 Information Modeling and the EXPRESS Language 7
2.2.1 Information Modeling, 8
2.2.2 Why EXPRESSisImportant 9
2.2.3 Historyof EXPRESS 9
2.2.4 Language CoNnCepPtSt 11
2.25 SUMMANY ... 12
2.3 Standard for the Exchange of Product Model Data (STEP) 12
2.3.1 Structure of STEP 13
2.3.2 STEP InformationModels 14
2.3.3 STEP Physical File Exchange 18
2.3.4 STEP Data Access Interface (SDAI) 20

1

v

2.3.5 STEP Summary 23
2.4 Other Engineering Initiatives Using EXPRESS 24
2.4.1 Petrotechnical Open Software Corporation (POSC) 24
2.4.2 CAD Framework Initiative (CFI) 25
2.4.3 DARPA Initiative in Concurrent Engineering (DICE) 25
2.5 Other Standards Efforts 26
2.5.1 Object Management Group (OMG) 26
2.5.2 Object Database Management Group (ODMG) 27
3 — Framework for EXPRESS Database Implementations 28
Bl OVBIVIEW .o 28
3.2 STEP Implementation Levels 28
3.2.1 LevelOne—FileExchange 29
3.2.2 Level Two —pWorking-Form 30
3.2.3 LevelThree —Database 30
3.2.4 Level Four —Knowledgebase 31
3.2.5 SUMMAIY . .. 32
3.3 Database Implementation Process 32
3.4 EXPRESSto Database Schema, 33
3.5 SDAI Access ArChiteCtures e 35
3.5.1 Upload/Download ACCESSciiiiiiiiiiinn. 35
3.5.2 Cached SDAIACCESS . . . e 37
3.5.3 Direct-Binding SDAI ACCESSot tieeiiieea 39
3.5.4 ACCESS SUMMANYottt e e e 40
3.6 OtherDesign Considerationsu i, 41
3.6.1 EXPRESSBIindingStyle 41
3.6.2 Constraint Validation 44
3.7 Framework Summary 45
4 — Implementation Cost Studies 47
A1 OVEIVIBW . oot 47
4.2 Database Systems 48
421 OracCle 48
422 0penODB 48
4.2.3 ODbjectStore 48
424 Versant 49
425 ROSE 49
4.3 File Upload/Download Implementations 50
4.3.1 Oracle Upload/Download 50
4.3.2 OpenODB Upload/Download 52
4.3.3 Upload/Download Analysis 53
4.4 Cached SDAI Implementations 55

441 Oracle Cached SDAI 55

4.4.2 Versant Cached SDAI 56
4.4.3 Cached SDAIAnalysis 57
4.5 Direct SDAI Implementations 59
451 Oracle Direct SDAI 59
4.5.2 ObjectStore Direct SDAI i 60
45.3 Direct SDAIANnalysis 61
4.6 Implementation Summary 63
5 — Operational Cost Benchmarks 65
5.1 OVeIVIEW .o 65
5.2 The AP-203 Information Model 65
5.3 PartStone — Part Identification 67
5.3.1 Application Objects 68
5.3.2 EXPRESSDefinitions 68
5.3.3 Benchmark Operations 70
5.3.4 Complexity Analysiscoiiii .. 71
54 BOMStone —BillofMaterials 72
5.4.1 Application Objects 72
542 EXPRESSDefinitions 73
5.4.3 Benchmark Operations, 76
5.4.4 Complexity Analysis 78
55 NURBStone — Part Geometry 79
5.5.1 Application Objects 79
5.5.2 EXPRESS Definitions 80
5.5.3 Benchmark Operations 83
5.5.4 Complexity Analysisc .. 86
6 — Benchmark Results 87
6.1 OVBIVIEW . .t 87
6.1.1 SDAITeSt Systems e 87
6.1.2 TimingMethods 88
6.1.3 Data Sets 88
6.2 PartStone ResuUlts 89
6.2.1 Part Identification TestData 89
6.2.2 PartStone TIMiNgS e 90
6.2.3 PartStone Optimizations 90
6.3 BOMStone Results 94
6.3.1 Billof Material TestData 94
6.3.2 BOMSIONE TIMINGSot e 94
6.3.3 BOMStone Optimizationscciiiiiueeeo... 95
6.4 NURBStone Results 99
6.4.1 ShapeTestData 99

6.4.2 NURBStone Timingsiiiiinn 99

7

6.4.3 NURBStone Optimizations 101
6.5 Database Load/Unload Results 103
7 — DISCUSSION . . .o e 05...1
7.1 OVeIVIBW ot 105
7.2 Effect of Access Performance 105
7.3 Effect of Usedin() Optimizations 108
7.4 Effect of Relational Index Optimizations 109
7.5 Effect of Access Architecture 109
7.5.1 ObjectStore Alternate Bindings 110
7.5.2 Oracle Alternate Bindings 113
B8 —CONCIUSIONS 6....11
8.1 SUMMIATY ot e e 116
8.1.1 Implementation Framework 117
8.1.2 SDAIBenchmarks 119
8.1.3 Recommendations for Implementors 121
8.2 Contributions 122
8.3 Future WOrK 123

O — ReferenCes e 26....1

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

List of Tables

STEP Application Protocols 15
STEP Integrated Resources i 17
Characteristics of SDAI Access Architectures 40
Characteristics of Binding Styles 44
Software Design OptioNSot 45
Approaches to Constraint Validation 46
Mapping from EXPRESS to the Oracle Primitive Types 51
Mapping from EXPRESS to the OpenODB Primitive Types 53
Upload/Download Implementation Studies 54
Mapping from EXPRESS to the Versant Primitive Types 57
Cached SDAI Implementation Studies 58
Mapping from EXPRESS to the ObjectStore Primitive Types 61
Direct SDAI Implementation Studies 62
SDAI Architectures Covered by the Implementation Studies 63
Implementation Cost Summary00 it 64

Vil

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 6.1

Table 7.1

Table 7.2

Table 8.1

Table 8.2

Vil

AP-203 Units of Functionality 66
EXPRESS Entities for Part Identification 69
EXPRESS Entities for Bill of Material Assembly Structures 73
EXPRESS Entities for Bill of Material Assembly Structures 80
Entity Types Traversed by the NURBStone Benchmark 84
NURBStone Data Set Sizes 100
Database AcCeSS COStSttt 107
Effect of Indexing on Benchmarks 109
SDAI Architectures Covered by the Implementation Studies 118

Performance of SDAIBINAINgS, 120

Figure 2.1

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 5.1
Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 6.1

List of Figures

High Level Structure of STEP 14
STEP Implementation Levels 29
Upload/Download SDAI Binding Structure 36
Cached SDAI Binding Structure 38
Direct SDAI Binding Structure 39
Code Generation vs. Data-Dictionary Software 43
EXPRESS-G Diagram of the Part Identification Entities 69
Instance Diagram for Parts and Versions 70
EXPRESS-G Diagram of the Bill of Material Engineering

Assembly Entities 74
Instance Diagram of a Two Level Automobile Assembly 75
EXPRESS-G Diagram of the Geometric Model Representation

Entities 81
Instance Diagram for the Major Components of a Manifold

Solid B-REP Shape Description 82
PartStone TimiNgS oot 93

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5
Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6
Figure 7.7
Figure 7.8

Figure 8.1

PartStone Timings, Detail Showing Benchmark Results

Under 500 Seconds 93
BOMSIONEe TiMINGSo e e e 98
BOMStone Timings, Detail Showing Benchmark Results

Under 500 Seconds 98
STEPnetMoon Buggyt 100
NURBStONe TiMINgSo et ias 102
NURBStone Timings, Detail Showing Benchmark Results

Under 120 SECONAS 102
Database Transfer Times, Computed Using the NURBStone

Data 104
Database Transfer Times, Detail Showing Times

Under 500 Seconds 104
Average Access Time per Object, Computed Using the

NURBStone Benchmark Results 106
Average Access Time per Object, Detail Showing the

ObjectStore and Working-Form Values 106
ObjectStore Alternate vs. Direct Bindings, Basic

PartStone and BOMStone Algorithms 111
ObjectStore Alternate vs. Direct Bindings, Optimized

PartStone and BOMStone Algorithms 111
ObjectStore Alternate vs. Direct Bindings, NURBStone

Benchmark 112
Oracle Alternate vs. Direct Bindings, PartStone Benchmark 114
Oracle Alternate vs. Direct Bindings, BOMStone Benchmark 114
Oracle Alternate vs. Direct Bindings, NURBStone Benchmark 115
SDAI Binding Design DecCisions, 117

Figure 8.2

Preferred Implementation Architecture

Xl

Acknowledgments

After ten long years, it seems that | have built up quite a debt of gratitude.

First, on a professional level, |thank Alok Mehta for his work on the ObjectStore and
Versant projects; Rick Kramer and Vijay Raghavan for their work on the ORACLE project;
and Charles Gilman for exercising the SDAI binding used in the Versant project. Thanks

also to Sun Jianhong and Jeff Young for their thorough review of this document.

Next on a personal level, | thank Dr. Martin Hardwick and Dr. Dave Spooner for their

support and guidance over the last ten years.

So many people have provided continuous encouragement and leadership by example:
my entire family; everyone at STEP Tools; my rose-buds: Dr. Alyce (“Jasmine”) Faulstich-
Brady and Dr. Don (“Begonia”) Sanderson; the Party Consortium: Dr. Tom Bilodeau, Dr.
Kurt Dittenberger, Dr. Fabio Guerinoni, Jay Hersh, and soon-to-be Dr. Dave Tonnesen; Drs.

Dave Mcintyre and Dave Berque; Dr. Ron Kelley, John Klym, and Danny Murray.

Paula Popson was literally the first person | met at RPI, and throughout the procession
of centers — CICG, RDRC, DMI, and finally CAT/LIIl — she has always watched out for

me. Pam Paslow and Mary Johnson have also been there for me over the years.

Xl

Xl

To Dr. Mike DeMarco, who convinced me to go to graduate school and warned me

about the associated “chased by monster” dreams.

To Marty and Dave, who have been there from kindergarden to the not-so-bitter end.

And finally to The Delightful Miss Krista for providing the motivation and encourage-

ment to finish this damn thing.

Abstract

The research presented in this thesis describes a framework for database implementa-
tion of EXPRESS information models. EXPRESS models describe complex structures and
correctness conditions for engineering activities, and are defined by the 1ISO-10303 Stan-
dard for Product Data Exchange (STEP). These models are a substantial engineering re-
source, and industry desires to use them to integrate design and manufacturing processes.
Databases built around STEP models are essential because they provide content that inte-

grated engineering processes understand.

The Standard Data Access Interface (SDAI) is a STEP API for EXPRESS-defined data.
Prototypes have attempted to provide SDAI access by implementing each SDAI operation
as one or more native operations directly upon the database. A direct binding can be costly,
as it requires completely new software for each database. This work proposes several SDAI

implementation architectures that offer alternatives to a direct binding.

To evaluate the real-world performance of implementations, this work defines a set of
representative benchmarks on the STEP AP-203 information model. AP-203 contains in-
formation such as CAD geometry and product configuration that is common to all of the
STEP models. The STEPStone benchmarks cover information that is modeled in an ex-
istence dependent style (PartStone, part versions), a navigational style (NURBStone, geom-

etry), and a mix of the two (BOMStone, bill of material).

XIvV

XV

The results of timing experiments using these benchmarks are presented. The experi-
ments evaluate the performance of direct-binding SDAI implementations built on relational
and object-oriented databases, and examine the effect of various optimizations on binding
performance. Analysis of the timing results provide the relative cost of access for each sys-
tem, and allow us to determine when each implementation style will be most advantageous.
In addition, these experiments provide insight about the use of SDAI access versus tradi-

tional access strategies.

(il Introduction

1.1 Motivation

Design and manufacturing companies want to integrate their engineering processes
around product databases, but engineering databases are expensive and difficult to create.
Integration around product databases can enable concurrent engineering — a process where
multiple engineers work on different facets of a product concurrently [Winn88]. However,

integrated product databases are not yet common in industry.

One reason for this is because engineering applications have unusually complex infor-
mation models. These information models are complex because engineering applications
manipulate simulations of the real world. Models for areas such as CAD geometry, toler-
ances, materials, and manufacturing plans are structurally and semantically rich. Applica-
tions are similarly complex, and are tightly bound to the models. Consequently, developers
can only afford to build tools around successful models. To date, these have been the geo-
metric models of popular CAD systems such as AutoCAD, CATIA, Pro/Engineer, and Un-

igraphics.

Often, the information models exist only as program language structures taken from a
primary application, usually a CAD system. Without a well-defined model, subsequent ap-

plications must be modified whenever the primary application changes. In practice, only

small, highly focused, applications are ever developed by anyone other than the primary ap-

plication vendor.

The resulting situation is that only special-purpose databases, controlled by CAD ven-
dors, are used to describe complex products. Manufacturers do not have any control over
their product databases, which is clearly undesirable for strategic reasons. Also, applica-
tions that improve segments of a market cannot be applied to an industry that is locked into
vertical applications. The dominance of special-purpose databases and vertically-integrat-
ed applications is a major reason why the general-purpose engineering database market re-

mains small [Hard95b].

Industry has begun to address this problem by developing standard engineering infor-
mation models. The ISO-10303 Standard for Product Data Exchange (STEP) contains for-
mal descriptions of the information used by the engineering activities in a product lifecycle.
These models are the result of significant investments of time and expertise, and represent
the agreement of many interested parties on the scope, content, and correctness conditions

of the information.

Documenting engineering information models requires a formalism that can handle
complex structures and correctness conditions. The STEP models are written using the EX-
PRESS language. EXPRESS and other formalisms make it easier to describe an accurate
information model, but do not dictate how the models should be implemented using various

database technologies.

Because formal information models for engineering information are only now begin-
ning to appear, the literature does not adequately address ways in which databases should
provide structurally complex information to engineering applications. The research pre-

sented in this thesis addresses the issues surrounding this problem.

1.2 General Approach

The STEP information models have been used for file exchange between applications,
but have not yet been widely used to define shared engineering databases. Exchange is
done using a file format (Part 21) that can be quickly added to existing applications. Da-
tabase implementations are expected to provide access to data using the Standard Data Ac-
cess Interface (SDAI), a STEP API for EXPRESS-defined data.

The SDAI is a set of protocols, still under development, the goal of which is to reduce
the cost of complex engineering applications by making them portable across different stor-
age technologies. The SDAI protocols contain a description of the operations that must be
provided (functional specification), and several bindings that describe how these operations

are made available in different programming language environments.

Some prototype systems have attempted to provide SDAI access by implementing each
SDAI operation as one or more native operations directly upon the database. This approach
can be costly, as it requires completely new SDAI binding software for each database. Fur-
thermore, the target database system may not handle the full range of the EXPRESS struc-
tures. Unsupported structures can often be simulated using other structures, but encoding

and decoding data at run-time may reduce the performance of SDAI operations.

This work investigates the ways in which SDAI access to a database can be provided
and proposes a framework that offers a range of implementation architectures. This frame-
work introduces alternate architectures that permit more code reuse and offer different sets

of capabilities.

We survey the implementation costs using systems built on a variety of databases. To
gain insight into operational costs, we test a selection of real-world operations against sys-
tems based on Oracle and ObjectStore. Oracle is a relational system that holds data in nor-

malized tables and relies on query-based access. ObjectStore is an object-oriented system

that stores data in clusters and has an interface tuned for navigational access. Together,

they represent both extremes of database systems used by engineering applications.

The operational tests are based on the STEP AP-203 information model. AP-203 con-
tains information, such as CAD geometry and product configuration, that is common to all
of the STEP models. A set of representative benchmarks on this model are presented. The
STEPStone benchmarks cover information that is modeled in an existence-dependent style
(PartStone, part versions), a navigational style (NURBStone, geometry), and a mix of the
two (BOMStone, bill of material).

1.3 Results

The work presented in this thesis offers guidance to those who must implement engi-
neering databases around complex models. In particular, this work presents a systematic
survey of implementation architectures, a set of benchmarks that simulate how engineering
applications access a database, and recommendations drawn from experiments with a num-
ber of database systems. These results use EXPRESS, the SDAI, and AP-203, but could be
applied to other modeling formalisms or engineering areas.

In summary, this work makes the following contributions:

« Definition of a framework for database implementation of EXPRESS models.
These implementation architectures can be grouped into upload/download, cached,
and direct bindings. The implementation cost for the architectures are illustrated

using systems built on a variety of databases.

« Definition of a representative set of benchmarks for evaluating the operational
costs of database implementations. The benchmarks were developed using AP-
203, but can be applied to any of the STEP models.

* Measurements of SDAI binding operational characteristics on database systems

that are commonly used by engineering applications.

* Recommendations for implementors based on capabilities and the relative costs of

implementation and operation for each database and implementation architecture.

These contributions should simplify engineering database construction by providing a
well-defined framework, examples, and recommendations. In addition, this work may im-
prove the quality of implementations by ensuring design decisions appropriate to the in-
tended use of the system. In the larger view, it is hoped that these contributions will help
industry to integrate design and manufacturing processes and reap the benefits of concur-

rent engineering.

1.4 Thesis Organization

Chapter Two is a historical review of STEP, EXPRESS, and information modeling.

Chapter Three describes the framework for SDAI database implementations. We ex-
amine the major tasks of an implementation project and investigate design decisions facing
an implementor. This chapter also reviews earlier work as it pertains to each stage of the

implementation process.

Chapter Four estimates the implementation costs for each of the implementation tech-
niques described in the previous chapter by surveying working form SDAI, upload down-

load, cached and direct SDAI implementations built on a variety of databases.

Chapter Five describes a set of benchmarks to evaluate the operational costs of imple-

mentations. We discuss the AP-203 information model and each of the benchmarks.

Chapter Six describes the equipment and data sets used for the benchmark measure-
ments, and presents the measurement results. Each benchmark was run on the test imple-

mentations under a variety of conditions and with a number of optimizations.

Chapter Seven discusses the measurements and looks at the effect of various factors,
such as implementation architecture, cost per access, and various optimizations, as alterna-

tives to SDAI operations.

Chapter Eight summarizes the conclusions and contributions of this work and discusses

areas of future interest.

Chapter Nine lists references to the literature cited in this document.

2 Historical Review

2.1 Overview

This chapter provides background information on engineering information models.
Section 2.2 presents relevant background material on the EXPRESS language and informa-
tion modeling. Section 2.3 describes the STEP standard, including the organization of the
STEP models and the two primary implementation methods: File Exchange and the Stan-
dard Data Access Interface (SDAI). Section 2.4 describes other notable projects that have
used the EXPRESS language to develop information models. Section 2.5 discusses other

relevant standards groups, such as OMG and ODMG.

2.2 Information Modeling and the EXPRESS
Language

This section presents some background material on EXPRESS and information model-
ing. For a complete treatment of the subject, the reader is encouraged to refer to Schenck
and Wilson [Sche94] or the EXPRESS reference manual [ISO94b].

2.2.1 Information Modeling

Raw data is not information. Two parties can only exchange data in conjunction with
an agreement on the meaning of the data. Consider the number “1964.” This number is
data without information. The data becomes useful if we add the information that it is a
year (1964), or the number of tissues used during an average head cold (1964). Although

the data is the same in both cases, the information is different.

An information model is an agreement on the meaning of data. Early CAD standards,
such as IGES [IGESS80], usually focused on data exchange without a formal description of
the underlying information model. EXPRESS has been designed to represent these infor-

mation models in a formal manner.

An information model addresses the underlying meaning of data regardless of technol-
ogy. A model describes meaning through structure and correctness constraints. It does not
specify encoding techniques for data values. When two parties agree upon an information
model, they can map the model into a particular exchange technology. For example, if two
applications shared an information model for years, they might transmit the data describing
the year 1964 as the 32-bit integer “Ox000007AC,” as the IEEE 764 single precision float-
ing point number “0x44F58000,” or as the ASCII string “0x31 0x39 0x36 0x34.” Each of
these examples uses a different data exchange technology, but they all correspond to the

same information model.

The EXPRESS language is used to describe technology independent information mod-
els. Because of this, issues like representation precision and execution speed are not con-
sidered as modeling issues. As we will see, these concerns will only be addressed when an
information model is eventually mapped into the data model of an underlying storage

mechanism.

2.2.2 Why EXPRESS is Important

EXPRESS is a formal language for specifying information requirements. EXPRESS
is an ISO standard (ISO 10303-11 [ISO94b]) and has been used by STEP, POSC, DICE,
CFl, and other projects to describe the information requirements of many engineering ac-

tivities. EXPRESS has several strengths:

* The language may be used to describe constraints as well as data structures and re-
lationships. These constraints form an explicit correctness standard for an informa-

tion model.

« EXPRESS models are computer processable, so software may take advantage of

the definitions without human transcription.

 EXPRESS has undergone the international standardization process, which repre-

sents significant consensus that the language meets the needs of industry.

2.2.3 History of EXPRESS

The history of EXPRESS begins in 1982. The Product Data Definition Interface (PD-
DI) project was formed in 1982 to specify an interface between design and manufacturing
for product definitions [Wils87]. During this project, Douglas Schenck at McDonnell
Douglas developed a data definition language called DSL [Sche94]. This language was
the basis for EXPRESS.

In December of 1983, the International Standards Committee began work on the Stan-
dard for the Exchange of Product Model Data (STEP). This new standard was to define an
integrated product information model. At the time, IDEF1X [IDEF85, Loom87, Bruc92],
NIAM [Nijs82, Nijs89], and Entity-Relationship [Chen76] diagrams were in wide use for
modeling. Lexical modeling languages such as SQL [Date89], DAPLEX [Ship81], and

GEM [Zani83] were also available.

10

IDEF1X and NIAM diagrams were popular with the early STEP modelers, but ulti-
mately proved unacceptable for several reasons. Neither language was an international
standard and could not be normatively referenced by the STEP standard. It was seen as dif-
ficult to drive either IDEF1X or NIAM through the standardization process because other

groups had ownership of them.

Furthermore, IDEF1X and NIAM were diagrammatic in nature and there was a need
for a lexical form which would be easy to read, write and process. In response to this need,
Doug Schenck and Bernd Wenzel introduced a prototype of the EXPRESS language to the
STEP effort in 1986.

The language went through many revisions, and many concepts for structure and con-
straints were experimented with and refined. Development was done concurrently with the
use of the language by the STEP modelers, so feedback was rapid and focused. EXPRESS

is a very pragmatic language because of these influences.

Throughout these many revisions, EXPRESS acquired design concepts from Ada, Al-
gol, C, C++, Euler, Modula-2, Pascal, PL/l, and SQL. The language developed an object-

oriented flavor, with objects, inheritance, and a rich collection of types.

In the years since the early days of STEP, other modeling techniques have appeared.
There are extensions to the Entity Relationship model, such as the Entity Category Model
[Lars89], the Two Stage ER [Hsu89], and the Enhanced ER Model [EIma89]. Techniques
such as OMT [Rumb91], Booch, and Shlaer-Mellor have also come into use. These nota-
tions are covered in detail by Schenck and Wilson [Sche94, Wils91] and by Hull and King
[HullB7]. Recently, the Unified Modeling Language (UML) was developed by Booch, Ja-
cobson, and Rumbaugh to blend OMT diagrams, Booch diagrams, and other visual model-
ing techniques [Booc98]. Many of these techniques enjoy popularity, and recent work by

Sanderson has shown transforms from many of these notations to EXPRESS [Sand93].

11

2.2.4 Language Concepts

The function of EXPRESS is to describe information requirements and correctness con-
ditions necessary for meaningful data exchange. For example, an EXPRESS information
model might describe a balanced binary tree as binary tree structures with constraints that

must be met by an instance such that it is balanced.

EXPRESS is not an implementation language like C++ nor a functional interface de-
scription language like CORBA/IDL. Our example model does not need to describe how
items are inserted into or deleted from a binary tree in order to exchange an instance of a

tree.

An EXPRESS information model is organized into schemas. These schemas contain
the model definitions and serve as a scoping mechanism for subdividing large information

models. Within each schema are three categories of definitions:

* Entity Definitions — Entity definitions describe classes of real-world objects with
associated properties. The properties are called attributes and can be simple values,
such as “name” or “weight,” or relationships between instances, such as “owner” or
“part of.” Entities can also be organized into classification hierarchies, and inherit
attributes from supertypes. The inheritance model supports single and multiple in-

heritance, as well as a new type, called AND/OR inheritance.

* Type Definitions — Type definitions describe ranges of possible values. The lan-
guage provides several built-in types, and modeler can construct new types using

the built-in types, generalizations of several types, and aggregates of values.

* Correctness Rules — A crucial component of entity and type definitions are local
correctness rules. These local rules constrain relationships between entity instances
or define the range of values allowed for a defined type. Global rules can also make

statements about an entire information base.

12

* Algorithmic Definitions — An information modeler may also define functions and

procedures to assist in the algorithmic description of constraints.

The missing features of EXPRESS are also interesting. The language does not include
a construct for creating entity instances or an assignment statement for setting attribute val-
ues. Therefore, it cannot be used to create or modify a database. Furthermore, EXPRESS
does not allow definition of methods, so it is not an object-oriented programming language.

EXPRESS is a specification and requirements language, not a procedural language.

2.2.5 Summary

EXPRESS provides a rich collection of types and inheritance organizations to capture
data structure. Entities represent real-world objects and can be organized into complex in-
heritance graphs. There are simple values such as reals, integers, and strings, named types
to capture the meaning behind simple values, enumerations to describe a range of symbolic

values, several varieties of aggregate, and unions of different types.

EXPRESS can describe complex functional and algorithmic constraints. There are
ways to capture existence dependencies, keys, optional values, derived values, constraints
on relationships, instances and the entire information base. The language contains a rich

set of expressions, structured programming constructs, and a library of built in functions.

2.3 Standard for the Exchange of Product
Model Data (STEP)

The Standard for Exchange of Product Model Data (STEP) defines specifications for
the representation and exchange of digital product information. STEP was born in Decem-
ber of 1983, when the International Standards Organization (ISO) formed the TC184/SC4

13

committee. This group was to define a product data standard that incorporated experience
from national efforts such as IGES [IGES80], VDAFS [VDAF86], SET [SET85], ESPRIT
CAD*I [Kros89], and PDDI [Birc85, PDDI84]. The origins of the STEP effort are docu-
mented in [Wils93], and a history of the early national efforts can be found in [Wils87]. At
the time of this writing (1998), the STEP effort is still very active. Many portions of STEP

have been published as international standards, but many more are still under development.

2.3.1 Structure of STEP

Digital product data must contain enough information to cover a product’s entire life
cycle, from design to analysis, manufacture, quality control testing, inspection, and product
support functions. In order to do this, STEP must cover geometry, topology, tolerances, re-

lationships, attributes, assemblies, configuration and more.

To accomplish this ambitious goal, STEP has been divided into a multi-part standard.
The STEP parts cover general areas, such testing procedures, file formats, and program-
ming interfaces, as well as industry-specific information. STEP is extendable. Industry ex-
perts use EXPRESS to detail the exact set of information required to describe products of
that industry. ThesApplication Protocolgorm the bulk of the standard, and are the basis

for STEP product data exchange.

Figure 2.1 shows the parts of the STEP Standard. The infrastructure parts, such as the
Description Methods (EXPRESS) and Implementation Methods (file and programming in-
terface), have been separated from the industry-specific parts (application protocols). Most
of the infrastructure is complete, but the industry-specific parts are open-ended. Applica-
tion protocols are available for mechanical and electrical products, and are under construc-
tion for composite materials, sheet metal dies, automotive design and manufacturing,
shipbuilding, the AEC industry, process plants, and others. Over time, many industries will

develop their own application protocols.

14

Infrastructure Information Models

4)

- Application Protocols
Des;lrllpltzl)czgé\/lEeStgods #201 Explicit Drafting
#12 EXPRESS-| #202 Assoc. Drafting
#203 Config. Ctl. Design
Implementation Methods
#21 Physical File / Application \
#22 SDAI Operations Integrated Resources
#23 SDAI C++ #101 Drafting
#24 SDAI C #102 Ship Structures
Conformance Testing Integrated Resources
#31 General Concepts #41 Miscellaneous
#32 Test Lab Regs. #42 Geom & Topology
#33 Abstract Test Suites #43 Features

Figure 2.1 — High Level Structure of STEP

2.3.2 STEP Information Models

STEP is based on information models. These models concentrate the standardization
efforts on information content, rather than implementation technology. This insures that
efforts involved in developing the standard will not be discarded upon a change in comput-

ing technology. There are three classes of STEP information models:
» Application Protocols (APS).
* Integrated Resources (IRS).

» Application Integrated Constructs (AICS).

15

The Application Protocols are industry-specific information models for exchanging
data about activities in the life cycle of a product. These protocols are built from general
information models called Integrated Resources. In addition, STEP defines collections of
common definitions that can be shared between Application Protocols. These Application

Integrated Constructs are important when using data defined by several APs.

Application Protocols (APSs)

The STEP standard defines an open-ended number of Application Protocols (APs) for
industry-specific product data exchange. These APs are formal documents that cover a set
of activities in the life cycle of a product. Every AP defines a set of activities, information
requirements within this scope, and a formal schema for these requirements that is tied to

an integrated product model shared between all APs.

The STEP application protocols are designated as the 200-series documents. A list of
current APs are shown below. Some of these have reached international standard status

while others are still under development.

Part 201 BExplicit Draughting

Part 202 Associative Draughting

Part 203 Configuration Controlled Design

Part 204 Mechanical Desigh Using Boundary Representation

Part 205 Mechanical Desigh Using Surface Representation

Part 206 Mechanical Design Using Wireframe Representation

Part 207 Sheet Metal Dies and Blocks

Part 208 Life Cycle Product Change Process

Part 209 Design Through Analysis of Composite and Metallic
Stuctures

Part210 Electronic Printed Circuit Assembly, Design and
Manufacturing

Part211 Electronics Test Diagnostics and Remanufacture

Part212 Electrotechnical Plants

Part213 Numerical Control Process Plans for Machined Parts

Part214 Core Data for Automotive Mechanical Design Processes

Part 215 Ship Arrangement

Part 216 Ship Moulded Forms

Part 217 Ship Piping

Part218 Ship Structures

Table 2.1 — STEP Application Protocols

16

Part219 Dimensional Inspection Process Planning for CMMs

Part 220 Printed Circuit Assembly Manufacturing Planning

Part 221 Functional Data. and Schematic Representation for Process
Plans

Part 222 Design Engineering to Manufacturing for Composite
Stuctures

Part 223 Exchange of Design and Manufacturing DPD for Compasites

Part 224 Mechanical Product Definition for Process Planning

Part 225 Structural Building Elements Using Explicit Shape Rep

Part 226 Shipbuiding Mechanical Systems

Table 2.1 — STEP Application Protocols

Each AP covers a portion of a product lifecycle. For example, APs 202 through 209
handle aspects of the design and analysis of mechanical parts. AP-214 further narrows this
scope to automotive parts. APs 210, 211, and 220 cover aspects of circuit board manufac-
ture. Application protocols can also be developed outside of the standards community. For
example, the European Space Agency is developing an AP for the thermal analysis of

spacecraft [Koni95].

As mentioned above, each AP covers a set of activities in the life cycle of a product.
The statement of this scope is called the Application Activity Model (AAM). The AAM

is normally documented using IDEFO diagrams.

The next portion of an AP describes the pieces of product information required for the
activities, called the Application Reference Model (ARM). This model is concise and de-
scribes requirements in terms of basic Application Objects that a user of the AP information
would be concerned with. The application objects can be described by NIAM, IDEF1X,
or EXPRESS-G diagrams.

Application objects can be grouped into subject areas called Units Of Functionality.
The UOFs describe a logically complete subset of information about some particular prod-
uct aspect. For example, the AP for configuration-controlled designs (AP-203 [ISO94f])
contains 36 application objects, distributed among nine units of functionality. The UOFs
are Authorization, Bill Of Material, Design Information, Design Activity Control, Effectiv-

ity, End Item Identification, Part Identification, Shape, and Source Control.

17

Within each UOF are application objects that represent the information needed to de-
scribe that product aspect. For example, the Design Activity Control UOF tracks product
modifications. The application objects in this UOF are: Change Order, Change Request,

Start Order, Start Request, Work Order, and Work Request.

Finally, an AP document contains a conceptual schema that describes the ARM in terms
of a library of pre-existing definitions. This Application Interpreted Model (AIM) is always
described with EXPRESS, and is based on the definitions from the integrated resources de-
scribed in the next section. AlMs are not permitted to define new entities. They are only
permitted to refine definitions already present in the integrated resources. This restriction

prevents the same concepts from being modeled in different ways by different APs.

Integrated Resources (IRS)

The Integrated Resources (IRs) are the heart of STEP. These conceptual schemas de-
scribe an integrated product model for all APs. There are two types of IRs. Generic inte-
grated resources (40-series documents) describe very general characteristics of products
across all industries. The application integrated resources (100-series documents) refine
the integrated resources down to the needs of a particular industry. A list of current IRs are
shown below. Some of these have reached international standard status while others are

still in various stages of development.

Part41 Product Description and Support
Part42 Geometric and Topological Representation
Part43 Representation Structures
Part44 Product Structure Configuration
Part 45 Meaterials

Part 46 Visual Presentation

Part47 Shape Tolerances

Part48 Form Features

Part49 Process Structure and Properties
Part 101 Draughting Resources

Part 102 Ship Structures

Part 103 Electrical/Electronics Connectivity

Table 2.2 — STEP Integrated Resources

18

Part 104 Finite Element Analysis
Part 105 Kinematics

Table 2.2 — STEP Integrated Resources

The resources vary in their level of detail. For example, Part 41 [ISO94d] covers prod-
uct identification. Since a product could be a camshaft or an office building, these defini-
tions are very general and are normally refined by an AP or application integrated resource.
On the other hand, Part 42 [ISO94e] describes geometry, which is well-defined out of the
context of any particular application, so this part is normally used without additional refine-

ment.

Application Integrated Constructs (AICS)

STEP recently introduced a construct for describing the interoperable segments of def-
initions shared by multiple APs. The constructs, called Application Integrated Constructs
(AICs), are sets of refined definitions that must be used as a single unit, without any addi-

tional refinements.

2.3.3 STEP Physical File Exchange

STEP defines a number of implementation methods for exchanging and manipulating
information described by application protocols. The first implementation method to be de-
fined was a straightforward ASCII file format for exchanging EXPRESS-defined data sets.
This exchange file format is Part 21 of the standard [ISO94c]. A STEP exchange file con-
tains a header section with identifying information, as well as a data section, which contains

the information to be transferred. The skeleton of a STEP file is shown below:

ISO-10303-21; opening keyword */
HEADER,; Fheader section*/

[... header information ... |

ENDSEC;

DATA; *data section*/

19

[... entity instances ...]
ENDSEC;
ENDHSO-10303-21; F dosing keyword */

TheHEADER section information from a Part 21 file describes identifying information

about the file. An example header is shown below:

HEADER,;
FILE DESCRIPTION (
(Sample NURBS geometry for a Boeing 707, /*description®/
‘for the Common STEP Tasks tutorial),
1), Fimpllevel
FILE NAME (
'ap203 database, Fname?*
"1995-05-18T14:18:59-04:00, Ftimestamp ¥/
(Blair Downie)), fauthor*/
(STEP Tools Inc., F organization*/
'Rensselaer Technology Park,
Troy, New York 12180,
info@steptools.con),
'ST-DEVELOPER V14, preprocessor ¥/
" originating system */
"; f+authorization */
FILE SCHEMA ((CONFIG_CONTROL_DESIGN)); /schema?*
ENDSEC;

TheDATA section of a file contains entity instances. Each instance has an integer iden-
tifier. Thesetnnn numbers are used to refer to objects within the file. These numbers are

unique within a file, but need not be preserved over time.

Entity instances are normally written using an “internal mapping” where the name of
the entity type is followed by a list of attributes in superclass-to-subclass order. The fol-

lowing are some entities written using the “internal mapping.”

#57=DATE_AND_TIME@#58450);
#58=CALENDAR _DATE(1993,17,7);
#59=L OCAL TIME(1347,280#29);

EXPRESS AND/OR complex entities instances have more than one type, so they are
be written to a STEP file using a different encoding, called an “external mapping.” This

technique encodes an object as a list of individual types, where each type contains only the

20

attributes defined by that type. The example below shows the entry for an object that is both

a B-Spline Surface with Knots and a Rational B-Spline Surface:

#10=(
BOUNDED_SURFACE ()
B_SPLINE_SURFACE (3, 3, ({#20, #60, #100, #140),
(#30, #70, #110, #150), (#40, #80, #120, #160),
(#50, #90, #130,#170)), $, F., F., F)
B_SPLINE_SURFACE WITH KNOTS $,$,(0.0,0,0,1,1,1, 1),
(0,0,0,0,1,1,1,1),9)
GEOMETRIC_REPRESENTATION_[TEM ()
RATIONAL B_SPLINE_SURFACE (L, 1,1, 1), (1, 1,1, 1),
(1,1,1.1),(1,1,1,1))
REPRESENTATION_ITEM ()
SURFACE();

All of the supertypes are present, even the ones that have no attributes.

STEP physical files are tightly bound to the EXPRESS schema they were written
against. Because the ordering of attribute values is determined from the EXPRESS sche-
ma, changes to the schema may cause problems with files written against the original ver-

sion.

2.3.4 STEP Data Access Interface (SDAI)

The second STEP implementation method is an access protocol for EXPRESS-defined
databases, called the Standard Data Access Interface (SDAI). The goal of this protocol is
to reduce the cost of integrated product databases by making complex engineering applica-

tions portable across database implementations.

The SDAI is described by several ISO standards documents. STEP Part 22 [ISO95a]
contains a functional description of the SDAI operations, while Parts 23 [ISO95b] and 24
[ISO95c] describe how these operations are made available in the C++ and C language en-
vironments. Bindings for CORBA/IDL and Java are also being considered. All of these

documents are currently under development.

21

In addition to operations, SDAI applications can access an EXPRESS-defined session
model — an internal data set that describes the state of the SDAI session. The session mod-
el is created and modified as side effects of various SDAI operations. It keeps track of open
data sets, transactions, access modes, error logs and so forth. Some SDAI bindings also
provide a dictionary of EXPRESS definitions. The form of this data dictionary model is
itself described using EXPRESS.

The SDAI also describes a logical database organization consisting of repositories,
models, and schema instances. HEapbsitoryrepresents physical data storage, such as a
file or relational database. ADAI models a named cluster of entity instances. A model
is stored within one repository. skhema instands a collection of many models, possibly
from different repositories, that acts as the boundary for global rule checking and inter-

model references.

In general, the SDAI language bindings can be classified into two groups, early and late
binding, depending on whether the EXPRESS data dictionary is available to the software
environment. An early binding has no data dictionary, while a late binding makes the EX-

PRESS definition for each object available to an application at run-time.

SDAI Early Bindings

An early binding system creates specific programming language data structures for
each definition in an EXPRESS model. For example, an early binding, such as the SDAI
C++, contains specific classes for each definition in AP-203. An advantage to this approach
is that the C++ compiler can perform extensive type checking on an application. Special
semantics or operations may also be captured as operations tied to a particular data struc-

ture.

The classes for an early binding are normally generated by an EXPRESS compiler. En-

tities are converted to classes, types are converted to either classes or typedefs, and the EX-

22

PRESS inheritance structure is mapped onto the C++ classes. Each class has access and
update methods for the stored attributes, and constructors to initialize new instances. Be-

low is a simple EXPRESS definition that would be translated to an SDAI C++ class:

ENTITY Point;
X:REAL,
y:REAL;
END_ENTITY;
An application can use class methods to create instances, populate them, and write them
to a STEP repository. An application can also open a repository and view the contents as
instances of these classes. The example SDAI C++ code below creaitesohject and

fills in some of its attributes:

F Create a point using the default constructor
* and use the update methods to set its values. */
SdaiModelH mod;
PointH pointl = SdaiCreate(mod,Point);
point1->x (1.0);
pointl->y (0.0);
The object is created using a special version of the “new” operator and the attribute val-

ues are set using generated member functions.

SDAI Late Bindings

An SDAI late binding, such as the SDAI C, uses an EXPRESS data dictionary for ac-
cess to data values. Generated data structures are not used. Only one data structure is used
for all of the definitions in an EXPRESS model.

Data values are found by queries against the data dictionary. Applications use a few
simple functions to get and retrieve values by attribute name rather than by using special-
ized functions for each value. The example SDAI C code below creades abject and

fills in some of its attributes:

* create new instances */

23

SdaiAppinstance pointd,;
pointl = sdaiCreatelnstanceBN (myModel, "Point’);
sdaiPutAtrBN (point, X", SUalREAL, 1.0);
sdaiPutAtrBN (pointL, "Y", SUalREAL, 0.0);
In general, late bindings are useful in programming environments that do not use strong
type checking, and in software that works on data from a common subset of multiple EX-
PRESS schemas. The EXPRESS model in the dictionary may change somewhat without

necessarily affecting an application.

Another advantage is simplicity. An average AIM may contain upwards of 200 defini-
tions, each of which would become classes that must be generated, compiled and linked
into an early-bound application. A data dictionary-driven binding requires less initial work
and lends itself to faster prototyping, although the lack of compile-time type checking is a

disadvantage that will surface in larger systems.

2.3.5 STEP Summary

Some key reasons why STEP is important:

» STEP is a standard that can grow. It is based on a language (EXPRESS) and can be
extended to any industry. A standard that grows will not be outdated as soon as it

is published.

« STEP product models contain EXPRESS constraints as well as data structure. For-
mal correctness rules will prevent conflicting interpretations. STEP CASE tools

use these descriptions to create more robust, maintainable systems.

» STEP is international, and was developed by users, not vendors. User-driven stan-
dards are results-oriented, while vendor-driven standards are technology-oriented.
STEP has, and will continue to, survive changes in technology and can be used for

long-term archiving of product data.

24

The reader is encouraged to consult [Owen93] or [ISO94a] for more discussion about
the contents of the STEP standard, and the use of EXPRESS information models within the

standard.

2.4 Other Engineering Initiatives Using
EXPRESS

The following engineering initiatives have also built EXPRESS information models.
These models do not use the same integrated library of definitions as the STEP models, but

could still be implemented using the techniques described in this thesis.

2.4.1 Petrotechnical Open Software Corporation (POSC)

The Petrotechnical Open Software Corporation (POSC) is a consortium of Petroleum
companies that has been established to define, develop, and deliver, an open systems Soft-
ware Integration Platform (SIP) for use across the petroleum exploration and production in-
dustry. This SIP will be a set of standards for vendor software and is expected to improve
system integration, reduce training time, and reduce software costs. The SIP will contain
a set of comprehensive information models, specific exchange file formats, and user inter-
face “look and feel” specifications that software developers can use to improve interopera-
bility [POSC92a].

POSC and STEP have similar product data exchange goals, and POSC has adopted EX-
PRESS as their information modeling language [POSC92b]. STEP is defining application
protocols for many industries and products, while POSC is concentrating on one industry.

It is reasonable to expect the POSC information models to eventually be incorporated into

STEP as Application Protocols.

25

The POSC organization has defined a file format called RP-66 for the exchange of seis-
mic data. This format is based upon a fixed information model but has a performance edge
in some situations. This specialization may make it difficult for vendors to respond to the
evolving needs of the user community, so POSC will also need a more general purpose ex-

change format, such as the STEP Part 21 physical file format.

2.4.2 CAD Framework Initiative (CFI)

The CAD Framework Initiative (CFl) is a consortium of companies that has been estab-
lished to define a means for CAD tools to create, access, or modify electronic design data
in other tools or databases. The initial scope of the project is limited to hierarchical electri-
cal connectivity information for tools such as logic simulators, timing, analyzers, layout
tools, and so forth [CFI92].

CFI has chosen to define their connectivity information model using EXPRESS. On
top of this model, they have layered a programming interface called the Design Represen-
tation Programmers Interface (DR PI). The DR PI operations understand the semantics of
the data to a greater degree than that in the EXPRESS, so that DR PI methods can be used

to manipulate and change a circuit database during a design session.

2.4.3 DARPA Initiative in Concurrent Engineering (DICE)

In traditional design, one engineer works on a design at a time. As enterprises grow
larger, engineers become more specialized and concurrent engineering becomes more prac-
tical [Winn88]. The DARPA Initiative in Concurrent Engineering (DICE) project was be-
gun in 1988 to create a support framework for handling concurrent design and manufacture
of mechanical and electrical components. As a part of this project, EXPRESS was used to

define a Product, Process, and Organization (PPO) information model.

26

2.5 Other Standards Efforts

The following two vendor organizations are producing technology standards that may

be of some interest in the context of engineering databases and EXPRESS.

2.5.1 Object Management Group (OMG)

The Object Management Group (OMG) is a software industry consortium developing
specifications for large-scale distributed applications (open distributed processing) using
object-oriented methodology [OMG93].

The OMG was founded in April 1989, and is composed of large and small vendors
(IBM, Canon, DEC, Philips, Olivetti, AT&T, Sun Microsystems, Informix, ICL, Enfin Sys-
tems, Architecture Projects Management, Apple Computer, O2 Technology, etc.) as well as

end-user companies (Citicorp, American Airlines, British Telecom, John Deere, etc.)

Work in the consortium originally focused on specifications for an Object Request Bro-
ker (ORB), for handling distribution of messages between application objects. Inlate 1991,
several members of the OMG consortium proposed the Common Object Request Broker
Architecture (CORBA). This specification adds an object-oriented interface to the Remote
Procedure Call (RPC) mechanism. This makes it possible for object-oriented applications
to dynamically call each other’'s methods at run time. Dynamic calling allows a service to

be replaced at run time without affecting the operation of other applications.

The first phase of CORBA described the basic request broker architecture and gave ap-
plications an Interface Description Language (IDL) that can describe their services to other
applications. The next phase of CORBA is seeking to define a set of standard services for
all applications. One of these services is persistence. Other services include change man-

agement, version control, relationship management, and data interchange.

27

If the OMG effort is successful, then database systems will be required to divide their
services so that applications only have to pay for the ones that they need. However, the de-
gree to which this can be done is controversial. Today there are few, if any, examples of sys-

tems that have divided their services in the way detailed by the OMG.

2.5.2 Object Database Management Group (ODMG)

The Object Database Management Group (ODMG) is a working group of ODBMS
vendors who are cooperating to further refine the OMG specifications into an interface that
all vendors can support, allowing application portability and interoperability [ODMG93].
They are working on an object definition language (ODL) which is an extension to the
OMG IDL and an object query language (OQL) which provides declarative access for que-

ries. The OQL language is an extension of SQL.

The ODBMS vendors can be distinguished by the degree to which they are willing to
trade performance for functionality. The high performance databases only provide persis-
tence. They do so by intercepting memory faults, so these databases require minimal chang-
es to existing programs. The high function databases require many changes to applications,
but in return they extend object definitions to provide a greater range of services such as

version control, relationship management, constraint execution and so on.

This tension has split the ODMG members into two camps. The functionality camp has
more members (and therefore has more votes in ODMG) but its market size is smaller. Da-
tabase vendors in the functionality camp include Objectivity and Versant. Object Design
(ObjectStore) belongs to the speed camp and opposes efforts to add functionality require-

ments to the ODMG specifications.

8] Framework for
EXPRESS Database
Implementations

3.1 Overview

EXPRESS information models describe logical structures that must be mapped to a
software technology before they can be used. Section 3.2 reviews the four STEP imple-
mentation levels. We focus on the third level — database technology. The remaining sec-
tions study implementation decisions and propose a framework of SDAI implementation

architectures based on how they handle data access.

3.2 STEP Implementation Levels

EXPRESS information models describe logical structures. These structures must be
mapped to a software technology before they can be used. Consider the example in Section
2.2.1. Aninformation model may describe the notion of “years,” but this description must
be mapped into a specific technology — such as an ASCII string, 32-bit integer, or IEEE

764 number — before it can be used.

This technology independence is a strength when developing information models that

could be used for a long time. A model might be implemented using many data processing

28

29

technologies and would remain relevant as new technologies appear. Four levels of imple-
mentation technology have been identified for EXPRESS models [Wils90]. These levels

are shown in Figure 3.1.

f(S N
Level One Level Two Level Three Level Four
Flat Fil Working E Datab Knowledge-
atFiies orking Form atabase e
\\ Yy,)

Figure 3.1 — STEP Implementation Levels

3.2.1 Level One — File Exchange

A Level One implementation is the least complex. At this level, EXPRESS-defined
product data is passed between applications using flat files. The STEP Part 21 format has

been defined for this purpose, although other encoding specifications could be used.

An application must simply read and write files. It does not need any other features. In
particular, there are no constraints upon the representation of product data within the appli-
cation. It may read the EXPRESS-defined data file using a dedicated parser and immedi-
ately convert the instance data into some other structure. The application does not need to

use the EXPRESS model for operating on data, only for reading and writing files.

Level One implementations were the first to appear and are now quite common. Many
CAD vendors have built Part 21 interfaces that support the exchange of AP-203 data. Some

PDM vendors are also beginning to add file exchange interfaces to their systems.

30

3.2.2 Level Two —pWorking-Form

A Level Two implementation has all features required by Level One, plus the ability to
manipulate data based upon the EXPRESS information model. A working-form applica-
tion communicates with other applications using exchange files. However, when an appli-
cation reads a file into memory, the data is made available to the code in a form organized
and described by the EXPRESS model.

The SDAI has been developed as a standard API for working-form applications. The
SDAI functions allow programs to manipulate any product data defined by an EXPRESS
model. Other programming bindings could also be used, as long as they are based upon
EXPRESS models.

A number of working-form implementations have been built, such as the ST-Developer
ROSE and SDAI libraries [Hard91] and the NIST SCL [Clar90,Saud95]. Working-form
bindings are often used just for their Level One file exchange properties. In fact, most of

the CAD system Part 21 interfaces have been built around working-form bindings.

3.2.3 Level Three — Database

A Level Three implementation has all features required by Level Two, plus the ability
to work with data stored in a Database Management System (DBMS). Databases organize
large quantities of information [Gall84] and an integrated product database may store data
that covers many aspects of the engineering life cycle. Multiple applications can access the

product data, and may take advantage of database features such as query processing.

The implementation should also be able to read and write exchange files and make
product data available using either the SDAI or another API that presents data as EX-
PRESS-defined structures. A database implementation may support validation of some

EXPRESS constraints, but need not support them all.

31

Limited work has been done on SDAI database implementations. As we will discuss in
Section 3.4, several groups have looked at mapping EXPRESS-definitions into database
structures, but few have attempted to provide SDAI access to the structures. The first SDAI
database prototype was based on Objectivity [Whit91]. Herbst describes some work with
ObjectStore [Herb94] and Erlangen University has investigated a number of systems
[Kreb95a]. The following chapter describes SDAI systems constructed at Rensselaer and

STEP Tools using the ObjectStore, OpenODB, Oracle, and Versant database systems.

3.2.4 Level Four — Knowledgebase

A Level Four implementation has the features of all lower implementations, as well as
full support for EXPRESS constraint validation. A knowledgebase system should read
and write exchange files, make product data available to applications as EXPRESS-defined
structures, work on data stored in a central database, and should be able to reason about the

contents of the database.

Knowledgebase systems encode rules using techniques such as frames, semantic nets,
and various logic systems, and then use inference techniques such as forward and backward
chaining to reason about the contents of a database. Consult [Brac85] for more information

on knowledge representation systems.

Knowledgebase implementations do not exist, although some interesting preliminary
work was done by the PreAmp project [Gadi94, Mull93]. The PreAmp project built an AP-
210-based system for analyzing the manufacturability of electronic circuit boards. The key
component of this was a “manufacturability advisor,” which loads AP-210 data into an In-

tellicorp Kappa database, where rules analyze aspects of the design.

32

3.2.5 Summary

EXPRESS information models describe logical structures that must be mapped to an
implementation technology before use. The file and working-form implementations have
the fewest requirements and are widely available. Database and knowledgebase implemen-
tations have more requirements and are not common. The following sections focus on ways

to satisfy the requirements for database (Level Three) implementations.

3.3 Database Implementation Process

In order to construct an engineering database around an EXPRESS information model,

we must:
* Define the database structures from EXPRESS.
» Provide SDAI access to the database.
The first task has been well-researched and is summarized in Section 3.4.

The second task requires several design decisions. An implementor must decide how
to transfer data between database and application. Section 3.5 identifies three architectures:
file upload and download with working-form SDAI, cached SDAI, and direct SDAI. Other
decisions are discussed in Section 3.6, such as how to make EXPRESS structure definitions

available and how constraints might be validated.

33

3.4 EXPRESS to Database Schema

Implementors must convert an EXPRESS information model into schema definitions
for the target database. This conversion requires a mapping from the EXPRESS language

into the data model (DDL) of the target database system.

The literature contains mappings from EXPRESS to many of the popular data models.
For example, McDonnell/Douglas [Egge88], Rutherford Appleton Laboratory [Mead89],
NIST [Morr90], and Rensselaer [Ragh92] have shown mappings of EXPRESS to the rela-
tional model. Erlangen University has shown a mapping to the Postgres extended relational
model [Kreb95b].

Sanderson and Spooner describe mappings between EXPRESS and the network, hier-
archical, and relational models. This work also shows that EXPRESS is semantically richer
than these models [Sand93]. Sanderson has also shown a general mechanism for identify-

ing information loss between data models [Sand95].

Some object-oriented database systems use programming languages as a DDL. Work
on C++ mappings has been done by the Norwegian Institute of Technology in Trondheim
[Totl92], STEP Tools [STI92c], and NIST [Clar90]. Additional work on programming lan-
guage mappings has been done by STEP WG11 during the development of the SDAI bind-
ings [ISO95b, 1ISO95c].

An implementor can use an existing mapping if applicable, but some database systems
may require a new EXPRESS to DDL mapping. EXPRESS information models can chal-
lenge the capabilities of existing database systems. In particular, the following features of
EXPRESS may require encoding or other manipulations to preserve the original informa-

tion within the native data model:

* Entites — Entity instances do not require unique keys formed from attribute val-

ues. Instead, each instance has an implicit identifier, which is used to store relation-

34

ships. Systems that rely on unique keys for identification will probably need to add

additional identifier data to entities.

* Inheritance — The EXPRESS inheritance model is rich. It includes single inherit-
ance and multiple inheritance. It also supports AND/OR inheritance, where an in-
stance may have a set of types. Since inheritance implies duplication of attributes
between supertypes and subtypes, normalization [Date86] may be needed for some

database systems.

* Primitive Types — EXPRESS supports seven primitive types — integer, real, num-
ber, string, binary, boolean, and logical. New types can be defined by adding con-
straints to existing types. Encoding may be needed for some of the primitive types

or defined types.

* Enumerations — Each set of enumerated values is in a separate name space. Not
all database systems support enumerations as a primitive type. For example, these

might require simulation as a foreign key to a separate table of enumerators.

* Selects — The EXPRESS select type is analogous to a strongly typed union and is
used to group disjoint types. Selects can be formed from any number of base types,
and can be nested to arbitrary depth. Few database systems support a union type.
It may be necessary to simulate this structure using a vector with discriminant or

other technique.

» Aggregates — EXPRESS supports ordered and unordered aggregates formed of
any base type and nested to arbitrary depth. These types of structures are only sup-
ported by non-first normal form databases. Even with these, some aggregate styles

may need to be simulated.

35

A mapping from EXPRESS to a database schema should address each of these con-
structs. Depending upon the database, an implementor may also be able to address derived

attributes, local and global constraints, unique, or inverse clauses.

3.5 SDAI Access Architectures

SDAI binding software uses the database DML to transfer EXPRESS-defined data be-
tween database and application. The most important design decision facing an implemen-
tor is how to transfer data between database and application. Based on the quantity of data

and time of transfer, we identify three architectures:

» Entire model, off-line batch transfer — File Upload/Download SDAI Binding.
» Entire model, on-line batch transfer — Cached SDAI Binding.
* Individual values, on-line transfer — Direct SDAI Binding.

We discuss the characteristics of each architecture in the following sections.

3.5.1 Upload/Download Access

A file upload/download SDAI binding operates on an entire SDAI model at one time.
The size and composition of the model is not rigidly determined, but it should contain all
data needed for a single application run. When SDAI access is desired, the model is ex-
tracted from the database and written to a file, usually in Part 21 format. The file is read
into main-memory and manipulated by an application built around a working-form SDAI
binding. When the application is finished, the updated file can be loaded back into the da-

tabase.

36

A file upload/download binding is composed of two pieces. The first is a transfer pro-
gram that moves EXPRESS-defined data between the database and exchange file. The sec-
ond is a working-form SDAI binding that can read an entire Part 21 data set into memory,
manipulate it, and write it back out to a file when finished. Since working-form bindings
operate on main memory data, they can offer extremely fast performance. Figure 3.2 shows

the structure of an upload/download interface.

SDAI

SDAI or other Import/
or other Working Export DATABASE
Application Form Programs

Binding

Figure 3.2 — Upload/Download SDAI Binding Structure

This SDAI architecture does not take advantage of many database features. Applica-
tions written using the native database interface could use queries, locking, and such, but

SDAI applications can only use the database as a form of file system.

When the SDAI model is extracted, the database can be locked on a per-model basis to
prevent conflicting updates, but locking on a smaller level would not be possible. Concur-
rent update on a data set would be difficult, since copies of the data would be separated by
time and space once they have been extracted. Delta scripts have been proposed as way to

implement concurrent update in such a situation [Hard93, Hard95a].

This architecture has a high latency since an entire model must be extracted from the
database before an SDAI application can begin work. However, the extract process can be
performed before the data is needed, which may be of use if the process is particularly time

consuming.

37

The load and extract programs should only require O(N) database accesses. These pro-
grams must touch every instance in an SDAI model, perhaps through a two pass algorithm
that creates instances and then fills in references. Once a model has been extracted, a work-
ing-form SDAI can read the file and access data at main-memory speeds. The file could be
processed by several programs. If many programs need access to static data, this technique

could be used to alleviate demand on the database server.

The model only needs to be loaded back into the database if it has changed. The load
program could replace the entire model or it could try to identify and replace only what has

changed.

An upload/download binding should not be too difficult to construct. The upload and
download programs operate in a batch fashion, so they can be coded using straightforward
algorithms. For example, they could transfer data using several passes or use global infor-
mation about the data set. A new working-form SDAI library could be implemented, but

it is far more cost effective to reuse an existing one.

3.5.2 Cached SDAI Access

A cached SDAI binding also operates on an entire SDAI model. Unlike the file upload/
download binding, the model is transferred to and from a main-memory cache. Once in the
main-memory cache, the data can be manipulated by an application built around a working-
form SDAI binding. When the application is finished, the cached model can be loaded back

into the database. Figure 3.3 shows the structure of a cached SDAI binding interface.

A cached binding architecture shares most characteristics of a file upload/download
binding. Since the binding software does not read and write an intermediate file, a cached

binding will have a slightly lower latency than a file upload/download binding.

38

Modified A
SDAI Working Form

Application SDAI I Working Form
Cache

Binding
Figure 3.3 — Cached SDAI Binding Structure

DATABASE

If the database is fast, the cache load time may be close to the file read/write times. In
this case, a cached binding would be faster and more much convenient than a file upload/

download binding.

If the database is slow and the cache load time is much larger than the file read/write
times, the savings would be minimal. A cached binding must extract data while the appli-
cation is running and must extract a separate copy for each application. A file upload/
download binding can extract data overnight if necessary, and can amortize the cost of ex-

traction over several applications that use the same data.

A cached SDAI binding should require only slightly more effort to implement than a
file upload/download binding. The upload and download operations must be developed as
functions rather than as stand-alone programs. These must be integrated into an existing
working-form binding, but they can still use straightforward algorithms. It may be desir-
able to develop a file upload/download binding first, then evolve it into a cached binding if

necessary.

It may also be possible to construct a cached binding that operates on several different
types of database. The modified working-form SDAI could have upload and download li-
braries for several database systems. Once loaded into the memory cache, an application

could simultaneously manipulate data from many different systems.

39

3.5.3 Direct-Binding SDAI Access

A direct SDAI binding operates on one data value at a time. Applications manipulate
the database directly, with no intermediate cache. Each operation in the SDAI binding is
implemented as one or more native operations directly upon the database. Figure 3.4 shows

the structure of a direct SDAI binding interface.

SDAI
Application

Direct SDAI
Binding DATABASE

Figure 3.4 — Direct SDAI Binding Structure

This architecture has low latency since no information must be extracted from the da-
tabase before an SDAI application can begin work. This SDAI architecture can take full
advantage of database features. Concurrent updates and fine-grained locking can be used

to the full extent supported by the database.

Previously, we noted that file upload/download and cached bindings require O(N) da-
tabase operations. Generally, a direct SDAI requires a constant number of database opera-
tions for each SDAI operation. An application built with an O(log) algorithm will require

O(log) database operations while an é)(Blgorithm would require O® database calls.

A direct SDAI binding could be difficult to construct. Each operation must be imple-
mented using native database methods. Isolated operations may require more complex al-
gorithms than batch code, particularly if the data is heavily encoded. The binding may also
need to keep state information between calls so that cursors can be opened or closed, and

the mapping between SDAI object identifiers and database identifiers can be preserved.

3.5.4 Access Summary

These architectures offer a range of implementation costs and capabilities.

download and cached binding systems can be built with straightforward algorithms and ex-
isting code, but can not take advantage of many database features. From the application

point of view, they have a high latency, but good performance once the data is loaded.

The direct binding systems require complex algorithms and quite a bit of new code, but
they can make more database features available to an SDAI binding. They offer low laten-

cy, but are more heavily influenced by the speed of the underlying database system.

The relative merits of each architecture must be evaluated in light of the database sys-
tem, information model, and user requirements. Capabilities and costs increase as one
progresses from an upload/download to a direct binding. The architecture must be justified
against expected SDAI applications. If low latency or concurrent update is required, a di-
rect binding must be used. If neither capability is essential, a file or cached SDAI binding

could provide access at a more reasonable cost. The pros and cons of the architectures are

summarized in Table 3.1.

File Upload/

(Instance) Locking

Download Cached Direct
Concurrent Update No No Possible
Coarse-Grained Possible Possible Possible
(Model) Locking
Fine-Grained No No Possible

O(N) accesses

O(N) accesses

As required by

Latency

pre-fetched

Database Calls O(N) updates O(N) updates algorithm
off-line on-line
High, but could be High Low

Table 3.1 — Characteristics of SDAI Access Architectures

41

File Upload/ Cached Direct
Download

System With High OK, if data can be Poor Depends on amounnt

Operation Cost pre-fetched of data accessed

Good Good (very cost Good

System With Low effective, low

Operation Cost implementation

cost)

Table 3.1 — Characteristics of SDAI Access Architectures

3.6 Other Design Considerations

Once the style of data access has been identified, an implementor must consider at least
two more design factors. The first is how the database access software will be adapted to
different EXPRESS structure definitions, and the second is how the software will handle
EXPRESS constraints.

3.6.1 EXPRESS Binding Style

The SDAI database access software should be written so that it can be adapted for use
with different EXPRESS schemas. This can be done by writing or generating specific soft-
ware for each information model (early binding), or by writing general-purpose software
that works from a data-dictionary representation of each information model (late binding).

These approaches are illustrated in Figure 3.5.

Code Generation (Early Binding)

This approach creates custom software for every information model. An EXPRESS

compiler can generate programming language data structures and functions for each defi-

42

nition in the model. The compiler can generate load/unload programs, or libraries of data

transfer functions.

The code generated by an EXPRESS compiler can use the public database API, or un-
documented features that offer performance enhancements. There is no significant penalty
for using the undocumented features, since the compiler can be updated and code regener-

ated if features are changed or eliminated.

Many database APIs are in C, but C++ is a good language choice for generated code.
C++ has strong type checking, supports inheritance, allows methods to be attached to class-

es, and can inter-operate with an existing C API.

Data-Dictionary (Late Binding)

This approach creates one body of general-purpose software that consults a data-dictio-
nary for each information model. The software accesses the database through calls against
the data-dictionary with names of types and attributes. This approach works well for sys-

tems that have strong data-dictionary support.

An interface that require extensive encoding of the EXPRESS model might perform
better with code generation. Encoding means that the data must be assembled or disassem-
bled when moving between interface and database. A late-bound interface must do this ma-
nipulation by interpreting the data-dictionary at run-time, while generated code can be

compiled for extra speed.

EXPRESS compilers can generate programs from easily changed templates, so a gen-
erated interface may be easier to optimize than a dictionary interface. Furthermore, after
being generated, programs can be changed by hand to optimize access or storage of certain
entity types or attributes. The general-purpose core of a dictionary-based system must treat
all structures uniformly, and makes no provisions for fine-tuning particular entities or at-

tributes.

43

EXPRESS-Defined Data
(Part 21 File or SDAI Appl.)

\
(Info Model A Data Dictionary Program

Generated Program
(Info Model B _/
Generated Program
Info Model C *

Generated Program
hAL

Figure 3.5 — Code Generation vs. Data-Dictionary Software

Data Dictionaries

It is possible to use a mixed approach, where code generation is used for some struc-
tures and a data-dictionary for the rest. For applications that only deal with part of an in-
formation model, this approach allows for strong type checking and other benefits of code
generation while reducing the number of unused definitions that must be managed. How-
ever, a database interface does not normally benefit from this technique, since an interface

generally uses everything in an information model.

An implementor should consider the size of information models. Models can contain
several hundred definitions. For example, the relational table definitions for AP-203 re-

quire over 1800 lines of generated SQL. This many definitions may strain a database sys-

44

tem, and the implementor may need to adjust various parameters or add extra table space

to handle the definitions.

Experience will determine whether existing database systems can even handle such
large information models. Limitations in these systems may require that subsets of infor-
mation models be used. Another approach that might be explored is to use an EXPRESS
view mechanism to create information models that are simpler and less taxing on a partic-

ular system [Hard94].

The choice of binding style depends mostly on the database services provided by the
underlying system. The characteristics of each style are summarized in Table 3.2. In situa-
tions where a system could use either, the code generation style should be given preference
if customizability is important. A code generation system might also be more efficient,

such as with static vs. dynamic SQL.

Code Generation Data-Dictionary
Svst Any System Run-time accesg
= ystem through Data
equirements e
Dictionary

Moderate (modify Moderate (new

Cost to Implement EXPRESS EXPRESS-driven

compiler) transfer software)

High. Code for | Low. All instances

Customizability eachinstance canlje are treated alike
changed

Table 3.2 — Characteristics of Binding Styles

3.6.2 Constraint Validation

A key feature of EXPRESS is the explicit representation of constraints. Full support

for constraints is feature of knowledgebase implementations, but database implementations

45

may also provide limited support. Depending upon the database system, the software may

be able to validate some of the constraints.

The different access styles can affect how and when constraints might be evaluated.
Batch validation is the only option for upload/download software. Constraints can be eval-
uated interactively by software using a cached or direct SDAI binding. Validation might be

done by code generated for each constraint or by a dictionary-based EXPRESS interpreter.

3.7 Framework Summary

Before any work can begin, an implementor must understand and be able to draw cor-
respondence between the database data model and the range of structures representable by
EXPRESS. Once a mapping has been selected or developed, work can begin on the data-

base access software.

Reviewing the software design factors, we find a matrix of design decisions. One axis
corresponds to the services provided by the software (access style), while the other corre-
sponds to the manner in which the software is written (binding style). This breaks down to

the six possibilities shown in Table 3.3

Access Style
Early-Bound Early-Bound Early-Bound
Binding Upload/Download Cached SDAI Direct SDAI
Style Late-Bound Late-Bound Late-Bound
Upload/Download Cached SDAI Direct SDAI

Table 3.3 — Software Design Options

If an implementation chooses to provide support for constraint validation, we have the

range of approaches shown in Table 3.4.

Upload/Download Cached Direct
Batch Evaluation Batch or Interactive Batch or Interactive
Evaluation Evaluation

Table 3.4 — Approaches to Constraint Validation

46

4l |mplementation Cost
Studies

4.1 Overview

In this chapter, we examine the results of several implementation projects. These
projects illustrate all of the approaches to data access that were described in Section 3.5.
The systems were built on a variety of databases. We look at the construction of each sys-

tem and discuss the implementation costs.

Before we discuss the implementation projects, Section 4.2 examines the characteris-
tics of each database system. Next, we look at each data access style. Section 4.3 covers
file upload/download implementations built on Oracle and OpenODB. Section 4.4 discuss-
es cached SDAI bindings on Oracle and Versant. Finally, Section 4.5 looks at direct SDAI
bindings on Oracle and ObjectStore. We briefly describe the construction and EXPRESS/
DDL mappings of each system. We conclude each section with a discussion of the design
decisions and required implementation effort. There are many ways to measure implemen-

tation effort, but we will use lines of code to estimate relative construction costs.

47

48

4.2 Database Systems

The implementations discussed in this chapter were built using the Oracle, OpenODB,
ObjectStore, and Versant database systems. In this section we discuss the characteristics of
these database systems. We also discuss the working-form SDAI library used by the up-

load/download and cached SDAI implementations.

4.2.1 Oracle

Oracle is the most widely used of the systems examined here. Oracle and other rela-
tional systems such as DB/2 and INFORMIX are used by engineering organizations to store
and manage configuration control data. The strength of relational systems is in their ability
to store large amounts of data in a highly normalized, tabular form, and to perform efficient
gueries across large data sets. Relational systems use SQL for both data definition and data

manipulation.

4.2.2 OpenODB

OpenODB, from Hewlett Packard, is a hybrid system that combines the recognized
strengths of relational systems with an object data model. This system provides an object
management front-end to a relational database, and introduces a new object-oriented query
language, based on SQL, called OSQL. The OpenODB data model is based upon objects,
types, and functions. Functions can be stored, in which case they behave as traditional at-

tributes, or they can be computed using OSQL or external software [Open92].

4.2.3 ObjectStore

The ObjectStore object-oriented database system, from Object Design Corporation, in-

tercepts virtual memory page faults to make C++ objects persistent without need for a spe-

49

cial class library. The ObjectStore data model is C++ and a customized compiler is used
for schema capture. Data-dictionary support and query-based access were originally lim-

ited, but have improved in recent versions of the software [Obje94].

4.2.4 Versant

Versant is an object-oriented database system from Versant Object Technology (origi-
nally Object Sciences Corporation). Versant provides a persistent C++ class library and a
central server for data check in, check out, and queries. A modified C++ compiler can be
used for schema capture, but the data model can be separated from C/C++ and supports pro-

gramming bindings to languages like Smalltalk [Vers93].

4.2.5 ROSE

The projects in this chapter used ST-Developer, from STEP Tools, for STEP and EX-
PRESS development support. This package includes the ROSE C++ and SDAI C working-
form libraries for application development [STI92a, STI192b]. The ROSE library predates,
and has influenced, the SDAI C++ specification. It provides all required SDAI services,

but the organization and naming of some function calls are slightly different.

These libraries provide Part 21 file /O, EXPRESS data-dictionary access, program-
ming access, and in-memory working-form cache management. The Oracle and OpenODB
projects added customized code generation software to the ST-Developer EXPRESS com-
piler. ST-Developer also contains an EXPRESS interpreter, which was used for constraint

validation.

50

4.3 File Upload/Download Implementations

The first two implementations are based upon Oracle and OpenODB. These implemen-
tations provide access by loading and extracting files that can be used by an SDAI working-
form binding. The Oracle and OpenODB implementations are general-purpose; they may

be used with any EXPRESS information model.

4.3.1 Oracle Upload / Download

The file upload/download interface to Oracle was implemented using code generation.
A specially modified EXPRESS compiler generates three programs for each EXPRESS in-

formation model.

The first program defines the database schema using SQL “CREATE TABLE” state-
ments. The remaining two programs use embedded SQL and the ROSE C++ library to
move EXPRESS-defined data between a STEP Part 21 file and an Oracle database.

The upload program reads a Part 21 file into memory and makes SQL calls to create
objects in the Oracle database. The download program uses SQL queries to select a data
set and extract attribute values from the database. The program creates in-memory objects

which are later written as a STEP Part 21 file.

EXPRESS Mapping to Oracle SQL

The Oracle implementation uses the mapping from EXPRESS to the relational model
described by [Ragh92]. Each entity is mapped to a table with columns for attributes. Each
table has a column with a unique identifier for each instance. Attributes with primitive val-
ues are stored in place, and composite values like entity instances, selects, and aggregates

are stored as foreign keys containing the unique instance identifier.

51

Inheritance is normalized out of the tables. The table for each entity type contains the
local attributes defined by the entity, and uses the instance identifier as the primary key. A
complete entity instance, with all inherited attributes, can be reconstructed by a join on the

identifier across all tables in the type hierarchy.

The Oracle primitive data types are not as extensive as those of EXPRESS. Booleans
and logicals are approximated as integer values; enumerations are stored as strings; defined
types of primitives are treated as the base primitive type. The corresponding EXPRESS and

Oracle types are shown in Table 4.1.

EXPRESS Type ORACLE Type
REAL floatidouble
INTEGER integer
BOOLEAN integer
LOGICAL integer
STRING varchar
BINARY number
ENUMERATION varchar

Table 4.1 — Mapping from EXPRESS to the Oracle Primitive Types

The only aggregate structure that Oracle supports is a table of tuples. The EXPRESS
aggregates are simulated by using a foreign key to group all elements in a particular aggre-

gate instance. An additional index column preserves the ordering of lists and arrays.

The relational model does not directly support the union construct, so EXPRESS Se-
lects are simulated by a table with a column for each possible member type. Only one col-

umn in each tuple contains a value. The remaining columns are null.

EXPRESS imposes no limit on the length of type or attribute names, and many infor-
mation models define entities and attributes with long names. Oracle restricts the length of
table and column names to 30 characters. Name length conflicts are resolved through an

abbreviation algorithm.

52

4.3.2 OpenODB Upload / Download

The file upload/download interface to OpenODB was also implemented using code
generation. A specially modified EXPRESS compiler generates three programs for each
EXPRESS information model.

The first program defines the database schema using OSQL “CREATE TYPE” and
“CREATE FUNCTION” statements. These statements are executediassing— the
OpenODB OSQL interpreter. This defines database structures for the information model

using the mappings described below.

The second and third programs use the OpenODB Oaci programming interface and the
ROSE C++ library to transfer EXPRESS-defined data between a STEP Part 21 file and an
OpenODB database. These programs operate in the same way as the Oracle upload and

download programs.

EXPRESS Mapping to OpenODB OSQL

The OpenODB data model is object-oriented and supports object types with identity
and associated stored or computed functions (attributes). EXPRESS entity types map easily

to OpenODB object types. Each explicit attribute can be represented as a stored function.

The OpenODB inheritance model supports EXPRESS single and multiple inheritance.
EXPRESS AND/OR inheritance can be represented by adjusting the types of instances us-
ing the OSQL “ADD TYPE” and “REMOVE TYPE” statements.

The OpenODB data model supports many features of EXPRESS, but not all of them.
Some EXPRESS constructs must be simulated. OpenODB supports almost all of the EX-
PRESS primitive types. Logicals and enumerations must be simulated using object types.

Instances of these object types were used to represent each of the enumerated values. De-

53

fined types of primitives are treated as the base primitive type. Corresponding EXPRESS
and OpenODB types are shown in Table 4.2.

EXPRESS Types OpenODB Types
REAL float/double

INTEGER integer
BOOLEAN boolean
LOGICAL class (three instances)

STRING(N) char (varn)

BINARY(N) binary (n div 8)

ENUMERATION class (fixed instances)

Table 4.2 — Mapping from EXPRESS to the OpenODB Primitive
Types

As with Oracle, EXPRESS selects are modeled as a tuple of possible types. Only the

column for the type in use contains a value. All others are null.

OpenODB supports EXPRESS unordered aggregates (Bag and Set). Ordered aggre-
gates (List and Array), are simulated as a bag of tuples with index and element columns.
Nested aggregates are simulated as a bag of tuples with an element column and multiple

index columns.

The OSQL language can define both computed and stored functions. EXPRESS in-
verse attributes map to functions containing OSQL queries. Mappings for EXPRESS de-
rived attributes, local rules, and uniqueness constraints were not defined, but may be

addressed by future projects.

4.3.3 Upload/Download Analysis

The upload/download implementations were straightforward to build and maintain.
The upload and download programs were developed by writing programs for a group of

sample types. Next, the programs were parameterized, and an EXPRESS compiler was

54

modified to generate copies of the programs with specific types. The parameterized tem-

plates can be modified as needed for customized programs.

To understand the relative implementation costs, consider the amount of code required
to build each system. The Oracle code generator required about 3000 lines of compiler ex-
tensions with another 2000 lines of template code. The OpenODB generator required 2000
lines of compiler extensions with 4000 lines of template code. As we will see, this is quite

reasonable when compared to a direct SDAI implementation.

Code generation was used to take advantage of the Oracle query optimizer. A data-dic-
tionary approach would require dynamic SQL, which is not as efficient and is not portable
across relational systems. This was not an issue with the OpenODB implementation since
all access is handled through dynamic SQL/OSQL, but code generation was still used be-

cause of its simplicity.

Implementation

System Software Written for Binding Effort
OpenODB OpenODB Oaci upload and download 6000 lines
program templates, OSQL data definition
templates, EXPRESS compiler generator

extensions.
Oracle Oracle Pro/C upload and download program 5000 lines

templates, SQL data definition templates,
EXPRESS compiler generator extensions.

Table 4.3 — Upload/Download Implementation Studies

The Oracle relational model and EXPRESS are significantly different, which forces the
implementation software to do a large amount of assembly and disassembly when transfer-

ring data into and out of Oracle.

The OpenODB model is closer to EXPRESS, and the effort required to map between

them is correspondingly lower. It should be noted, however, that the underlying OpenODB

55

storage engine is based on relational technology. Therefore, the OpenODB object manager

must perform the same assembly and disassembly as the Oracle implementation.

4.4 Cached SDAI Implementations

Next, we look at cached SDAI implementations based on Oracle and Versant. These
bindings move data to and from an SDAI working-form cache. The Versant implementation
may be used with any EXPRESS information model. The Oracle implementation only sup-

ports AP-203, although it was derived from the general-purpose upload/download system.

4.4.1 Oracle Cached SDAI

The cached SDAI interface to Oracle was constructed by modifying the upload/down-
load system described in Section 4.3.1. The generated load and extract applications were
modified to perform additional processing upon the data. This interface was constructed to

run the AP-203 benchmarks described in the following chapters.

We already had an implementation of the benchmarks using the ROSE C++ library. The
upload and download programs also used the library, so we merged the generated code into
the benchmarks. The resulting benchmarks used data brought into memory from Oracle
instead of a Part 21 file. The benchmarks only required read access, so the upload program

was not merged, although this would not be a difficult task.

The implementation uses the same EXPRESS mapping described in Section 4.3.1.
Since this implementation was based on the upload/download system, it can be classified
as a code generation system. The generated code was hand-modified and currently sup-
ports only AP-203. Support of other AP’s would not be difficult, but would require extend-

ing the generator software.

56

4.4.2 Versant Cached SDAI

The cached SDAI interface to Versant was constructed using a data-dictionary rather
than code generation. All services are provided by a single library that a developer can link

into an existing SDAI application.

The Versant interface extends an existing working-form SDAI C library [ST192a]. The
original library uses a memory working-form and can read and write Part 21 exchange files,
as well as create, delete, and manipulate data in main memory using SDAI operations. The
interface adds the ability to transfer the memory working-form to and from a Versant data-

base.

When transferring from memory cache to Versant database, the interface library con-
nects to the database and compares the EXPRESS data-dictionary against the types defined
in the Versant data-dictionary. Versant types for any missing EXPRESS definitions are cre-
ated using the mapping described below. Next, Versant data objects are created and popu-

lated using data-dictionary calls to the Versant C API.

When loading the memory cache, the interface library compares the EXPRESS and
Versant data-dictionaries to ensure a match between all types. If the EXPRESS data-dic-
tionary is missing, it can be regenerated (with some information loss) from the Versant dic-
tionary. Once the dictionaries have been synchronized, main memory objects are created
by the SDAI library. The attribute values for these objects are extracted using calls to the
Versant C API.

EXPRESS Mapping to Versant C++

The Versant data model is object-oriented and based loosely around C and C++. EX-
PRESS entities and inheritance relations are mapped to Versant classes in a manner similar
to that defined for the SDAI C++ Binding [ISO95b]. Versant primitive types are based on

57

C and C++, with typedefs for hardware portability. The EXPRESS primitives are handled
according to Table 4.4.

EXPRESS Types Versant Types
REAL 0 _float/o_double
INTEGER 04b
BOOLEAN 0_bool (typedef char)
LOGICAL 0_bool (typedef char)
STRING Vstrofo_1b
BINARY Vstrofo_1b
ENUMERATION Vstrofo_1b

Table 4.4 — Mapping from EXPRESS to the Versant Primitive
Types

Unions are not part of the Versant object model, so EXPRESS Selects are simulated as
classes. A select class contains attributes for each type in the select, plus an additional at-
tribute to indicate the active field. Aggregates are mapped to classes containing a size at-

tribute and a dynamic vector based on the element type.

4.4.3 Cached SDAI Analysis

The Versant interface was built using data-dictionary calls instead of code generation.
This simplified end-user operation of the interface, but made implementation slightly more
complex and added to maintenance effort. Furthermore, the end-user cannot customize the

interface.

A data-dictionary approach was chosen to avoid C++ class problems. Versant uses a
C++ class library that is not directly compatible with the SDAI C and ROSE C++ libraries.
Merging them would require changes to the base classes of each library. Such changes are

known to be disruptive [Snyd86]; this has come to be known dsatfile base clasprob-

58

lem [Mikh97]. Using data-dictionary functions, we were able to access Versant data with-

out merging the class hierarchies.

Implementation

System Software Written for Binding Effort

Oracle Modify the upload/download software. ~100 lines changes
Requires Oracle Pro/C upload and download plus 5000 lines
program templates, SQL data definition upload/download

templates, EXPRESS compiler generator software
extensions.
Versant Versant batch transfer software, data- 3000 lines

dictionary synchronization. Integrate with
existing working-form binding.

Table 4.5 — Cached SDAI Implementation Studies

Looking at the relative implementation costs, we see that the Versant load and unload
routines required only a moderate amount of work. Adding the database features to the ex-

isting working-form binding required about 3000 lines of code.

The cached Oracle binding required even less implementation effort. We were able to
leverage the existing upload/download implementation with only a few changes. The gen-
erated AP-203 upload and download programs were large (about 65,000 lines), but only a
few hundred extra lines were needed to merge these programs with the working-form

benchmark code.

Finally, the similarity between the Versant data model and EXPRESS simplified con-
struction of a data-dictionary system. Only minimal manipulation was needed when mov-
ing data into and out of the cache. As we have noted, the Oracle relational model is quite
different from EXPRESS and requires more manipulation. An Oracle data-dictionary ap-
proach would require the software to store enough information to reproduce the encoding
at execution time. With code generation, the encoding can be determined by the EXPRESS

compiler at generation time and the software can be simplified.

59

4.5 Direct SDAI Implementations

Finally, we look at direct SDAI implementations based on Oracle and ObjectStore.
These bindings provide SDAI access using direct calls into the underlying database. The
ObjectStore binding may be used with any EXPRESS information model while the Oracle
binding is a hand-built research prototype that only supports AP-203.

45.1 Oracle Direct SDAI

The Oracle direct binding for AP-203 was implemented using code generation. Perl
scripts, rather than an EXPRESS compiler, generate functions with embedded SQL calls.
The binding only implemented SDAI features necessary for the AP-203 benchmarks de-
scribed in following chapters. The benchmarks required attribute access and entity extent
functions for a subset of the AP-203 types. A complete binding would have required sig-

nificantly more effort.

This implementation used the same EXPRESS to SQL mapping as the other Oracle
bindings. This enabled us to populate the database using the upload and download pro-

grams from Section 4.3.1.

Applications connect to the Oracle database in the usual way. Once connected, they
find all objects of a particular type using entity extent functions. Objects are identified by
a unique foreign key value. Since inherited attributes are normalized into separated tables,
each SDAI object identifier is a foreign key that sews together many tables into a complete
object. Each generated SDAI attribute access function performs a simple select on one of

these tables and foreign keys to find a single row.

60

4.5.2 ObjectStore Direct SDAI

The ObjectStore implementation was developed as a direct SDAI binding. The interface
was implemented using code generation. An EXPRESS compiler generates a C++ class for
each structure in an information model. The ObjectStore database system intercepts point-
er references to make C++ data persistent. This technique requires minimal changes to an
existing application. The ROSE library was modified to create objects in persistent Object-

Store memory rather than transient heap memory.

An application developer can use the modified library to perform ROSE C++ operations
on an ObjectStore database. Some ObjectStore functions must still be used to set special

access points or control ObjectStore transactions.

EXPRESS Mapping to ObjectStore C++

The ObjectStore data model is C++. ObjectStore persistence is a property of memory
allocation so any class library can be made persistent. We used the ROSE C++ classes de-
scribed in [STI92b] as a basis for the EXPRESS structures. Entities and inheritance trees
are mapped into a C++ class hierarchy using the approach defined by the SDAI C++
[ISO95D].

The EXPRESS primitives are mapped into C++ primitive types according to Table 4.6.
The members of C+dénum types must be unique across all types, but EXPRESS allows
many enumerations to contain the same member. A naming convention is used to make the

C++enum members unique.

Select types are modeled as subtypes of a special RoseUnion class. These subtypes en-

capsulate a normal C union attribute and keep track of which union member is currently set.

61

EXPRESS Types ObjectStore Types
REAL floatidouble
INTEGER int
BOOLEAN BOOLEAN (typedef char)
LOGICAL LOGICAL (typedef char)
STRING char*
BINARY BINARY dass
ENUMERATION enum

Table 4.6 — Mapping from EXPRESS to the ObjectStore Primitive
Types

Aggregates are modeled as parametrized C++ classes. These classes are derived from
a hierarchy that starts at RoseAggregate and continues on to separate classes for List, Set,

Bag, and Array. Subclasses of these are defined for each possible element type.

4.5.3 Direct SDAI Analysis

The ObjectStore binding was built using code generation. Code generation was man-
datory because ObjectStore databases can only be defined or accessed using C++ classes.

ObjectStore has a limited data-dictionary, but data must still be defined as classes.

The nature of ObjectStore enabled us to produce an SDAI direct binding with an artifi-
cially low level of implementation effort. ObjectStore implements its own virtual memory
system and intercepts page-faults to make ordinary C++ applications persistent. By altering
the memory allocation portions of the working-form SDAI library we were able to leverage
many man-years of effort and over 40,000 lines of existing code. It is reasonable to expect
a direct binding on a different C++ OODBMS — such as Versant — to require at least the

same amount of effort as a working-form binding.

Because it operates directly upon the database, this interface can take advantage of

transaction and locking features provided by the underlying system. Furthermore, this in-

62

terface can be customized by extending the generated C++ classes with new member func-

tions.
. - Implementation
System Software Written for Binding Effort
ObjectStore Modify existing working-form library to use 200+ lines
ObjectStore memory allocation calls.
Oracle Oracle Pro/C attribute access and entity exte6600 lines (partial)

functions, generated by Perl scripts. Only fob000 lines (upload/
51/366 of the AP-203 entities. Requires download tools)
upload and download programs and SQL data

definitions for AP-203. 91,000 lines
(estimate for full
Full binding requires above services for all binding)

AP-203 types. Also attribute update functions,

session model, Part 21 parser and writer, SQL

data definition templates, EXPRESS compiler
generator extensions.

Table 4.7 — Direct SDAI Implementation Studies

The Oracle direct binding only implemented the subset of the SDAI operations required
for the benchmarks. Even with these simplifications, construction required a great deal of
effort. The benchmarks required definitions for 51 entities. The attribute access and entity
extent functions for these required 6500 lines of code. To provide the same for all 366 def-
initions in AP-203 would have required approximately seven times as much effort (45,500
lines). Adding support for update functions could double this total (91,000 lines). Finally,

a binding should also provide a session model, Part 21 file handling, and other required ser-

vices.

The Part 21 load and extract programs were reused from Section 4.3.1, but were built
around a working-form binding. Providing the same capabilities directly on top of Oracle,

without use of a working-form binding, would require an EXPRESS data-dictionary, Part

63

21 parser, and other facilities. Constructing these services could require a significant frac-

tion of the effort associated with a working-form binding.

4.6 Implementation Summary

In this chapter, we examined the SDAI database implementations shown in Table 4.8.

These implementations covered all three access styles.

O B Oracle ObjectStore and
OpenODB
Early-Bound Oracle Early-Boung
EclipHEpline Cached Direct
Upload/Download
Late-Bound e Late-Bound
Late-Bound .
Upload/Download Direct
Cached

Table 4.8 — SDAI Architectures Covered by the Implementation
Studies

Table 4.9 summarizes the implementation costs for the systems as well as the amount
of existing general-purpose code that could be reused. The alternate bindings (upload/
download and cached) required a small amount of effort (~5000 lines) and were able to take
advantage of a large amount of existing code (working-form binding and EXPRESS com-
piler).

The ObjectStore direct binding required a very small amount of effort (~200 lines) and
was also able to take advantage of an existing working-form binding and EXPRESS com-
piler. However, these results are mostly due to the unique virtual-memory model used by
ObjectStore.

Most database systems use a traditional API, like the Oracle Pro/C API, so the Oracle

system is a better example of the implementation effort required for a direct binding. The

64

Oracle direct binding was only partially implemented and required a large amount of effort
(11,500 lines). It required 6500 lines for access and entity extent functions covering some
entities, plus 5000 lines for the upload/download and SQL definition programs. Expanding
the binding to cover update functions, all AP-203 entities, a session model, and other re-

guirements would require several times as much code.

Svstem Binding Implementation Code
y Architecture Effort Reuse
ObjectStore Direct 200+ lines 40,000 lines
(working-form binding)
OpenODB Upload/ 6000 lines 40,000 lines (binding)
Download
Oracle Upload/ 5000 lines 40,000 lines (binding)
Download
Cached 5000+ lines 40,000 lines (binding)
Direct 11,500 lines none
(partial + upload/
download tools)
91,000 lines (est.
full binding)
Versant Cached 3000 lines 40,000 lines (binding)

Table 4.9 — Implementation Cost Summary

We note that the cost for implementing each access style rises with the number of fea-
tures it provides. The upload/download and cached bindings are inexpensive to produce
and can reuse an existing working-form binding. These bindings provide SDAI access,
but are not useful for situations requiring concurrent update. A direct binding is more cost-

ly, and generally cannot reuse code, but can make greater use of database features.

s] Operational Cost
Benchmarks

5.1 Overview

To gain insight into operational costs, we must test SDAI bindings against a selection
of real-world operations. The benchmarks described in this chapter are based on AP-203,
which was the first of the STEP application protocols and contains information, such as

CAD geometry and product configuration, that is common to all STEP models.

Section 5.2 describes AP-203 and identifies three categories of engineering information
within the model. Section 5.3 through Section 5.5 discuss these aspects of AP-203 data and
propose benchmark operations. These STEPStone benchmarks operate on information that
is modeled in an existence-dependent style (PartStone, part versions), a navigational style

(NURBStone, shape/geometry), and a mix of the two (BOMStone, bills of material).

5.2 The AP-203 Information Model

We looked briefly at AP-203 in Section 2.3.2. This was the first application protocol to
be published as an ISO standard [ISO94f, PDES97] and has been used as the basis for many

file exchange implementations. The scope of AP-203 is configuration-controlled 3-D prod-

65

66

uct design data for mechanical parts and assemblies. This information includes the shape
of parts, revision history, change process & documentation, part classification, approval,
supplier & contract information, and security classification. The Units of Functionality

(UOFs) defined by AP-203 are detailed in Table 5.1.

Unit of Functionality Contents

shape Geometry and topology of the part. UOFs cover
(Total of six UOFs) advanced boundary representations, facetted b-
reps, manifold surface with topology, non-
topological surface & wireframe, and wireframe
with topology

authorization Part data approvals.
bill_of material Parts list for an assembly.
design_activity_control Documents revision history of parts.
design_information Material, surface, and process specifications.
effectivity Usage of components in a product.
end_item_identification Describes consumable goods (products).
part_identification Defines parts and part versions.
source_control Supplied part and supplier information.

Table 5.1 — AP-203 Units of Functionality

Once AP-203 was selected as the information model, the next task was to identify a rep-
resentative set of benchmarks. Looking at the fourteen UOFs in AP-203, we note three dif-

ferent styles of engineering information:

* Navigational — Information such as the STEP Shape/geometry UOF. The refer-
ences from entity to entity are in the same direction as the expected path of access.
For exampleA points toB, which then points t&€. Access fromA to C is simply

a matter of following a chain of references.

» Existence-dependent — Information such as the STEP Part Identification UOF.

References are usually in the direction opposite the expected path of access. For

67

exampleB points toA. Access fromA to B requires a query or back-pointer. This
style of modeling shows thBtis existentially-dependent @¢x If A does not exist,

thenB can not exist.

» Mixed — Information that contain both styles, such as the STEP Bill of Materials
UOF.

For each information modeling style, we select a representative AP-203 UOF. In the
following sections we define benchmarks that traverse and examine data from each UOF.
We adopted names for the benchmarks based on the underlying UOF and the “stone” con-
vention established by the Whetstone CPU benchmark [Curn76], and its many successors

(Dhrystone, Khornerstone, etc.):
» PartStone — Part Identification UOF, existence-dependent definitions.
* BOMStone — Bill Of Materials UOF, mixed definitions.
* NURBStone — Shape UOFs, navigational definitions.

The benchmarks exercise data access capabilities. Future versions of the benchmarks
could be extended to include update features, but this is beyond our current scope. The fol-
lowing sections describe each benchmark in detail, including the structure and use of the

information, the algorithms, and the algorithm complexity.

5.3 PartStone — Part Identification

The STEP Part Identification UOF describes the concepts of product and product ver-
sion. Since the STEP standard was designed to represent product data, all of the APs use

the part identification definitions.

68

In engineering organizations, this type of information is often held by product data
management (PDM) systems. A common operation on this type of data is to find all of the

versions for a part. We use this operation as the basis for the PartStone benchmark.

The PartStone benchmark must traverse an AP-203 data set and print all versions of a
part. The benchmark must repeat this operation for each part in the database. The following
sections examine the structure of STEP part identification data as well as the algorithms we

use to implement the benchmark traversal operation.

5.3.1 Application Objects

The Part Identification UOF defines three application objects:

PART
PART_VERSION
DESIGN_DISCIPLINE_PRODUCT_DEFINITION

The PART object describes an engineering artifact. A PART_VERSION describes a
particular version of that artifact. A DESIGN_DISCIPLINE_PRODUCT_DEFINITION
describes a context for the descriptions of aspects of a part. For example, AP-203 is used
to describe the mechanical design characteristics of a part. Other APs might describe dif-
ferent characteristics. The PartStone benchmark only uses the PART and PART_VERSION

application objects.

5.3.2 EXPRESS Definitions

The PART and PART_VERSION application objects are mapped into entities from the
STEP integrated EXPRESS models as described in Table 5.2. An EXPRESS-G represen-

tation of these definitions is shown in Figure 5.1.

In the integrated EXPRESS schemas, PART application objects are represented as in-

stances oproduct while PART_VERSIONSs are representecasduct definition forma-

69

4< 1, 1, identifier) ad identifier | .I
id Lo -

(1.201&bel) 1,2 () Q label } ad String I
name R 2 G S —-
product Sesoron (13tex) 1,3 (L D—Q text g string I
escription 2 R

product_context
‘ O (not shown)
frame_of_reference

S[1:7]

—(1, 1, identifier)
id
product_definition_formation

description 1,3, text
of_product & 5

product_definition_formation_ .I
with_specified_source make_or_buy

Figure 5.1 — EXPRESS-G Diagram of the Part Identification
Entities

Application Object EXPRESS AP-203 Entity
PART product

PART_VERSION product_definition_formation_with
specified_source
(abbreviated PDFWSS)

Table 5.2 — EXPRESS Entities for Part Identification

tion with specified sourc@bbreviateghdfws3. A pdfwss is tied back to a product via the
formation ofattribute. Figure 5.2 shows a small collection of parts and part versions, as

well as the direction of access used by the PartStone benchmark.

The code fragment below shows how the Figure 5.2 data would be encoded within an
AP-203 Part 21 file.

70

Direction of Access

Product
"Toaster"

Product
"Razor"

foymation_of

PDFWSS
"Babyface 3.0"

PDFWSS
"Toastmaster 5.1"

PDFWSS
"Toastmaster 5.2"

Figure 5.2 — Instance Diagram for Parts and Versions

#10=PRODUCT(PN-100,Razor’"$);

#11=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(
'PN-100-1'BabyFace 30#10$);

#12=PRODUCT(PN-200, Toaster$);

#13=PRODUCT_DEFINITION_FORMATION WITH_SPECIFIED_SOURCE(
'PN-200-1' Toastmaster 5.1'#12.$);

#14=PRODUCT_DEFINITION_FORMATION WITH_SPECIFIED_SOURCE(
'PN-200-2, Toastmaster 5.2 #12.$);

5.3.3 Benchmark Operations

In the following pseudocode description of the PartStone benchmark, the PrintPart()
and PrintVersion() functions print identifying information, such as a name or description
attribute. In the following sections, all attribute access is indicated using a function of the

form Get<att>().

The central benchmark operation is to print all versions for a single part. A pseudocode

description of this operation is shown below:

void FindVersions (dataset : S, product : p)
begin
foreach pdfss : pdfin S do
if p=GetOfProduct(pdf) then PrintVersion(pd)
end

71

The complete PartStone benchmark applies the FindVersions() algorithm to all of the

products in a data set:

void PartStone (dataset : S)
begin
foreach product: pin Sdo
begin
PrintPart(p)
FindVersions (S, p)
end
end

5.3.4 Complexity Analysis

Consider the PartStone algorithm. We determine the complexity of the algorithm given

the following values:

P =number of products.
V =number of product versions.

For the purpose of analysis, it can be assumed that print functions and attribute access

operate in constant time.

First, consider the FindVersions() function. This must examine each version in the da-
tabase, so the function is O(V). Next, we call the function for each product in the database,
which raises the complexity of the PartStone algorithm to O(PV). We observe that in prac-
tice, the number of versions for a particular part is normally small, and for the purpose of

this argument, can be considered constant. So:

V =KP where K is the median number of versions
PartStone is OPV) —> O(P *KP) = O(P 2)
So the PartStone benchmark is @)(Plt Is tempting to improve the FindVersion() al-
gorithm by constructing a sorted list of versions, or by some other global optimization.
However, we must resist this temptation by recognizing that the benchmark must operate

as if it were only printing the versions of a single part.

72

5.4 BOMStone — Bill of Materials

The STEP Bill of Materials UOF describes the structured list of materials or compo-
nents required to build a product. A bill of material details all of the pieces that go into a
product. It may call out quantities, sub-assemblies, variations within assemblies, allowable
substitutions, and so forth. For example, the ingredients list from a recipe is a very simple
bill of materials. A more complex one might show sub-assemblies, such as one often finds

in the instructions for home-assembly furniture.

In engineering organizations, this type of information is maintained by product data
management (PDM) systems and manufacturing requirements planning (MRP) systems.
As one might imagine by the name, a common operation on this type of data is to print the
list of assemblies and components —pthe bill of required materials for a product. This op-

eration forms the basis of the BOMStone benchmark.

The BOMStone benchmark must traverse an AP-203 data set and print each assembly
and its components. The following sections examine the structure of STEP bill of material

data as well as the algorithms we use to implement the benchmark traversal operation.

5.4.1 Application Objects

The Bill of Materials UOF defines the following seven application objects. The list is
indented to show when application objects are subtypes derived from a more general type

of application object:

ENGINEERING_ASSEMBLY
ENGINEERING_NEXT_HIGHER_ASSEMBLY
ENGINEERING_PROMISSORY_USAGE

ALTERNATE_PART
COMPONENT ASSEMBLY_POSITION
ENGINEERING_MAKE_FROM
SUBSTITUTE_PART

73

ENGINEERING_ASSEMBLY describes a parent/child relationship between an as-
sembly and one of its components. ENGINEERING_NEXT_HIGHER_ASSEMBLY is a
more specific type of relation which allows us to specify a name for the component, quan-
tity, and unit of measure. ENGINEERING_PROMISSORY_USAGE describes a relation-

ship between components and a sub-assembly that has not yet been defined.

ENGINEERING _MAKE_FROM, ALTERNATE_PART, and SUBSTITUTE_PART
convey other relationships between the parts. These indicate how some parts serve as raw

materials for others, or how they may act as replacements under some circumstances.

Finally, the COMPONENT_ASSEMBLY_POSITION relationship associates a geo-

metric transform with a part to specify its physical location within an assembly.

The BOMStone benchmark uses ENGINEERING_ASSEMBLY application objects.
The other application objects convey important information about individual components

within an assembly, but do not contribute to the description of the assembly structure.

5.4.2 EXPRESS Definitions

The ENGINEERING_ASSEMBLY application objects are mapped into entities from
the STEP integrated EXPRESS models as described in Table 5.2. Figure 5.3 shows the
definitions as an EXPRESS-G diagram.

Application Object EXPRESS AP-203 Entity
ENGINEERING_ASSEMBLY assembly _component_usage
(supertype)

ENGINEERING_NEXT next_assembly usage_occurrence
HIGHER_ASSEMBLY

ENGINEERING promissory _usage_occurrence
PROMISSORY_USAGE

Table 5.3 — EXPRESS Entities for Bill of Material Assembly
Structures

74

2, 2, identifier
id
2, 2, identifier
product_definition
lationshi — {)
reonsp description description Ghilis
product_definition product_definition_formation
relating_product_definition O formation (see part identification diagram)
related_product_definition Ol product_definition_context
- = frame_of (not shown)
A reference

| product_definition_usage

] . o === 1 -
|as.fembly_component_usageI reference_designator 2, 2, identifier 2,4(1,1) O text | OI

[} 1
next_assembly_usage_occurrence | 23@ l_ la_b_el_d, .I
" T .
promissory_usage_occurrence | 2,2(1,1,1) O identifier ¥ .I

| .

Figure 5.3 — EXPRESS-G Diagram of the Bill of Material
Engineering Assembly Entities

These relationships conngobduct definitionobjects. A product definition object de-
scribes one aspect of a product version, such as the shape. Using multiple product defini-
tions for each product, we could represent different types of assemblies. They could show
electrical connectivity, physical arrangement, operational units, or manufacturing sub-as-
semblies. AP-203 describes mechanical assemblies, but an electrical AP could use a sim-
ilar mechanism to describe functional components. The product definitions are tied

together using the following two attributes:

« relating product definition— Points “upwards” in the assembly to the enclosing
product definition. If we were relating the wheels of a car to an entire car, this

would point at the car definition.

75

* related product definitior— Points “downwards” in the assembly to the compo-
nent product definition. In the car example, this would point to the wheel defini-

tion.

Each assembly component usage allows a reference designator, which is used to distin-
guish between multiple uses of the same component. In our car example, we have four as-
sembly component usages, each relating the same wheel definition to the car definition.

The reference designator indicates which is the right front wheel, left front, and so on.

These relationships connect the components of an assembly to the whole. Used recur-
sively, each component can act as a sub-assembly related to various sub-components. Fig-
ure 5.4 shows a two level assembly, where an automobile is built from four copies of a
wheel sub-assembly. The wheel sub-assembly is built from a rim, a tire, and a hubcap. The

diagram also shows the direction of access used by the BOMStone benchmark.

Direction of Access

Product_Def Product_Def Product_Def
"Automobile" "Wheel Assy" "Hubcap"
NAUO \
"Left Front"
NAUO
"Rt Front"
NAUO
"Left Rear"
NAUO
"Rt Rear"

Figure 5.4 — Instance Diagram of a Two Level Automobile
Assembly

Product_Def Product_Def
"Rim" "Tire"

related
pdef

relating
pdef

76

The code fragment below shows how the Figure 5.4 data would be encoded within an
AP-203 Part 21 file.

#10=PRODUCT(PN-00L/Automobie’" $);

#11=PRODUCT DEFINITION_FORMATION WITH_SPECIFIED_SOURCE(
PN-001-1/Automobie v1'#10.$);

#12=PRODUCT _DEFINITION(initial/Automobile definiion'#11$);

#13=NEXT_ASSEMBLY _USAGE_OCCURRENCE(,#12#22,Left Front);

#14=NEXT_ASSEMBLY_USAGE_OCCURRENCE(,""#12#22.Rt Frort),

#15=NEXT_ASSEMBLY _USAGE_OCCURRENCE(,""#12#22,Left Rear);

#16=NEXT_ASSEMBLY _USAGE_OCCURRENCE('""#12#22,Rt Rear;

#20=PRODUCT(PN-002, Wheel Assy"$);

#21=PRODUCT DEFINITION_FORMATION WITH_SPECIFIED_SOURCE(
PN-002-1, Wheel Assy VI'#20$);

#22=PRODUCT _DEFINITION(initial, Wheel Assy definition’ #21.$);

#23=NEXT_ASSEMBLY USAGE_OCCURRENCE("#22#32.",

#24=NEXT_ASSEMBLY USAGE_OCCURRENCE(""#22#42.",

#25=NEXT_ASSEMBLY USAGE_OCCURRENCE(""#22#52.";

#30=PRODUCT(PN-003,Hubcap’"$):

#31=PRODUCT DEFINITION_FORMATION WITH_SPECIFIED_SOURCE(
PN-003-1, Hubcap v1'#30$);

#32=PRODUCT DEFINITION(initial,Hubcap definition #31.$):

#40=PRODUCT(PN-004'Rim"$);

#41-PRODUCT_DEHFNITION_FORMATION_WITH_SPECIFIED_SOURCE(
PN-004-1,Rim v1'#40.%);

#42=PRODUCT_DEFINITION(initial, Rim definition' #41,9);

#50=PRODUCT(PN-005,Tire'"$);

#51-PRODUCT_DEHFNITION_FORMATION_WITH_SPECIFIED_SOURCE(
'PN-005-1, Tire v1'#50,%);

#52=PRODUCT_DEFINITION(initial, Tire definiion #51,%);

5.4.3 Benchmark Operations

The BOMStone benchmark must traverse a data set and print each assembly and its
components as an indented list. As we saw in the previous section, the assembly structure
is stored aassembly component usagstances (actually as thext assembly usage oc-

curencesubtype). These objects are the edges in the assembly graph.

77

The central benchmark operation is to find all components of a single product. This re-
guires searching through all assembly component usages for those linked to the product via
therelating product definitiorattribute. From this set, we can find the components by fol-
lowing therelated product definitiomttribute. We continue recursively to find the sub-
components of each component. For each product, we print some identifying information
and indent according to the product’s position in the assembly tree. The pseudocode de-

scription of the algorithm is shown below:

void FindAssembly (product_definition pdef, integer depth)
begin
Printindent (depth) /*indent according to depth /
PrintProductDef (pdef) /* print product and version name */

F*FIND AND RECURSIVELY PRINT ALL SUB-COMPONENTS ¥
foreach assembly _component_usage: acuin Sdo
begin
if pdef = GetRelatingProductDefinition(acu)
then FindAssembly (GetRelatedProductDefinition (acu), depth+1)
end
end

To print an entire assembly, we must determine which product represent the complete
assembly — the “root” of the assembly tree. To find all top-level products, we search for
product definitions that are not a sub-component of another product. In terms of the EX-
PRESS definitions, a product is at the top level if there exist no assembly component usages
linking the product as component to a larger assembly. A pseudocode description of the

algorithm is shown below.

List FindTopLevel (dataset : S)
begin
List: toplevel
foreach product_definition : pdefin S do
begin
foreach assembly component_usage: acuin Sdo
begin
F does it belong to an another assembly? */
if pdef = GetRelatedProductDefinition (acu)
then next product_definition
end

78

Fnota component of anything */
Append (toplevel, pde)

end

retum toplevel

end

The BOMStone algorithm combines these functions to print all of the assemblies in a

data set. The complete BOMStone algorithm is shown below:

void BOMStone (dataset : S)
begin
foreach product_definition : pdefin FindTopLevel(S) do
FindAssembly (pdef, O);
end

5.4.4 Complexity Analysis

The BOMStone algorithm operates on assembly structures. We can view an assembly
structure as a directed graph, with product definitions as the nodes of the graph and assem-

bly component usages as the edges:

P =number of products (hodes)
A=number of assembly component usages (edges)

In the general case, the graph is acyclic since a mechanical part cannot physically con-
tain itself as a component. Is could also be a multigraph, if components participate in more
than one assembly (as in Figure 5.4). For the purpose of our analysis we consider the sim-
plified case where assembly is a tree. Given these assumptions, we can represent A in terms
of P:

for a one connected component (topHevel assembly)

A=P-1
A=P-T forT connected components

Consider the FindTopLevel() function. For each product definition, it examines all as-

sembly component usages, so the function will require O(PA), &) Q(ferations.

79

The FindAssembly() function examines all assembly component usages so it is O(A),
or just O(P). Given that the input data set consists of one or more trees, the FindAssembly()
function will be called once for each product definition. Therefore over the entire program

run it will require O(I3) operations. The entire BOMStone algorithm is@(P

5.5 NURBStone — Part Geometry

The STEP Shape UOFs describe the geometric and topological aspects of a product.
Since geometry and topology are basic physical properties, these definitions are used by al-
most all of the STEP APs. There are several Shape UOFs, each of which supports different

mathematical representations of geometry, such as planar facets or NURB surfaces.

In engineering organizations, this type of information is usually created and managed
by CAD systems. When a CAD system reads a shape description, it must traverse the entire
geometric model in order to create a visual representation of the model. We use this tra-

versal as the basis for the NURBStone benchmark.

The NURBStone benchmark must traverse an AP-203 data set and print the compo-
nents of each geometric definition in a recursive-descent manner. The following sections
examine the structure of STEP shape data as well as the algorithms used to implement the

benchmark traversal operation.

5.5.1 Application Objects

The six Shape UOFs define the following application objects:

SHAPE

SHAPE_ASPECT

GEOMETRIC_MODEL_REPRESENTATION
ADVANCED BOUNDARY_REPRESENTATION
FACETTED B REP

80

MANIFOLD_SURFACE_WITH_TOPOLOGY
NON_TOPOLOGICAL_SURFACE_AND_WIREFRAME
WIREFRAME_WITH TOPOLOGY

The Shape UOF defines the SHAPE, SHAPE_ASPECT, and GEOMETRIC_MODEL
REPRESENTATION objects, while the other UOFs constrain the type of geometric defini-
tions permitted for describing a shape. The NURBStone benchmark only makes use of the
ADVANCED_ BOUNDARY_REPRESENTATION definition.

The SHAPE application object represents the physical form of a part, which is mathe-
matically defined by one or more GEOMETRIC_MODEL REPRESENTATION objects.
A SHAPE_ASPECT calls out a portion of a shape to indicate subdivisions or attach addi-
tional specifications. A SHAPE_ASPECT also has one or more associated GEOMETRIC
MODEL_REPRESENTATION objects.

5.5.2 EXPRESS Definitions

The ADVANCED_BOUNDARY_REPRESENTATION application object is mapped
into entities from the STEP integrated EXPRESS models as described in Table 5.2. An

EXPRESS-G representation of these definitions is shown in Figure 5.5.

Application Object EXPRESS AP-203 Entity

GEOMETRIC_MODEL shape_representation (supertype)
REPRESENTATION

ADVANCED_ BOUNDARY advanced_brep shape_representation
REPRESENTATION

Table 5.4 — EXPRESS Entities for Bill of Material Assembly
Structures

Theshape representatiantity contains a list of geometric items, as well as a name and
context. The subtypes of this, suctadganced brep shape representatido not add any

attributes. They merely constrain the contents of the geometric items list to certain types

81

1,1, label
name

representation [oo SI17] d representation_item lW(l’ 1, Iabel)

Q representation_context | geometric_representation_item 1, 3, dimension_count
context_of (not shown) — - (DER)dim > -

items g

These subtypes include all of

shape_representation the STEP geometry definitions, such

as curves, surfaces, solid models,
transformation matricies, etc.

j

advanced_brep_shape_representation |

edge_based_wireframe_shape_representation |

faceted_brep_shape_representation |

——————
1,1(11) O label 1 ol
geometrically_bounded_surface_shape_representation | ------ !
1,3 (1) —Oi dimension_count | OI
geometrically_bounded_wireframe_shape_representation | [S 1

manifold_surface_shape_representation |

IRNREN

shell_based_wireframe_shape_representation |

Figure 5.5 — EXPRESS-G Diagram of the Geometric Model
Representation Entities

of geometry. Figure 5.6 shows the components of a manifold solid B-REP shape descrip-

tion, as well as the direction of access used by the NURBStone benchmark.

The code fragment below shows the shape definition for a toroid, containing all of the
elements from Figure 5.6. The data is an advanced B-REP solid, which means that it con-
tains geometric surface detaiterpidal surfacg and topological detailvértex loop. To
be complete, the description must specify units of measure and tolerance (instances #27-

#37), as well as a location within the global coordinate systenaxib2 placement 3d

#10=ADVANCED_BREP_SHAPE_REPRESENTATION((#11#23)#27);
#11=MANIFOLD SOLID BREP(#12);

#12=CLOSED_SHELL(,(#13))

#13=ADVANCED_FACE(,(#14)#18,T);

#14=FACE_BOUND(#15,T),

#15=VERTEX_LOOP(#16);

#16=VERTEX_POINT(#17);

82

/- Direction of Access

context of items

Representation_Context
(Global Units, Coordinate System,
Uncertainty, etc.)

Shape Representation

(Advanced B-Rep) >

items
Representation ltem)
manifold solid brep Representation Item
axis2_placement_3d
outer (set local coordinate system)

closed_shell

face_geometry

advanced_face advanced_face

Control points, basis
curves, and whatever other
data is needed to define
the surface

surface
(elementary, swept,
b-spline, etc.)

Figure 5.6 — Instance Diagram for the Major Components of a
Manifold Solid B-REP Shape Description

#17=CARTESIAN_POINT(}(-22:5,-0.500000000000002,-375));
#18=TOROIDAL SURFACE(#19,10.5);

#19=AXIS2 PLACEMENT _3D(#20421#22);
#20=CARTESIAN_POINT(}(-7.5-0.500000000000002,-37 5))
#21=DIRECTION(,(0.0.-1))

#22=DIRECTION((-L.,0.0))

#23=AXIS2 PLACEMENT 3D(#244#25#26);
#24=CARTESIAN_POINT(,(0,0.0));
#25=DIRECTION(0.0.1));

#26=DIRECTION(/(L.0.0));

P Sets up units (inches, degrees, steradians) and allowable

* measurement tolerance (3.9e-7 inches) for the geometry

*

#27=(
GEOMETRIC_REPRESENTATION_CONTEXT(3)
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#28))
GLOBAL_UNIT_ASSIGNED CONTEXT((#29#33#37))

83

REPRESENTATION_CONTEXT(phlmd-ug,COMPONENT_PART)
)
#28=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(3.93700787401575E-07)#29,

'MODEL_ACCURACY',Maximum Tolerance applied to model);

#29=(CONVERSION_BASED UNIT(INCH#31) LENGTH_UNIT() NAMED_UNIT(#30));
#30=DIMENSIONAL_EXPONENTS(1.,0.0.0.0.0.0);

#31= ENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4)#32);

#32=(LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(MILLI, METRE)));

#33=(CONVERSION_BASED UNIT(DEGREE #35) NAMED _UNIT(#34) PLANE_ANGLE_UNIT());
#34=DIMENSIONAL_EXPONENTS(0.0.0.0.0.0.0);

#35=PLANE_ANGLE _MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.0174532925)#36);
#36=(NAMED_UNIT(*) PLANE_ANGLE_UNIT() SI_UNIT($,RADIAN.));

#37=(NAMED_UNIT(¥ SI_UNIT($,.STERADIAN.) SOLID_ANGLE_UNIT());

5.5.3 Benchmark Operations

The NURBStone benchmark must traverse and print each shape description in a data
set. As shown in Figure 5.6, a STEP shape description forms a tree of instances, with an
instance oBhape representaticat the root. As one proceeds from the root, complex geo-
metric types hanifold solid breprefer to component instancedqsed shelladvanced
face which refer to surfaces, and so on. The leaves are geometric primitives that refer to

nothing elsedartesian point

The NURBStone benchmark performs a depth-first search of the shape instance tree.
Each node could be a different type of instance, so the algorithm may require functions for
each possible entity type. The final benchmark resembles recursive-descent parsing algo-

rithm.

Some shape representations contain topology data, which connects surfaces to form sol-
id models. The NURBStone benchmark has been defined to traverse only surface geome-
try instances. However, future work could extend the scope of the benchmark to also

traverse the topology instances.

Using the convention established in the Section 5.3.3 and Section 5.4.3, we assume a
Print<type>() function for each entity type. We also define a Traverse<type>() function for

each non-leaf entity type. The general outline for a traverse function is shown below:

84

void Traverse<Type> (<Type>: oh))
begin
Print<Type>(oh))
foreach instance : ref referred to by objdo
Traverse<RefType> (ref)
end

The function prints identifying information about the instance, such as a name, coordi-
nates, or a radius. Next, the function examines all attributes and calls the traversal function

(or print function the case of leaf types) for each instance referred to by an attribute.

The following example shows the traversal functiorsfuape representationrhis en-
tity has a name attribute as well as referencesdprasentation contexnd a list ofep-

resentation itemsThe EXPRESS-G fahape representatiotan be found in Figure 5.5.

void TraverseShapeRep (shape_representation : rep)
begin
PrintShapeRep (rep) /* prints name */
TraverseRepContext (GetContextOfitems(rep))
foreach representation_item : repitern in Getitems(rep) do
TraverseRepltem (repitern)
end

The NURBStone benchmark defines traversal and print function for the AP-203 entities

shown in Table 5.5.

axisl _placement axis2_placement
axis?2_placement_2d axis2_placement_3d

b _spline_surface b_spline_surface with_knots
cartesian_point** circle

conic closed_shel
conical_surface context_dependent_unit™
conversion _based unit™* curve

curve_bounded surface curve_replica
oylindrical_surface direction **
elementary_surface elipse

face_surface geometric_representation_context
global_uncertainty assigned context global_unit_assigned context
hyperbola line

manifold_solid_brep measure_value **
named_unit** offset curnve 2d

offset curnve 3d parabola

Table 5.5 — Entity Types Traversed by the NURBStone Benchmark

85

pcurve plane

rational b _spline_surface rectangular_composite_surface
rectangular_timmed_surface representation_context
representation _item shape_representation
Si_unit*™ spherical_surface

surface surface_curve

surface of linear_extrusion surface of revolution
swept_surface toroidal_surface

unit** vector

Leaf entity types are denoted by **

Table 5.5 — Entity Types Traversed by the NURBStone Benchmark

Some of the entities in Table 5.5 are supertypes of other entities. Traversal functions

for supertypes must exhibit polymorphism, i.e. they must examine the instance type and

call a more specific traversal function if required. The following example shows the tra-

versal function fosurface which is the supertype of all geometric surface types. The

pseudocode describes the algorithm using if-then clauses. An implementation might pro-

vide polymorphism in a more efficient manner, such as C++ virtual functions.

void TraverseSurface (surface : s)
begin
if IsElementarySurface(s) then
TraverseElementarySurface(s)
else if IsSweptSurface(s) then
TraverseSweptSurface(s)
else if IsSBSplineSurface(s) then
TraverseBSplineSurface(s)
else if IsCurveBoundedSurface(s) then
TraverseCurveBoundedSurface(s)
else if IsRectangularTimmedSurface(s) then
TraverseRectangularTimmedSurface (S)
else if IsRectangularCompositeSurface(s) then
TraverseRectangularCompositeSurface (s)
end

The NURBStone algorithm combines all of these functions to print each shape repre-

sentations in the data set. The depth-first traversal beginsheie representationThe

top-level benchmark algorithm is shown below:

void NURBStone (dataset : S)
begin

86

foreach shape_representation : repin S do

TraverseShapeRep (rep);
end

5.5.4 Complexity Analysis

Maintaining our initial assumption that the shape representation instances are a tree, we
note that the NURBStone depth-first traversal algorithm touches each instance once. In ad-
dition, the print actions for each object are performed in constant time (the exact time may

change from type to type.)

So, although a shape representation contains many different types of instances, the
benchmark complexity depends only on the total number of instances in the data set. The
NURBStone complexity is O(N).

If instances were shared between shapes, the shape representation would not be a tree,
but rather an acyclic directed graph. The benchmark algorithm would visit shared instances
more than once, raising the complexity. We could restore linear complexity by “marking”
each instance as it is visited, but we avoid this change since storing the mark would require
updating the database. As stated in Section 5.2, the benchmark scope is limited to access
only. Of course, we could keep “mark” information in a local data structure with favorable
performance, such as a hash table. This would add to the resource usage of the algorithm,

but in the case of a hash table, would not affect the complexity.

In practice, we observe that instances are rarely shared between shapes. Only “house-
keeping” data, such as unit declarations and other representation context information, are
ever shared. In this work, we enforce the constraint against shared objects and so are not

required to store “mark” information.

Benchmark Results

6.1 Overview

To gain insight into operational costs, the STEPStone benchmark algorithms were run
against SDAI implementations built on a relational database, object-oriented database, and
a main memory cache. In addition, we looked at load/extract times and explored the effect
of optimizations on each implementation. Timing measurements were made with data sets
ranging in size from 100-100k objects. These measurements required about 500 program

runs and 220+ hours of compute time on a SPARC 20.

The remainder of this section describes the test systems and timing methods. Section
6.2 through Section 6.4 describes the results from the PartStone, BOMStone, and NURB-

Stone benchmarks. Section 6.5 describes the results of database load and extract tests.

6.1.1 SDAI Test Systems

The measurements in this chapter were made using STEPStone benchmarks built on
three different SDAI implementations. The benchmarks were implemented on ObjectStore
using the direct binding described in Section 4.5.2, on Oracle using the direct binding de-
scribed in Section 4.5.1, and on a main-memory cache using the ROSE working-form bind-

ing described in Section 4.2.5.

87

88

All timings were done on a Sun SPARC 20 with 128 megabytes of memory. The ma-
chine was running the Solaris v2.4 operating system. The database versions were Oracle
v7.3 and ObjectStore v4.0.2. The SDAI implementations were built using ST-Developer
v1.6, ST-Oracle v1.6.0, and ST-ObjectStore v1.6.0.

6.1.2 Timing Methods

All times measured were total elapsed (wall clock) times rather than CPU usage times.
Wall clock times were used to ensure a fair comparison among the benchmarks. Database
systems often connect to server processes that perform much of the database work. Unfor-
tunately, the resource usage system calls do not return the CPU usage of server processes.

They only return the CPU usage of the initial process.

The total elapsed time is unaffected by distributed processing and provides an accurate
measure of real world performance. The wall clock time will be larger than the actual CPU
usage, but should remain proportional to the CPU usage as long as care is taken to perform
all benchmarks under identical conditions. The measurements in this work were performed
only during periods of light machine load. In addition, the database servers were restarted

before each program run.

All measurements were rounded to the nearest second. When multiple measurements

were present, they were averaged to the nearest tenth of a second.

6.1.3 Data Sets

The measurements explored the access behavior of the SDAI implementations for dif-
ferent types of data. It was necessary to run benchmarks with data sets of varying sizes,

while maintaining the essential characteristics as the data set sizes increased.

89

Programs were developed to generate data sets of arbitrary size for each benchmark.
These programs are discussed with the results of each benchmark. The programs produced
separate files for each data set. The working-form benchmarks read the files, but the Oracle
and ObjectStore benchmarks read databases built from the files. The Oracle databases were
created using the upload/download tools described in Section 4.3.1. Before loading, all ta-
bles in the database were dropped, the schema was reloaded, and the Oracle cache daemon
processes were restarted. Similarly, ObjectStore databases were removed and recreated be-

fore each benchmark run.

6.2 PartStone Results

The PartStone benchmark was implemented using each of the three SDAI systems.
Timing measurements were made for each system using a series of data sets containing be-
tween 100 and 20,000 part objects. The composition of the data sets are described in Sec-
tion 6.2.1. In addition to the basic algorithm, we tested optimizations based on the unique
characteristics of each system. The optimizations are discussed in Section 6.2.3. The Part-

Stone timings are shown Figure 6.1 and Figure 6.2.

6.2.1 Part Identification Test Data

Themkpartprogram was developed to generate data sets with an arbitrary number of
parts and versions. To reduce the number of variables, the generated data sets contained a
constant number of versions per part. As described in Section 5.3.4, this allows us to ex-

press the complexity of the PartStone algorithm in terms of the number of parts.

For the measurements in this work, the data sets contained three versions per part. Ten
PartStone data sets were used. The sizes were: 100, 500, 1000, 1500, 2000, 2500, 5000,
10000, 15000, and 20000 part objects.

90

6.2.2 PartStone Timings

The basic PartStone algorithm was tested against the Oracle, ObjectStore and working-
form implementations. The Oracle timings were performed with and without extra indices

on heavily-used columns.

The ObjectStore and working-form implementations had similar performance. The
times for both systems exhibit growth characteristic of anzmrgorithm. The Oracle
implementation was significantly slower, and we were unable to complete measurements
on data sets with more than 500 parts. Addition of indices improved the Oracle behavior
slightly, but not enough to complete all measurements. The extreme behavior of the Oracle

implementation suggests a higher degree of complexity thaﬁ)O(N

The Oracle indices were added on the keys gbtbeuct product definition formation
andproduct definition formation with specified soutedles, as well as tlod productat-

tribute ofproduct definition formation

6.2.3 PartStone Optimizations

Additional timings explored the effect of optimizations based on unique features of
each system. The focus of most optimizations was the FindVersions() operation. This
function traverses over all versiomsdduct definition formatiombjects) to find ones that
reference a particular product. In EXPRESS, this information can be found through a call
to the Usedin() function. Originally, the SDAI specification did not provide a Usedin() op-

eration, but recent versions have added optional support for it.

Each implementation of the PartStone benchmark was modified to perform the Use-
din() operation as efficiently as possible for df@roductrelationship betweepdfwssand
product The C++ classes used by the ObjectStore and working-form implementation were
modified to hold back-pointers for the relationship. The Oracle implementation was modi-

fied to perform a single SQL join rather than traverse an entire entity extent using SDAI

91

functions. In addition to Usedin() optimizations, multiple SDAI “get attribute” calls were

collapsed into a single SQL query wherever possible.

Relational Optimizations

As mentioned above, the Oracle implementation was modified to perform the FindVer-
sions() operation using a single SQL join. In addition, other SDAI calls were collapsed into

single SQL queries where possible.

The modifications had a dramatic effect. The time required to process 500 parts went
from eight hours down to ten seconds. Performance improved to roughly linear behavior,
and the benchmark ran to completion in under an hour on even the largest data set. Adding
extra indices to the tables did not improve performance. In fact, the benchmark was slightly
slower with indices. To address concerns that this behavior may indicate a poor choice of
indices, the timings were repeated with other index combinations. Times varied slightly,

but were consistent with the initial observations.

ObjectStore and Working-Form Optimizations

The ObjectStore and working-form systems do not have general purpose query facili-
ties. Instead, they must access data by type (find all objects of a particular type) or naviga-
tion (follow a pointer from one object to another). In place of a query facility, these systems

use C++ classes that can be extended with additional functions or data.

To improve the FindVersions() function, the C++ clasgfoductentities was modified
to keep a list of back-pointers for tbEproductattribute ofpdfwss The back-pointers were
initialized by traversing over ghdfwssobjects at the beginning of the benchmark run. The

modified algorithm is shown below:

void PartStone_backpointer (dataset: S)
begin
foreach pdfwss : pdfin S do

92

AppendOfProductBackpointers (GetOfProduct (pdf), pof)
foreach product: pin Sdo
begin
PrintPart(p)
FindVersions_backpointer (S, p)
end
end

void FindVersions_backpointer (dataset : S, product : p)
begin
foreach pdfnss : pdfin GetOfProductBackpointers(p) do
PrintVersion(pdtf)
end
This optimization reduces the complexity of the PartStone benchmark to linear time.

The initialization of the back-pointers requires O(V) time, but we can find the versions for
a partin constant time. Summed over all parts, the FindVersions() function will touch each
version once, requiring O(V) operations. Since we know that V can be represented as a

constant time P, the optimized PartStone algorithm is O(P).

The modifications had a large effect on the observed benchmark times. As predicted,
the times for the ObjectStore and working-form implementations grew in a linear fashion.
The percentage difference between the two systems was much greater with the optimized
benchmark than with the original. On the larger data sets, the difference between the orig-
inal benchmarks was a few percent at best, while with the optimized benchmarks, the work-

ing-form implementation ran in half of the time of the ObjectStore implementation.

93

50000
¢ Oracle SDAI
45000 ¢ plus index T
40000 —
35000 —
& 30000 /— Oracle SDAI i
E o
5 :
5] ;
) 25000 B B
) H
E
= 20000 — —
15000 |- -
; All other times are under 500 sec
10000 | s
' ObjectStore
5000 - Memory
O : 1 1 1
0 5000 10000 15000 20000
Part Objects
Figure 6.1 — PartStone Timings
500 T 7 T T T
ObjectStore /’/
450 | l,’ Memory .
400 [E
350 i
% 300 | g
S / Oracle SQL
§ / plusindex -7
§ 250 i .
g /// T // _~~" Oracle SQL
= 200 |- / L -

With Back-pointer Optimizations ObjectStore -
Memory

1
20000

10000
Part Objects

Figure 6.2 — PartStone Timings, Detail Showing Benchmark

Results Under 500 Seconds

94

6.3 BOMStone Results

The BOMStone benchmark was implemented using each of the three SDAI systems.
Timing measurements were made for each system using a series of data sets containing be-
tween 100 and 20,000 part objects. In addition to the basic algorithm, we tested optimiza-
tions based on the unique characteristics of each system. The optimizations are discussed

in Section 6.3.3. The BOMStone timings are shown Figure 6.3 and Figure 6.4.

6.3.1 Bill of Material Test Data

Themkbomprogram was developed to generate bill of material data with assemblies of
arbitrary size. The generated assemblies were compopeatiott definitionobjects sewn
together bynext assembly usage occurrencdsachproduct definitionwas also linked to

a uniqueproduct definition formatiomndproductobject.

The generated assembly structures were trees. They did not contain any repeated or
shared components. As described in Section 5.4.4, this allows us to express the complexity

of the BOMStone algorithm in terms of the number of parts.

For the measurements in this work, the generated data sets contained assemblies that
were 4 items wide and 6 levels deep for 4096 parts per tree. Ten BOMStone data sets were
used. The sizes were: 100, 500, 1000, 1500, 2000, 2500, 5000, 10000, 15000, and 20000

part objects.

6.3.2 BOMStone Timings

The basic BOMStone algorithm was tested against the Oracle, ObjectStore and work-
ing-form implementations. The Oracle timings were performed with and without extra in-

dices on the most-used columns.

95

The ObjectStore and working-form implementations had similar performance, but not
as close as with PartStone. The times for both systems showed the growth expected from
an O(NY) algorithm. As with PartStone, the Oracle implementation was significantly slow-
er, and we were unable to complete measurements on data sets larger than 1000 parts. In-
dices improved the Oracle behavior slightly, but not enough to complete all measurements.
The extreme behavior of the Oracle implementation suggests higher degree polynomial be-

havior.

The Oracle indices were added on keys oftloeluct definitionproduct definition re-
lationship andassembly component usdgéles, as well as thelating andrelated prod-

uct definitionattributes oproduct definition relationship

6.3.3 BOMStone Optimizations

Additional timings explored the effect of optimizations. As with the PartStone bench-
mark, most optimizations involved replacing a traversal with efficient Usedin() functional-
ity. In this case, the FindTopLevel() and FindAssembly() functions were both modified to

perform a Usedin() operation as efficiently as possible.

Relational Optimizations

The Oracle implementation was modified to perform the FindTopLevel() and FindAs-
sembly() operations using SQL joins. In addition, other SDAI calls were collapsed into sin-

gle SQL queries where possible.

The modifications improved performance, but we were still unable to complete mea-
surements for all data sets until extra indices were added to the tables. Without extra indi-
ces, the modified benchmark required almost a full day to process 10,000 parts, but with

indices this time went down to about three minutes.

96

OODBMS and Memory Optimizations

To improve the FindTopLevel() and FindAssembly() operations, the C++ clagssdor
uct definitionwas extended to keep back-pointers forréhating andrelated product defi-
nition attributes okssembly component usagéhe back-pointers were initialized by
traversing alassembly component usaggghe beginning of the benchmark run. The

modified algorithm is shown below:

void BOMStone_backpointer (dataset : S)
begin
foreach assembly component_usage: acuin Sdo
begin
AppendRelatedPdefBackpointers (GetRelatedProductDefinition (acu),acu)
AppendRelatingPdeBackpointers (GetRelatingProductDefinition (acu),acu)
end

foreach product_definition : pdefin S do
begin
if Empty (GetRelatedPdefBackpointers(pdef))
then FindAssembly (pdef, 0);
end
end

void FindAssembly bacdkpointer (product_definition pdef, integer depth)
begin

Printindent (depth) /*indent according to depth */

PrintProductDef (pdef) /* print product and version name */

foreach assembly_component_usage : acuin
GetRelatingPdefBackpointers (pdef) do
begin
FindAssembly (GetRelatedProductDefinition (acu), depth+1)
end
end

This optimization reduces the complexity of the BOMStone algorithm to linear time.
Initialization of the back-pointers requires O(A) time, but we can find the owners and com-
ponents of a part in constant time. Over the course of all assemblies, the FindAssembly()
function will touch each part once, requiring O(P) operations. The complete algorithm is

O(A+P), but since A is O(P), the complexity becomes O(P+P), or just O(P).

97

The modifications had a large effect on the observed benchmark times. As predicted,
the times for the ObjectStore and working-form implementations grew in a linear fashion.
As with the basic algorithm, the ObjectStore implementation was slower than the working-

form and grew at a slightly larger rate.

50000 -
//
1
45000 Oracle SDAI j Oracle SQL -
: ;
40000 | { g
/'/
I
35000 |- ! B
/'/
1
% 30000 |- i -
=}
c 1
[=} !
8 i
) 25000 - / B
Q 1
£ ;. Oracle SDAI |
= 20000 |- : . plusindex / 7
15000 | .
//
10000 | , .
/ All other times are under 500 sec
/ ObjectStore
5000 |/ .
/ Memory
/ i A)
0 : | L + 1
0 5000 10000 15000 20000
Part Objects
Figure 6.3 — BOMStone Timings
500 T T T
ObjectStore
450 ./ Memory i
400 B
Oracle SQL
350 _~~ plusindex ~
a 300 L i
=} s
j = -
o -
& 250 B
[}
E
= 200 B
150 —
100 ObjectStore |
Back-pointer
50 R
Memory

) Back-pointer

10000
Part Objects

20000

Figure 6.4 — BOMStone Timings, Detail Showing Benchmark

Results Under 500 Seconds

98

99

6.4 NURBStone Results

The NURBStone tests used a series of data sets containing between 2300 and 100,000
geometric objects. In addition to the basic NURBStone algorithm, several modifications to
the Oracle implementation were tested. These optimizations are discussed in Section 6.3.3.

The results of all NURBStone timings are shown Figure 6.6 and Figure 6.7.

6.4.1 Shape Test Data

Creation of physically precise shape data from scratch would require the services of a
CAD system or geometric modeling kernel. However, the complexity of the NURBStone
benchmark does not depend on the composition or numeric accuracy of individual shape
representations. Theknurbprogram was developed to create data sets of varying size by

replicating an existing shape data set.

The “moon buggy” test part shown in Figure 6.5 was replicated as needed to create data
sets of sufficient size. The moon buggy data set was created for the STEPnet inter-opera-
bility testing efforts [Down96] and has been used by over a dozen CAD vendors to ensure
that their software conforms to the standard. The test part has 20 shape representations and
uses most of the AP-203 geometric entity types. The data sets were constructed in a range
of sizes between 2300 and 100,000 geometry objects. The number of “moon buggy” copies

and exact sizes of the data sets are shown in Table 6.1.

6.4.2 NURBStone Timings

As with the previous benchmarks, the basic algorithm was tested against each SDAI im-
plementation. The Oracle timings were performed with and without extra indices on the

most-used columns.

100

Generated Data Set Copies Total Instances
ndata-002-3 1 2343
ndata-004-6 2 4686
ndata-007-0 3 7029
ndata-009-3 4 9372
ndata-011-7 5 11715
ndata-014-0 6 14058
ndata-021-0 9 21087
ndata-051-5 22 51546
ndata-100-0 43 100749

Table 6.1 — NURBStone Data Set Sizes

Figure 6.5 — STEPnet Moon Buggy

The working-form times were fastest and show linear growth. The ObjectStore imple-

mentation was slower and differed from the working-form by a larger margin than with the

101

other benchmarks. The ObjectStore times are somewhat linear, but there is a suggestion of

non-linear behavior at larger data set sizes.

As with the other benchmarks, the Oracle times were much slower, although we were
able to complete measurements on all data set sizes. The Oracle times show a definite non-
linear trend. Addition of indices resulted large reduction in the times and return to linear

behavior. The Oracle indices were added to the keys of all geometric entity tables.

6.4.3 NURBStone Optimizations

Two additional timings runs explored modifications to the Oracle implementation. The
Oracle NURBStone was modified to collapse multiple SDAI calls into single SQL queries

where possible. The modifications were tested with and without additional indices.

The modifications had minimal effect on the performance of the benchmark. In both
timings, the modified algorithm was only slightly faster than the original. The benchmark
was more strongly affected by the presence or absence of indices than by the clustering of

attribute access operations.

Time (Seconds)

Time (Seconds)

70000

60000

50000

40000

30000

20000

10000

120

100

80

60

40

20

Figure 6.7 — NURBStone Timings, Detail Showing Benchmark

Oracle SDAI
" Oracle SQL
) Oracle SDAI
With Extra .
Indices o=
Pt Oracle SQL

e T i ObjectStore and Memory under 120 sec
1 1

e 1 1

20000 40000 60000 80000 100000
Geometry Objects

Figure 6.6 — NURBStone Timings

ObjectStore

e Memory

20000 40000 60000 80000 100000
Geometry Objects

Results Under 120 Seconds

102

103

6.5 Database Load/Unload Results

In order to gain insight into the performance of upload/download and cached bindings,
we measured the times required to load and extract data sets from Oracle and ObjectStore.
The measurements reflect the time required to load the database from a physical file as well
as the time required to extract data from the database to a physical file. In Section 7.5, we
combine these numbers with the results of the working-set benchmarks to estimate the per-

formance of alternate bindings.

Figure 6.8 and Figure 6.9 show load and extract times for the NURBStone data sets.
Oracle requires much more time to transfer data than does ObjectStore. Aside from the dif-
ference in magnitude, extracting data from Oracle appears to be more costly than loading

it, while for ObjectStore, the opposite is true.

In Section 3.5.1, we note that the load and extract programs should behave in O(N) fash-
ion. The load behavior for Oracle is strongly linear, while extraction shows higher-order
behavior. In fact, we were unable to complete all of the measurements because of the mag-
nitude of the extract times. Addition of indices improved the extract times slightly, but did
not change their fundamental behavior. The ObjectStore extract behavior was linear while

the load behavior showed signs of higher complexity.

We repeated the load and extract tests using PartStone and BOMStone data sets. The
ObjectStore results were identical. The Oracle results were identical except for the case
where indices were applied. Indices reduced extract times to almost the same values as the
load times. This was unexpected because indices did not strongly affect the behavior of
NURBStone data sets. This suggests that either the extract software or Oracle indices may
depend on the number of entity types in the database. The PartStone and BOMStone data
sets have a small number of entity types (two and four respectively), while the NURBStone

data sets use over fifty different types.

Time (Seconds)

Time (Seconds)

40000

35000

30000

25000

20000

15000

10000

5000

Figure 6.8 — Database Transfer Times, Computed Using the

500

450

400

350

300

250

200

150

100

50

Figure 6.9 — Database Transfer Times, Detail Showing Times Under

Geometry Objects

NURBStone Data

T T T T T
/ Oracle Extract
L / plus index |
| Oracle Extract /]
Oracle Load
plusindex ...

L e Oracle Load i

All other times are under 500 sec

1 1 1 1

0 40000 60000 80000 100000

Geometry Objects

500 Seconds

T T . : I
I ObjectStore -
Load - ’
I 7 ObjectStore b
Extract
/‘ 77777777777777 | R 1 |) I
0 20000 40000 60000 80000 100000

104

I4 Discussion

7.1 Overview

We have defined several benchmarks for STEP database implementations and have test-
ed them against SDAI implementations built on top of Oracle, ObjectStore and a main-
memory working form. These results have given us some insight into four factors that af-

fect the performance of an SDAI implementation.

7.2 Effect of Access Performance

In Section 5.5.4, we determined that the NURBStone benchmark was an O(N) algo-
rithm. Looking at the benchmark results, we expect to see linear behavior. This is true for
the working-form binding, but we see slightly nonlinear behavior with ObjectStore and def-

inite nonlinear behavior with Oracle.

The benchmark complexity analysis assumed that attribute access was a constant-time
operation. The benchmark results have shown that this assumption is not always valid. Us-
ing the NURBStone results, we can compute the time required per object. This time is re-

lated to the cost of access for each system. It is important to note that these are relative

105

Time Per Object (Seconds)

Time Per Object (Seconds)

106

07 T T T T T
Oracle SDAI
0.6 I " Oracle SQL]
05 i
04 i
0.3 i
02 Oracle SDAI]
: Oracle SQL
0.1+ i
e - Vo ObjectStore and Memory below .002 sec
0 T I I I I I
0 20000 40000 60000 80000 100000

Geometry Objects

Figure 7.1 — Average Access Time per Object, Computed Using the

NURBStone Benchmark Results

0.002 — : . . . -
0.0015 |- —
| ObjectStore
0001 N - i
0.0005 - B
Memory
O 1 1 1 1 1
0 20000 40000 60000 80000 100000

Geometry Objects

Figure 7.2 — Average Access Time per Object, Detail Showing the

ObjectStore and Working-Form Values

107

costs. The exact cost of access will vary based on the mix of instructions, but should be in

line with the results presented here.

Figure 7.1 and Figure 7.2 show the relative costs of access for each system. The work-
ing-form has the lowest cost. The ObjectStore cost is several times as large, and there is
some indication that the cost may be non-constant. The Oracle implementation has a cost

several orders of magnitude larger that grows linearly with the size of the database.

System Cost per Object Objects per Second
Oracle ~.05-.7 sec/obj 1.4 - 20 obj/sec (depends on
indices and DB size)
ObjectStore ~.001 sec/obj 1000 obj/sec
Working-Form ~.00025 sec/obj 4000 obj/sec

Table 7.1 — Database Access Costs

A variable cost of access increases the complexity of the benchmarks. As discussed in
Section 5.3.4, the complexity of the basic PartStone and BOMStone algorithms)s O(N
Assuming each relational access behaves as O(N), the algorithms reqLﬁ)eaCiz(efkses
at O(N) each, or O behavior. This corresponds with the extreme behavior of the rela-

tional implementations in Figure 6.1 and Figure 6.3.

According to these results, we would expect the database extract utility to behave in an
O(N?) fashion. This appears to be consistent with most of the extract times in Section 6.5,
but not with PartStone and BOMStone extract times on heavily indexed databases. Addi-
tional investigation is needed on the effect of indices and differing numbers of entity types

on access costs.

108
7.3 Effect of Usedin() Optimizations

The PartStone and BOMStone benchmarks required a Usedin() operation to traverse an
existence-dependent relationship. This type of relationship is common in the STEP models

and is often used to model associated properties.

These experiments showed the importance of a well designed SDAI Usedin() algo-
rithm. Inthe case of the relational system, use of SQL joins reduced higher-order behavior
to linear time. Rewriting the ObjectStore and working-form implementations to use back-

pointers had a similar effect.

The PartStone results (Figure 6.2) show that even with a much lower cost of access, the
non-back-pointer ObjectStore and working-form systems were not able to compete with an

Oracle query after 2500 objects.

These optimizations were hand-coded for maximal efficiency. A general purpose
SDAI Usedin() implementation may not be able to reach the same performance as hand op-
timized code. In any case, the benchmark results show this to be a more important factor
than access speed for an SDAI binding that must work on the types of product data charac-

terized by the PartStone and BOMStone benchmarks.

The back-pointer implementations were faster than SQL joins, but they require the
proper data set to be selected a-priori. In a very large SDAI database, an SQL join might
be more useful for selecting the proper data sets for later use with a cache. This technique

is discussed in [Sama90].

109
7.4 Effect of Relational Index Optimizations

The indices did not have as large an effect as expected. Extra indices improved times
slightly in most cases. They had a large effect on the optimized BOMStone benchmark, a

moderate effect on the NURBStone, but only marginal effect on the PartStone.

SDAI SQL
PartStone Slightly Better Slightly Worse
BomStone Slightly Better Much Better
NURBStone Better Better

Table 7.2 — Effect of Indexing on Benchmarks

In general, indexing seems to be most useful in improving the SQL joins of Usedin()
optimizations. It also improves SQL select behavior, such as that in SDAI attribute access,

but does not reduce access cost to a constant time.

The extract operations showed varied behavior in the presence of indices. As noted in
Section 6.5, indices were most beneficial for PartStone and BOMStone data, but did not
strongly affect times for NURBStone data. More investigation is needed to determine the

exact nature of this behavior.

7.5 Effect of Access Architecture

In the course of this work, we gathered benchmark performance statistics for direct
SDAI bindings on Oracle and ObjectStore, as well measurements of database load and ex-
tract times. We can combine the load times from Section 6.5 with the working-form bench-

mark times to estimate the behavior of upload/download and cached bindings.

110

These estimates are accurate for upload/download bindings, but under-estimate the per-
formance of cached bindings, which do not require a file round trip. The cost of a file round
trip is small (see Figure 7.2), but as noted in Section 4.4.1, an Oracle cached binding was

constructed and could be used if exact times are required.

7.5.1 ObjectStore Alternate Bindings

The alternate bindings compare very well to the ObjectStore direct binding. Figure 7.3
shows that, for the basic PartStone and BOMStone algorithms, the bindings are almost in-

distinguishable.

At smaller times, the cost of the file round trip becomes large compared to the bench-
mark. The bindings remain close with the optimized algorithms in Figure 7.4, although the
direct binding is slightly faster. In Figure 7.5, with the NURBStone benchmark, the direct

binding is faster, but the alternate bindings still have reasonable performance.

These results indicate that an ObjectStore alternate binding would have similar perfor-
mance characteristics to the direct binding, with reduced database functionality, but also re-
duced implementation cost. Assuming that the ObjectStore and Versant database systems
have similar performance characteristics, these findings validate the cost-effectiveness of

the Versant cached binding implementation in Section 4.4.2.

Time (Seconds)

Time (Seconds)

2500 . | | I
PartStone
Alternate
Bindings PartStone
2000 . |
1500 |
BOMStone
B Direct .-]
- BOMStone
Alternate
Bindings
500 |
0 — (,5,‘:',/__:,,,,,1,,/:‘ | | I
0 5000 10000 15000 20000

Part Objects

Figure 7.3 — ObjectStore Alternate vs. Direct Bindings, Basic

PartStone and BOMStone Algorithms

T T T T
140 N
120 N
BOMStone BOMStone
Direct Alternate
100 | \\ Bindings A
80 \ g
60 PartStone T
Alternate
Bindings
o T N
PartStone
Direct
20]
O - 1 1 1 1
0 5000 10000 15000 20000

Part Objects

Figure 7.4 — ObjectStore Alternate vs. Direct Bindings, Optimized

PartStone and BOMStone Algorithms

111

Time (Seconds)

140
NURBStone
Alternate
Bindings
120

100 |
" NURBStone
80 Direct
60 |
40 b
20 b
O] 1 1 1 1 1
0 20000 40000 60000 80000 100000

Geometry Objects

Figure 7.5 — ObjectStore Alternate vs. Direct Bindings,
NURBStone Benchmark

112

113

7.5.2 Oracle Alternate Bindings

The alternate binding estimates were constructed with best-case times. The estimates
used extract times from indexed databases and working-form times with back-pointer Use-

din() optimizations.

On the PartStone (Figure 7.6) and BOMStone (Figure 7.7) benchmarks, the alternate
bindings were significantly faster than the direct binding basic SDAI algorithms, but they
were not faster than direct binding optimized algorithms. On the NURBStone benchmark

(Figure 7.8), the alternate bindings were slower than the direct binding in all cases.

In Section 7.2 we saw that the cost of an Oracle access operation is several orders of
magnitude slower than an ObjectStore access. This extra cost affects all Oracle bindings,
but in different ways. Oracle upload/download and cached bindings have extremely long
latencies. The upload/download binding can side-step the latency by pre-fetching applica-

tion data.

An Oracle direct binding incurs a high cost for each SDAI call, but programs can take
advantage of SQL operations to reduce the number of calls. If an application can use SQL
gueries to do a large amount of work in a single call, a direct binding makes the most oper-
ational sense. If applications must perform a large number of SDAI calls, particularly with
higher-order complexity algorithms, one of the alternate bindings would provide better per-

formance.

Time (Seconds)

Time (Seconds)

2500 ~ : | | |
! Direct SDAI
! plus index
s Alternate
| Bindings
2000 K |
1500 [|
1000 £ |
h T Direct SQL i
| plus index
S S 7 Direct SQL
I | |
0 5000 10000 15000 20000

Part Objects

Figure 7.6 — Oracle Alternate vs. Direct Bindings, PartStone

Benchmark
2500 - ; ; T T T
! | Direct SQL
! : Alternate
i : Bindings
2000 K _ | -
- ™SN__ Direct SDAI
5 : plus index
1500 [i
1000 [.
500 |- ! i
[Direct SQL
- plus index
0 e 1 | |
0 5000 10000 15000 20000

Part Objects

Figure 7.7 — Oracle Alternate vs. Direct Bindings, BOMStone
Benchmark

114

Time (Seconds)

40000

35000

30000

25000

20000

15000

10000

5000

Figure 7.8 — Oracle Alternate vs. Direct Bindings, NURBStone

Alternate
Bindings

Direct SDAI .

plus index ==~

“ Direct SQL
plus index

40000 60000 80000 100000
Geometry Objects

Benchmark

115

Conclusions

8.1 Summary

Product databases based on EXPRESS models can reduce industry’s dependence on
vertically integrated engineering applications and proprietary product databases. We have

performed the following work to simplify and promote construction of product databases:

* |dentified several design decisions affecting the structure of EXPRESS databases
and SDAI database bindings.

» Examined the effect of binding architecture on implementation cost by looking at

six prototype SDAI database bindings.

« Identified a set of benchmarks for measuring the operational characteristics of an
SDAI binding on a STEP AP-203 database.

» Used these benchmarks to measure the baseline performance of implementations

built on Oracle and ObjectStore, as well as the effect of several optimizations.

« Examined the effect of binding architecture on operational cost by comparing the
performance measurements for direct SDAI bindings on Oracle and ObjectStore

with values calculated for the alternate bindings.

116

117

In the following sections, we summarize the conclusions and contributions of this re-

search and discuss areas that might benefit from future exploration.

8.1.1 Implementation Framework

We identified two important architecture decisions for SDAI database bindings. The
first factor is data access style. The simplest style is an upload/download binding, which
consists of off-line file upload/download tools paired with a working-form SDAI binding.
Next is a cached binding, which moves data to and from a main-memory cache. The final
style is a direct binding, which manipulates data “in place” by calling one or more native

operations for each SDAI operation.

The second factor that an implementor must consider is whether to use code generation
or data-dictionary access. This choice depends only on features of the underlying database

and the need for customization of the SDAI binding. The architecture factors are summa-

rized in Figure 8.1.

- _

c Determined by required features, DB speed,

-% and available resources
85

[

)

O .

Determined by DB

- features and need
s for customization
= C
TS O
038

a)

File Cached Direct

Figure 8.1 — SDAI Binding Design Decisions

118

We examined the SDAI implementations covering the architectures shown in Table 8.1
and noted that the cost for implementing each access style rises with the number of features
it provides. The upload/download and cached bindings provide SDAI access, but are not
useful for situations requiring concurrent update. A direct binding is more costly, but can

make use of more database features and optimizations.

DEED et Oracle ObjectStore and
OpenODB
Early-Bound Oracle Early-Boung
Sl Cached Direct
Upload/Download
Late-Bound Versant Late-Bound
Late-Bound .
Upload/Download Direct
Cached

Table 8.1 — SDAI Architectures Covered by the Implementation
Studies

We conclude that, if the application requirements permit, the most cost-effective imple-
mentation approach is to use code generation to construct upload/download software. Once
testing and development are complete, the load and extract programs can be integrated with
the working-form SDAI to produce a cached binding. This architecture permits interfaces

for several systems to be integrated with the binding, as shown in Figure 8.2.

Experience from these projects shows that code generation requires relatively minor
changes to existing EXPRESS compiler software, and the limited scope of upload/down-
load software makes it far simpler than a direct SDAI binding. Furthermore, the cost of de-
veloping and maintaining a working-form SDAI binding can be distributed across several

projects.

Finally, by keeping the database access software simple and separate from the SDAI
binding, future systems can explore the benefits of a client-server model with network-wide
distribution of data. This is particularly true now that more applications are moving to-
wards web-centric designs and a Java SDAI specification is under development. If engi-

neering data must be distributed to thin clients, a cached binding becomes very attractive.

119

SDAI
Application

Working Form
Cache

Import/
Export
Software

Modified Working Form
SDAI Binding

Import/
Export
Software

Import/
Export
Software

DATABASE
SYSTEM B

DATABASE
SYSTEM C

DATABASE
SYSTEM A

Figure 8.2 — Preferred Implementation Architecture

A direct binding would require complex client software and network communication for
each SDAI operation, but a cached binding could keep database load and unload software

on the server and transfer data in one burst to a lightweight Java working-form client.

8.1.2 SDAI Benchmarks

We identified a set of benchmarks to measure the operational characteristics of SDAI
implementations. These benchmarks are based on the STEP AP-203 information model,
but can be applied to most STEP information models. The PartStone benchmark operates
on part version information, which is modeled in an existence-dependent style. The NURB-

Stone benchmark operates on product shape information, which is modeled in a navigation-

120

al style. Finally, the BOMStone benchmark operates on bills of material, which is modeled

in a mix of the two styles.

We used these benchmarks to evaluate the performance of ObjectStore and Oracle di-
rect bindings. In addition, we tested a working-form SDAI binding and measured the load
and extract performance of the database systems. From this information, we were able to
determine the performance of upload/download and cached bindings. These results are

summarized in Table 8.2.

Upload/Download Cached Direct
ObjectStore Fast Fast Slightly Faster

Slow, but can be sgt Slow. Better than |Slow. Better speed
up beforehand for| direct for complex| SQL optimizations
interactive code. | algorithms w/o SQL are available.

optimization.

—h

Oracle

Table 8.2 — Performance of SDAI Bindings

These measurements showed that the access and update performance of Oracle and Ob-
jectStore behave differently as the database size increases, which may influence the desir-
ability of each binding. For the ObjectStore system, we saw that upload/download and
cached bindings perform just as well as a direct binding. This performance, coupled with

the low implementation cost, reinforces the desirability of a cached binding.

For the Oracle system, we saw that the cost of an access operation is several orders of
magnitude slower than with ObjectStore. This severely impacts the speed of all bindings,
but in different ways. The upload/download and cached bindings result in extremely long
latencies, but the upload/download binding can lessen this by pre-fetching the application
data. The direct binding will incur a high cost for each SDAI call, but programs can take
advantage of SQL operations to reduce the number of calls. If an application can use SQL
gueries to do a large amount of work in a single call, a direct binding makes the most oper-

ational sense. If applications must perform a large number of SDAI calls, particularly with

121

higher-order complexity algorithms, then one of the alternate bindings would provide better

performance.

We also tested the effect of optimizations on the underlying database. In particular, we
note the importance of Usedin() optimizations to any SDAI implementation. For the Oracle
implementation, experience shows that the addition of indices for SDAI attribute access
does not have as large an effect as the addition of indices for SQL joins and Usedin() opti-

mizations.

8.1.3 Recommendations for Implementors

The results of this research show that implementors must examine the application re-
qguirements for the product database. If access to data at model granularity is sufficient for
applications, one of the alternate binding architectures (cached or upload/download) should
be considered because of the lower implementation cost. If applications require low laten-
cy for access to individual data values, a direct binding should be used, even though it has

a greater implementation cost.

The SDAI session architecture provides for access to data stored in multiple repositories
(database systems). Simultaneous access to different database systems will usually require
an alternate binding, as shown in Figure 8.2, due to the complexity of adding access code
for multiple databases to each SDAI operation. However, a common access protocol, like

ODBC, might allow a direct binding to be used with more than one database system.

The complexity of applications also affects the choice of binding architecture. In gen-
eral, SDAI applications that have greater than linear complexity, such as the PartStone and
BOMStone tests, will perform as well or better with the low implementation cost alternate
binding architectures. This is because database operations are slower than memory access.
The alternate bindings extract data from the database using a linear number of database op-

erations, and then perform SDAI algorithm operations at main-memory speeds. A direct

122

binding must perform all of the high-complexity algorithm operations at the slower data-

base speeds.

Applications that use linear time SDAI algorithms, like the NURBStone benchmark,
may perform slightly better with a direct binding, although this requires greater implemen-
tation effort. Also, higher-order algorithms can be affected by database optimizations. In
particular, optimizations on the Usedin() operation should be given a high priority. These
offer the potential for large performance gains on algorithms that traverse existence-depen-

dent information.

8.2 Contributions

The main purpose behind the SDAI is to reduce the cost of engineering applications.
Industry needs the SDAI to make applications portable across different storage technolo-
gies, and to encourage the development of product databases. Until now, there has been
no work in the field that discusses how to build an SDAI implementation, or how to antic-
ipate what the costs of an implementation will be. This work offers guidance through the

following contributions:

« Definition of a framework for database implementation of EXPRESS models.
These implementation architectures can be grouped into upload/download, cached,
and direct implementations. The implementation cost for the architectures have

been illustrated using systems built on a variety of databases.

« Definition of a representative set of benchmarks for evaluating the operational
costs of database implementations. The PartStone, BOMStone, and NURBStone
benchmarks were developed using AP-203, but the definitions they are based on

are shared by many of the STEP application protocols.

123

* Measurements of SDAI binding operational characteristics on database systems

that are commonly used by engineering applications.

* Recommendations for implementors based on application requirements and the rel-

ative costs of implementation and operation for each implementation architecture.

These contributions should simplify construction of EXPRESS database implementa-
tions by providing a well-defined framework and examples. In addition, the results present-
ed in this work should improve the quality of implementations by ensuring design decisions
appropriate to the intended use of the system. In the larger view, it is hoped that these con-
tributions will help industry to integrate design and manufacturing processes and reap the

benefits of concurrent engineering.

8.3 Future Work

In the course of this work, we have raised some questions that would benefit from ad-
ditional investigation. For example, results described in Section 6.5 suggest that Oracle
extract software or Oracle indices might depend on the number of entity types in a database.

Additional experiments could be run to determine the exact nature of this behavior.

It would be interesting to investigate the range of algorithms appropriate for implement-
ing each of the three high-level SDAI access architectures. For example, what are the best
algorithms for database load and unload programs? How should a direct binding maintain
temporary state information? How should SDAI models be integrated back into the data-

base during the upload process?

A number of CAD vendors are considering SDAI bindings to their systems. What
would change if the underlying system were not a general-purpose database, but rather an

engineering system with its own data structures? An implementor would not use a general

124

EXPRESS to DDL mapping. Instead, one must deal with a mapping from specific system
structures to a specific STEP information model. A direct binding would be similar to a
incremental CAD translator. If a direct binding must be constructed, do algorithms exist

that enable incremental translation without excessive state information?

The work being done by the ODMG organization could reduce the work needed to im-
plement EXPRESS on object-oriented databases. If the ODMG interfaces are implement-
ed by OODBMS vendors, only one EXPRESS schema mapping and SDAI binding would
be needed for compliant systems. However, it should be noted that the ODMG work may
not address performance issues raised by this document. Also, it would not be useful for
implementations on non-object-oriented systems. Furthermore, the future of ODMG may
be in question since the leading OODBMS vendor (Object Design) appears unwilling to

continue work in this area.

The OMG standards are another area of interest. As noted in Section 2.3.4, an SDAI
binding to the CORBA/IDL language is under development. A CORBA binding could fa-
cilitate the development of network accessible product databases by allowing developers to
build data servers based on EXPRESS databases [Hard95c]. This is one of the areas cur-
rently being explored by the participants in the National Industrial Infrastructure Protocols
Consortium (NIIP).

This consortium is exploring technologies that may reduce costs for concurrent engi-
neering and virtual enterprises. In recent demonstrations, they have used the World Wide

Web and CORBA to make STEP product data available to distributed engineering groups.

The Internet, CORBA, and to some extent OLE, are transport technologies that enable
wide-area access, but they do not address the meaning of the information that they make
available. The World-Wide Web is based on transport technologies but uses the HTML lan-
guage to describe distributed documents. STEP can play the same role as HTML for CAD

data and other technical design information. Combining the international standard for dig-

125

ital product data with the World-Wide Web and vendor-driven software integration technol-
ogies such as OMG’s CORBA or Microsoft's OLE may extend the massive collaboration
of the World-Wide Web to design and manufacturing [Loff95].

[Birc85]

[Booc98]

[Bruc92]

[Brac85]

[CF192]

[Chen76]

[Clar90]

[Curn76]

[Date86]

References

E. B. Birchfield and H. H. King, “Product Data Definition Interface (PD-
DI),” Proc. of the 1985 USAF CIM Industry Dayiexas, April 1985.

G. Booch, J. Rumbaugh, and I. Jacobsmified Modeling Language User
Guide Addison Wesley, 1998. ISBN 0-201-57168-4.

T. A. BruceDesigning Quality Databases with IDEF1X Information Mod-
els, Dorset House Publishing, New York, 1992.

R. Brachman and H. Levesque, ed®&adings in Knowledge Representa-
tion, Morgan Kaufman, Los Altos, Calif., 1985.

Design Representation Programming Interface - Electrical Connegtivity
CAD Framework Initiative, Inc., Austin, Texas, 1992.

P. Chen, “The Entity Relationship model — Towards a Unified View of
Data,”ACM Transactions on Database Systevd. 1, No. 1, March 1976,
pp. 9-36.

S. Clark, “An Introduction to the NIST PDES Toolkit,” Technical Report
NISTIR 4336, National Institute of Standards and Technology, Gaithers-
burg, Maryland, May 1990.

H.J. Curnow and B.A. Wichmann, “A Synthetic Benchmarkg Comput-

er Journal 19,1 (1976), 43-49. (Also see the comp.benchmarks FAQ for
more information about this and many other CPU benchmarks).

C. J. DatéAn Introduction to Database Systerasurth Edition, Addison-
Wesley, 1986.

126

[Date89]

[Down96]

[Egges8g]

[EIma89]

[Gallg4]

[Gadio4]

[Hard91]

[Hard93]

[Hard94]

[Hard95a]

[Hard95b]

[Hard95c]

127

C. J. Datéh Guide to the SQL StandarBecond Edition, Addison-Wesley,
1989.

B. Downie, “STEP and SAT: Competing StandardSpatial Relations
Vol. 13, Spatial Technology, Boulder, Colorodo, April 1996.

J. Eggers, “Implementing EXPRESS in SQL,” Document TC184/SC4/
WG1 N292, ISO, Geneva, October 1988.

R. Elmasri and S. Navati@jndamentals of Database SysteBesnjamin-
Cummings, Redwood City, Calif., 1989.

S. Gallaghennside the Personal Computer: A Pop-up GuiGeoss River
Press, 1984. ISBN 0-89659-504-8

A. Gadient, G. Graves, and J. Boudreaux, “PreAmp: A STEP-Based Con-
current Engineering Environment for Printed Circuit Assembli€gicur-

rent Engineering: Research and Applications 1994 Conference
ProceedingsAugust 1994, pp. 529-537.

M. Hardwick et al., “Managing Change Using STEP/EXPRESS,” Techni-
cal Report 91016, Rensselaer Design Research Center, Rensselaer Poly-
technic Institute, Troy, New York, 1991.

M. Hardwick, “Implementing Concurrent Engineering Using STEP, EX-
PRESS, and Delta Files]’anguages for Manufacturing and Desjdh
Gruver and J. Broudreaux, ed., Springer Verlag, London 1993.

M. Hardwick, “Towards Integrated Product Databases Using Views,”
Technical Report 94003, Rensselaer Design Research Center, Rensselaer
Polytechnic Institute, Troy, New York, 1994.

M. Hardwick, B. Downie, M. Kutcher, and D. Spooner, “Concurrent Engi-
neering with Delta Files,TEEE Computer Graphics and Applicatioil.
15, No. 5, January 1995, pp. 62-68.

M. Hardwick and D. Loffredo, “Using EXPRESS to Implement Concurrent
Engineering DatabasesProc. of the Ninth Annual ASME Engineering Da-
tabase SymposiurBoston, Mass., September 17-21, 1995.

M. Hardwick, D. Spooner, T. Rando, and K.C. Morris, “Sharing Manufac-
turing Information in Virtual EnterprisesCommunications of the ACM
February 1996.

[Herb94]

[Hsu89]

[Hull87]

[IDEF85]

[IGESS0]

[1SO94a]

[1SO94D]

[1S094c]

[1SO944d]

[1SO94e]

128

A. Herbst, “Archiving of Data in an EXPRESS/SDAI Databas¥gdc. of
EUG '94 — The Fourth EXPRESS Users Group Confergaiaenville,
South Carolina, October 1994.

C. Hsu, M. Bouziane, L. Rattner, and L. Yee, “GIRD: A Meta-Database
Structure for Heterogeneous Distributed Environmemsyt. Second In-
ternational Conference on Computer Integrated ManufactutiBgE
Press, New York, 1990.

R. Hull and R. King, “Semantic Database Modeling: Survey, Applications,
and Research Issue®\CM Computing Survey¥ol. 19, No. 1, September
1987, pp. 201-260.

Integrated Information Support System (IISS), Vol V: Common Data Model
Subsystem, Part 4: Information Modeling Manual — IDEFRéport
Number AFWAL-TR-86-4006, Volume V, AFWAL/MLTC, Wright-
Patterson AFB, Ohio, 1985.

Initial Graphics Exchange Specificatioviersion 1.0, NIST, Gaithersburg,
Maryland, January 1980.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 1: Overview and Fundamental Pringip&3
10303-1:1994 (E), 1SO, Geneva, 1994.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 11: Description Methods: The EXPRESS Lan-
guage Reference Manyab0O 10303-11:1994 (E), ISO, Geneva, 1994.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 21: Implementation Methods: Clear Text En-
coding of the Exchange Structut80O 10303-21:1994 (E), ISO, Geneva,
1994.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 41: Integrated Generic Resources: Fundamen-
tals of Product Description and Suppoi$O 10303-41:1994 (E), ISO,
Geneva, 1994.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 42: Integrated Generic Resources: Geometric
and Topological RepresentatiofsO 10303-42:1994 (E), 1SO, Geneva,
1994.

[1SO94f]

[1SO954]

[1SO950]

[1SO95¢]

[Koni95]

[Kreb95a]

[Kreb95b]

[Kros89]

[Lars89]

[Loff94]

129

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 203: Application Protocol: Configuration
Controlled DesignlSO 10303-203:1994 (E), ISO, Geneva, 1994.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 22: STEP Data Access InterfaceDocu-
ment TC184/SC4 WG7 N392, July 1995.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 23: C++ Language Binding to the Standard
Data Access Interface Specificatjol50 Document TC184/SC4 WG7

N393, July 1995.

Industrial Automation Systems and Integration — Product Data Represen-
tation and Exchange — Part 24: Standard Data Access Interface — C Lan-
guage Late BindingISO Document TC184/SC4 WG7 N394, July 1995.

H.P. de Koning, P.P. Almazan, “STEP Application Protocol — Thermal
Analysis for Space Proc. of the 25th Intl. Conf. on Environmental Systems
San Diego, Calif., July 10-13, 1995 (also SAE Technical Paper Series
#951725).

T. Krebs and H. Luhrsen, “STEP Databases as Integration Platform for Con-
current Engineering,Proc. 2nd International Conference on Concurrent
Engineering(McLean,Virginia, August 23-25 1995), Concurrent Technol-
ogies Corporation, Johnstown, PA, 1995, pp. 131-142.

T. Krebs, Jorg Decker, “Translating EXPRESS Models to the Extended Re-
lational Database Management System POSTGRE®E. of EUG ‘95 —

The Fifth EXPRESS Users Group Confere@@noble, October 21-22,

1995.

U. Kroszynski, B. Palstroem, E. Trostmann, and E. Schlechtendahl, “Geo-
metric Data Transfer Between CAD Systems: Solid Modd#<E Com-
puter Graphics and ApplicationSeptember 1989, pp. 57-71.

J. Larson, S. Navathe, and R. Elmasri, “A Theory of Attribute Equivalence
in Databases with Application to Schema IntegratitBEE Transactions
on Software Engineerind\pril 1989.

D. Loffredo and M. Hardwick, “Efficient Implementation of EXPRESS In-
formation Models,” Proc. of EUG ‘94 — The Fourth EXPRESS Users
Group ConferenceGreenville, South Carolina, October 1994.

[Loff95]

[Loom87]

[Loom95]

[Mead89]

[Mikh97]

[Morro0]

[Mullo3]

[Nijs82]

[Nijs89]

[Obje94]

[ODMG93]

[OMG93]

[Open9?2]

130

D. Loffredo, “Product Data Exchange with STEECOMM, Vol. 1, No.
1, August/September 1995, pp. 71-77.

M. Loomis,The Database Bookacmillan Publishing Company, New
York, 1987.

M. Loomis,Object Databases, The Essentjasldison Wesley, 1995.

M. Mead and D. Thomas, “Proposed Mapping from EXPRESS to SQL,”
Rutherford Appleton Laboratory, May 1989.

L. Mikhajlov and E. Sekerinski, “The Fragile Base Class Problem and Its
Impact on Component System®yoc. of the Second International Work-
shop on Component-Oriented Programming (WCOP,'9yyaskyla, June

9, 1997. (Proc. available at http://www.tucs.abo.fi/publications/general/
G5.html)

K.C. Morris, “Translating EXPRESS to SQL: A User's Guide,” Technical
Report NISTIR 4341, National Institute of Standards and Technology,
Gaithersburg, Maryland, May 1990.

J. Muller and G. Smith, “A Pre-Competitive Project in Intelligent Manufac-
turing Technology,”Proc. of AAAI ‘93 Workshop on Intelligent Manufac-
turing Technology1993

G. Nijssen and D. Vermeir, “A Procedure to Define the Object Type Struc-
ture of a Conceptual Schemé#nformation System&/ol. 7, No. 4, 1982.

G. Nijssen and T. HalpilGonceptual Schema and Relational Database De-
sign: A Fact Oriented ApproacRrentice Hall, Englewood Cliffs, New Jer-
sey, 1989.

ObjectStore Reference ManuRlart No. 300-100-001 3C, Object Design,
Inc., Burlington, Mass., 1994.

Rick Cattell, “Object Database Management Group Project Summary,”
Sun Microsystems, Mountain View, Calif., March 1993.

R. Soley, “Object Management Group Project Summary,” Object Manage-
ment Group, Framingham, Mass., March 1993.

OpenODB Reference DocumgeRart No. B2470A-90001, Hewlett Pack-
ard, Cupertino, Calif., 1992.

[Owen93]

[PDDI84]

[PDES91]

[PDES97]

[POSC92a]

[POSC92b]

[Ragh92]

[Rumb91]

[Sama90]

[Sand93]

[Sand95]

[Saud95]

131

J. OwenSTEP: An Introduction Information Geometers (47 Stockers Av-
enue, Winchester SO22 5LB, United Kingdom), 1993.

Product Data Definition Interfagelechnical Reports DR-84-GM-01
through DR-84-GM-05, CAM-I Inc., Arlington, Texas, 1984.

A High-level Architecture for Implementing a PDES/STEP Data Sharing
Environment Technical Report PTI017.03.00, PDES Inc., Charleston,
South Carolina, May, 1991.

Recommended Practices for AP-208ternal Document, PDES Inc.,
Charleston, South Carolina, July 1st, 1997. (Also available from ftp://
pdes.scra.org/pub/recprac/)

INfoPOSC Newslettelol. 3, No. 3, Petrotechnical Open Software Corpo-
ration, Houston, Texas, 1993.

C. Allen, “POSC Technical Program Overview,” POSC Document TR-1,
Petrotechnical Open Software Corporation, Houston, Texas, March 1992.

V. Raghavai®TEP Relational InterfageMaster's Thesis, Rensselaer Poly-
technic Institute, Troy, New York, December 1992.

J. Rumbaugh et aDbject Oriented Modeling and Desigdrentice Hall,
Englewood Cliffs, New Jersey, 1991.

G. Samara#, Relational Database as a High-Level Index to a Distributed
Object Database in Engineering Design SystdPh® Thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1990.

D. Sanderson and D. Spooner, “Mapping between EXPRESS and Tradi-
tional DBMS Models,Proc. of EUG ‘93 — The Third EXPRESS Users
Group ConferengeBerlin, October 2-3, 1993.

D. Sandersomhoss of Data Semantics in Syntax Directed TranslaRbiD
Thesis, Rensselaer Polytechnic Institute, Troy, New York, 1995.

David Sauder and K. C. Morris, “Design of a C++ Software Library for Im-
plementing EXPRESS: The NIST STEP Class LibraPygc. of EUG ‘95
— The Fifth EXPRESS Users Group Confere@eenoble, October 21-22,
1995.

[Sche94]

[SET85]

[Ship81]

[Snyd86]

[STI92a]

[STI92b]

[STI92c]

[Totl92]

[Vers93]

[VDAF86]

[Whit91]

[Wils87]

132

D. Schenck and P. Wilsdnformation Modeling the EXPRESS Wex-
ford University Press, New York, 1994. ISBN 0-19-508714-3.

Automatisation industrielle. Representation externe des donnees de defini-
tion de produits. Specification du standard d’echange et de transferts
(SET) Version 85-08, Z68-300, Association Francaise de Normalisation
(AFNOR) 85181, Paris, 1985.

D. W. Shipman, “The Functional Data Model and the Data Language DA-
PLEX,” ACM Transactions on Database Syste¥d. 6, No. 1, March

1981, pp. 140-173 (also Readings in Database Systerks Stonebreak-

er, ed. Morgan Kaufman, San Mateo, Calif., 1988, pp.388-404).

A. Snyder, “Encapsulation and Inheritance in Object-Oriented Program-
ming Languages,’'OOPSLA ‘86 Proceedingpp. 38-45, 1986.

ST-Developer — SDAI Library Reference Man&dlEP Tools, Inc., Troy,
New York, 1992.

ST-Developer — ROSE Library Reference Maf8@EP Tools, Inc., Troy,
New York, 1992.

ST-Developer — STEP Utilities Reference Manp®aEP Tools, Inc., Troy,
New York, 1992.

T. Totland,Translation of Definitions and Data from EXPRESS to C++
Diploma Thesis, Norwegian Institute of Technology, Trondheim, January
1992.

Versant ODBMS System Reference Mandaftsant Object Technology,
Menlo Park, Calif., 1993.

VDA Flaechenschnittstelle (VDAESJersion 1.0, Deutsches Institute fur
Normung (DIN) 66301, Beuth Verlag, Berlin, 1986.

C. Whitehead, “STEP Implementation Prototype Package for LEVEL IlI
Database Prototype using OODB Technology, Digital’s Prototype Report,”
Digital Equipment Corporation, Chelmsford, MA, November 21, 1991.

P. R. Wilson, “A Short History of CAD Data Transfer StandartsEE
Computer Graphics and Applicatigngol.7, No. 6, June 1987, pp. 64-67.

[Wils90]

[Wils91]

[Wils93]

[Winn88]

[Zani83]

133

P. R. Wilson, “Information Modeling and PDES/STEP,” Technical Report
90017, Rensselaer Design Research Center, Rensselaer Polytechnic Insti-
tute, Troy, New York, 1990.

P. Wilson, “Modeling Languages Compared: IDEF1X, EXPRESS, NIAM,
OMT, and Shlaer-Mellor,” Technical Report 92001, Rensselaer Design Re-
search Center, Rensselaer Polytechnic Institute, Troy, New York, 1991.

P. Wilson, “A View of STEP,”Geometric Modeling for Product Realiza-
tion, P. Wilson, M. Wozny, and M Pratt, ed. Elsevier Science Publishers
B.V., North Holland, 1993, pp. 267-296. ISBN 0-444-81662-3.

R. Winner, “The Role of Concurrent Engineering in Weapon Systems Ac-
quisition,” Report R-338, Institute for Defense Analyses, Alexandria, Vir-
ginia, 1988.

C. Zaniolo, “The Database Language GERt6c. 1983 ACM SIGMOD
Conference on Management of Da&an Jose, Calif., May 1983.

	Contents
	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	1.1 Motivation
	1.2 General Approach
	1.3 Results
	1.4 Thesis Organization

	Historical Review
	2.1 Overview
	2.2 Information Modeling and the EXPRESS Language
	2.2.1 Information Modeling
	2.2.2 Why EXPRESS is Important
	2.2.3 History of EXPRESS
	2.2.4 Language Concepts
	2.2.5 Summary

	2.3 Standard for the Exchange of Product Model Data (STEP)
	2.3.1 Structure of STEP
	Figure 2.1 — High Level Structure of STEP

	2.3.2 STEP Information Models
	Application Protocols (APs)
	Table 2.1 — STEP Application Protocols

	Integrated Resources (IRs)
	Table 2.2 — STEP Integrated Resources

	Application Integrated Constructs (AICs)

	2.3.3 STEP Physical File Exchange
	2.3.4 STEP Data Access Interface (SDAI)
	SDAI Early Bindings
	SDAI Late Bindings

	2.3.5 STEP Summary

	2.4 Other Engineering Initiatives Using EXPRESS
	2.4.1 Petrotechnical Open Software Corporation (POSC)
	2.4.2 CAD Framework Initiative (CFI)
	2.4.3 DARPA Initiative in Concurrent Engineering (DICE)

	2.5 Other Standards Efforts
	2.5.1 Object Management Group (OMG)
	2.5.2 Object Database Management Group (ODMG)

	Framework for EXPRESS Database Implementations
	3.1 Overview
	3.2 STEP Implementation Levels
	Figure 3.1 — STEP Implementation Levels
	3.2.1 Level One — File Exchange
	3.2.2 Level Two — Working-Form
	3.2.3 Level Three — Database
	3.2.4 Level Four — Knowledgebase
	3.2.5 Summary

	3.3 Database Implementation Process
	3.4 EXPRESS to Database Schema
	3.5 SDAI Access Architectures
	3.5.1 Upload/Download Access
	Figure 3.2 — Upload/Download SDAI Binding Structure

	3.5.2 Cached SDAI Access
	Figure 3.3 — Cached SDAI Binding Structure

	3.5.3 Direct-Binding SDAI Access
	Figure 3.4 — Direct SDAI Binding Structure

	3.5.4 Access Summary
	Table 3.1 — Characteristics of SDAI Access Architectures

	3.6 Other Design Considerations
	3.6.1 EXPRESS Binding Style
	Code Generation (Early Binding)
	Data-Dictionary (Late Binding)
	Figure 3.5 — Code Generation vs. Data-Dictionary Software
	Table 3.2 — Characteristics of Binding Styles

	3.6.2 Constraint Validation

	3.7 Framework Summary
	Table 3.3 — Software Design Options
	Table 3.4 — Approaches to Constraint Validation

	Implementation Cost Studies
	4.1 Overview
	4.2 Database Systems
	4.2.1 Oracle
	4.2.2 OpenODB
	4.2.3 ObjectStore
	4.2.4 Versant
	4.2.5 ROSE

	4.3 File Upload/Download Implementations
	4.3.1 Oracle Upload / Download
	EXPRESS Mapping to Oracle SQL
	Table 4.1 — Mapping from EXPRESS to the Oracle Primitive Types

	4.3.2 OpenODB Upload / Download
	EXPRESS Mapping to OpenODB OSQL
	Table 4.2 — Mapping from EXPRESS to the OpenODB Primitive Types

	4.3.3 Upload/Download Analysis
	Table 4.3 — Upload/Download Implementation Studies

	4.4 Cached SDAI Implementations
	4.4.1 Oracle Cached SDAI
	4.4.2 Versant Cached SDAI
	EXPRESS Mapping to Versant C++
	Table 4.4 — Mapping from EXPRESS to the Versant Primitive Types

	4.4.3 Cached SDAI Analysis
	Table 4.5 — Cached SDAI Implementation Studies

	4.5 Direct SDAI Implementations
	4.5.1 Oracle Direct SDAI
	4.5.2 ObjectStore Direct SDAI
	EXPRESS Mapping to ObjectStore C++
	Table 4.6 — Mapping from EXPRESS to the ObjectStore Primitive Types

	4.5.3 Direct SDAI Analysis
	Table 4.7 — Direct SDAI Implementation Studies

	4.6 Implementation Summary
	Table 4.8 — SDAI Architectures Covered by the Implementation Studies
	Table 4.9 — Implementation Cost Summary

	Operational Cost Benchmarks
	5.1 Overview
	5.2 The AP-203 Information Model
	Table 5.1 — AP-203 Units of Functionality

	5.3 PartStone — Part Identification
	5.3.1 Application Objects
	5.3.2 EXPRESS Definitions
	Figure 5.1 — EXPRESS-G Diagram of the Part Identification Entities
	Table 5.2 — EXPRESS Entities for Part Identification
	Figure 5.2 — Instance Diagram for Parts and Versions

	5.3.3 Benchmark Operations
	5.3.4 Complexity Analysis

	5.4 BOMStone — Bill of Materials
	5.4.1 Application Objects
	5.4.2 EXPRESS Definitions
	Table 5.3 — EXPRESS Entities for Bill of Material Assembly Structures
	Figure 5.3 — EXPRESS-G Diagram of the Bill of Material Engineering Assembly Entities
	Figure 5.4 — Instance Diagram of a Two Level Automobile Assembly

	5.4.3 Benchmark Operations
	5.4.4 Complexity Analysis

	5.5 NURBStone — Part Geometry
	5.5.1 Application Objects
	5.5.2 EXPRESS Definitions
	Table 5.4 — EXPRESS Entities for Bill of Material Assembly Structures
	Figure 5.5 — EXPRESS-G Diagram of the Geometric Model Representation Entities
	Figure 5.6 — Instance Diagram for the Major Components of a Manifold Solid B-REP Shape Description

	5.5.3 Benchmark Operations
	Table 5.5 — Entity Types Traversed by the NURBStone Benchmark

	5.5.4 Complexity Analysis

	Benchmark Results
	6.1 Overview
	6.1.1 SDAI Test Systems
	6.1.2 Timing Methods
	6.1.3 Data Sets

	6.2 PartStone Results
	6.2.1 Part Identification Test Data
	6.2.2 PartStone Timings
	6.2.3 PartStone Optimizations
	Relational Optimizations
	ObjectStore and Working-Form Optimizations
	Figure 6.1 — PartStone Timings
	Figure 6.2 — PartStone Timings, Detail Showing Benchmark Results Under 500 Seconds

	6.3 BOMStone Results
	6.3.1 Bill of Material Test Data
	6.3.2 BOMStone Timings
	6.3.3 BOMStone Optimizations
	Relational Optimizations
	OODBMS and Memory Optimizations
	Figure 6.3 — BOMStone Timings
	Figure 6.4 — BOMStone Timings, Detail Showing Benchmark Results Under 500 Seconds

	6.4 NURBStone Results
	6.4.1 Shape Test Data
	Table 6.1 — NURBStone Data Set Sizes
	Figure 6.5 — STEPnet Moon Buggy

	6.4.2 NURBStone Timings
	6.4.3 NURBStone Optimizations
	Figure 6.6 — NURBStone Timings
	Figure 6.7 — NURBStone Timings, Detail Showing Benchmark Results Under 120 Seconds

	6.5 Database Load/Unload Results
	Figure 6.8 — Database Transfer Times, Computed Using the NURBStone Data
	Figure 6.9 — Database Transfer Times, Detail Showing Times Under 500 Seconds

	Discussion
	7.1 Overview
	7.2 Effect of Access Performance
	Figure 7.1 — Average Access Time per Object, Computed Using the NURBStone Benchmark Results
	Figure 7.2 — Average Access Time per Object, Detail Showing the ObjectStore and Working-Form Values
	Table 7.1 — Database Access Costs

	7.3 Effect of Usedin() Optimizations
	7.4 Effect of Relational Index Optimizations
	Table 7.2 — Effect of Indexing on Benchmarks

	7.5 Effect of Access Architecture
	7.5.1 ObjectStore Alternate Bindings
	Figure 7.3 — ObjectStore Alternate vs. Direct Bindings, Basic PartStone and BOMStone Algorithms
	Figure 7.4 — ObjectStore Alternate vs. Direct Bindings, Optimized PartStone and BOMStone Algorithms
	Figure 7.5 — ObjectStore Alternate vs. Direct Bindings, NURBStone Benchmark

	7.5.2 Oracle Alternate Bindings
	Figure 7.6 — Oracle Alternate vs. Direct Bindings, PartStone Benchmark
	Figure 7.7 — Oracle Alternate vs. Direct Bindings, BOMStone Benchmark
	Figure 7.8 — Oracle Alternate vs. Direct Bindings, NURBStone Benchmark

	Conclusions
	8.1 Summary
	8.1.1 Implementation Framework
	Figure 8.1 — SDAI Binding Design Decisions
	Table 8.1 — SDAI Architectures Covered by the Implementation Studies
	Figure 8.2 — Preferred Implementation Architecture

	8.1.2 SDAI Benchmarks
	Table 8.2 — Performance of SDAI Bindings

	8.1.3 Recommendations for Implementors

	8.2 Contributions
	8.3 Future Work

	References

