Date: 4/25/01	Histones (yeast)	p. 1	Exp-code:	Binder-Pages:

HISTONES (from Yeast cells)

The protocol below is given for the histone isolation from undegraded crude nuclear preparations and from whole cells, as developed from standard procedures in 1999 [see Waterborg (2000) J. Biol. Chem 275(17), 13007].

At 12 Mbp in the yeast genome, it is *assumed* that 0.012 pg/haploid genome yields, between G1 and G2 cells in log cultures, approx. 0.02 pg DNA (and thus histones) per nucleus or cell.

Histone purity is less than expected after isolation of nuclei, as judged by HPLC, SDS and AUT analysis. The level of H4 acetylation observed (Y1 preparation) is at least as high or up to 20% higher than the highest values reported. The best prep method reported is in Davie, Saunders, Walsh and Weber (1981) Nucleic Acids Res. 9: 3205-3216. It requires use of 100 mM butyrate during spheroplasting and nuclear isolation in all buffers for standard wild-type cells or at least 30 mM butyrate in low-protease (5%) strains. H4 Ac 0 to 4 = 14, 27, 31, 17 and 11 % (1.84 AcK/H4).

The observation of methionine oxidation of alfalfa H2B (see Binder 63) has prompted the inclusion of 2-mercaptoethanol in all buffers from the time that the cells are disrupted in the 40% GuCl homogenization step.

While it is possible to isolate intact histones from whole cells (see Y1-Y5 preps, 1999, binders 144 and 147), non-histone proteins that elute across a wide range of acetonitrile concentrations (30 to >50%) cause problems of contamination between samples, regenerating the column and bands in AU gels that obscure histone bands. Preparation Y5 established that, while HCl back-extraction of a whole cell extract is feasible and produces a fair yield (see details below), homogenization of cells by beading in a buffer selected to maximize nuclear and chromatin insolubility rather than nuclear purity, and minimize changes due to deacetylation or proteolysis, is effective. Acetylation levels were unchanged; no trace of proteolysis of histones. This method is described below as the Preferred method.

REQUIRED:

Nuclear Isolation Buffer (NIB)

The composition of this buffer has not been 'optimized' experimentally. It was based on the premise to create an isotonic, sucrose-based buffer that would stabilize nuclei and prevent solubilization of chromatin.

NIB composition: 0.25 M sucrose, 10 mM MgCl₂, 2.5 mM spermidine, 0.5 mM spermine, 20 mM HEPES, 100 mM butyrate, 0.1 % (w/v) Triton X-100, 5 mM 2-mercaptoethanol, pH 7.

NIB can be prepared 1 day before use and stored at 4°C until use.

PMSF to 1 mM is added just prior to use.

Required approx. 50(-100) ml per sample of up to 2 x 10^{10} cells; 500 ml for 8 samples (10^{10} cells)

cells)		_	
Prepare:	ml NIB [100 ml] for samples		
	g sucrose [8.56 g]		
	ml 1 M MgCl ₂ stock [1 ml]		
	µl spermidine stock [363 µl] (100 mg/ml in water, at MW=14	45.2 <i>e</i>	689
mM)			
		494 ml	M)
	ml 1 M HEPES stock [2 ml]		
	ml butyric acid [0.92 ml] (10.87 M solution)		
	ml 25% Triton X-100 stock [0.40 ml]		
	μl 2-mercaptoethanol (14.3 M) [35 μl]		
Adjust pH to	7 by adding approx. 2.0-2.2 ml 5 N KOH per 100 ml.		
	water to final volume. Storage (4°C):		

Use of butyrate is based on Davie experience (NAR 9,3205,1981) despite the observation that butyrate added to live yeast cells does not affect acetylation level.

PMSF stock: freshly prepare 50 mM PMSF in isopropanol:

Da	te: 4/25/01	Histones (yeast)	p. 2	Exp-code:	Binder-Pages:
	before use		v days in	isopropanol; rapi	0 ml volume. Dissolve completely dly decomposes in water.
•		llbiochem #475855, 22 , Sorvall centrifuge, so		on pore size).	
0.1 5% 40° Bio	KH ₂ PO ₄ and (Guani by addition of The Refractive In GuCl: 40 States and Color of The Refractive In KOH. The Refractive In Color of The Refractive In Col	nM Potassium Phosph. 0.1 M K ₂ HPO ₄ . dine Hydrochloride): 5 5 N KOH (or by dilution of 5% GuCl: n=1.3465 % (w/v) Guanidine hydroches of 40% GuCl: (» 32 de Rad ion exchange res	5 % (w/v) on of 40% (~7.4 degred drochlor grees Brix) in: a wea a>Sr>Ca>M	Guanidine hydro GuCl with 0.1N rees Brix, (% sucrose ride in 0.1M KP kly carboxylic cat fg). Use mesh size 20 pared at room ter	equivalents). i, made pH 6.8 by addition of 5 N ion exchanger, R-COO, good stability, 00-400 (or, alternatively, 100-200 mesh).
1.	Add 250 ml 59	BioRex-70 ioRex-70 into a 250 ml GuCl and resuspend ix on a rotation-mixing	the resin.	n::	: hours. : hours.
4.5.6.7.	Let the resin so Decant the sure Measure the RI = Measure the ppH= Repeat washin values are identified to the resin sure sure sure sure sure sure sure sure	settle. pernatant. Refractive Index of the RI= RI= _ bH of the supernatant a pH= pH= _	supernata nd compa) ml 5% (uCl.	ant and compare of RI= are with pH 6.8. pH= GuCl several time	Fice for complete equilibration. with RI of 5% GuCl RI= pH= tes until the supernatant RI and pH
<u>HI</u>	STONE EXTR	<u>ACTION</u>			Date:,
1.	on AU gel lan	es: 5 x 10 ⁹ cells (100 þ	lg total h	istones @ 0.02 p	analysis of separated histone pools g/cell) in 100 ml i.e. use mid-log 5 50 ml for cultures that will be

inhibited for growth, e.g. by cycloheximide.

Note that for incubations with growth (e.g. without cycloheximide), cells should NOT be concentrated but used at (or even below) 5×10^7 cells/ml, e.g. for continued 1-2x doubling in 2-3 hours before a steady-state density of $10^{-20} \times 10^{7}$ cells/ml is reached (Y6-E/G samples reached 25×10^{7} and showed a reduction in H4 acetylation!). Note that histones, isolated in Y6 from approx. 1.5×10^{10} cells, using the nuclear preparation method, gave overloaded H2B and H3 lanes, with heavy H4. Continued growth for 120 min, likely giving 2.5×10^{10} cells in 100

ml, even gave some H4 overload and severe overload of H2B, H3 and H2A. Thus, the histone recovery using the nuclear method is so high that 5×10^9 cells will likely suffice for any analysis; The Y7 experiment, using this

	TT4 (()	•	- 1	D: 1 D
Date: 4/25/01	Histones (yeast)	p. 3	Exp-code:	Binder-Pages:
2 4,00		ρ. υ	2.15 0000.	2111011 1 08051

recommendation and cycloheximide, suggests that 10^{10} cells i.e. 200 ml of 5 x 10^{7} cells/ml is required for H4 AUT gel patterns, with H3 then of all or 2/3 of H3 pool and with _ of H2B pool per AUT gel lane (long, large gels).

Cells in YPD (typically **YPD-S**) medium are used directly or concentrated from mid-log cultures (e.g. 5×10^7 cells/ml) by centrifugation e.g. 5×10^7 min 800 x g (2000 rpm) at Room temperature. Use 250 ml conical Corning tubes, spin, decant and retain (or re-add) (used) YPD(-S) medium to (maximally) 10×10^7 cells/ml.

Notes on details of samples and/or incubations are below, or on separate pages.

Y6 (5/99): 1.25×10^{10} cells, incubated in Erlenmeijer flask, 30° C 150 rpm in incubator, with label in 90-100 ml YPD-S (pH approx 4) medium, grown for up to 2 hrs, thus likely up to 2.5 x 10^{10} cells, were collected as 2 plts in 50 ml tubes: plt volumes 1ml each, combined in NIB for beading.

2. Following incubation (or growth), collect cells from 50-(100 ml) samples into 1(or 2) marked 50 ml low-speed polypropylene tubes by centrifugation for 5 min at 800 x g (2000 rpm).

Alternatively, collect 200-250 ml into 1 Corning tube (250 ml), spin, resuspend in water and transfer to 50 ml tube for spin, decant, freeze and store at -80°C.

Decant and discard supernatant (or collect in radioactive waste container).

ID						
ml plt						

3.	Immediately freeze the cell pellet (approx. 1 ml pellet from 10^{10} cells) in methanol-dry ice, and store (for at least 1 hour) at -80° C until isolation of histones.
	Date:,,:

Isolation of (crude) nuclei (the "better" procedure to isolate histones)

- 4. Place 50 ml tubes with frozen cells on ice.
- 5. Use 3 ml **cold** Nuclear Isolation Buffer (NIB) to combine the cell pellets into one 50 ml tube with total sample volume of 4(-5) ml.
- 6. Add 500 micron glass beads (e.g. Sigma G9268, 425-600 µm, 30-40 U.S. sieve) until **just** no free liquid remains. This means that to 4 ml, glass is added to a total volume of approximately 10 ml.

Homogenization on a fierce vortex of 10 ml in a 50 ml Corning tube is effective; a final volume of (15-)20 ml is TOO large and requires distribution across 2 tubes.

After the homogenate is collected (see below), the glass beads are extensively washed with water, rinsed on a Buchner filter, dried in an oven and collected for re-use.

- 7. Vortex for 1(-2) min vigorously the initially almost dry ball of glass beads which will start to liquify with vigorous semi-liquid eruptions of the surface.
- 8. Cool on ice.
- 9. To eliminate free standing liquid, add glass beads until no free liquid remains. The final volume may increase to approx. 13 ml.
- 10. Vortex for 1(-2) min vigorously. If initial vortex homogenization was effective, little or no increase in liquid state is observed
- 11. Add NIB to the 30 ml mark, mix and let the glass beads settle.
- 12. Decant the supernatant through 2 layers of Miracloth (in a funnel) into a Sorvall high-speed centrifugation tube (35 ml effective sample volume) in ice.
- 13. Add 10 ml NIB to the glass beads in the tube, mix and pour all into the funnel.

The glass beads are extensively washed with water, rinsed on a Buchner filter, dried in an oven and collected for re-use.

Date: 4/25/01	Histones (yeast)	p. 4	Exp-cod	e:	Bir	nder-Pag	ges:	
	ifugation for 10 min at pernatant (into radioac		_	_		ake.		
single Sorvall Use a pipet a	nd vortexing for effecti 0 min at 16,000 rpm (ive and co	omplete re	esuspension	_	m separa	ate tube	s into a
concentration Add 1 volum Typically: 3 a 20. Transfer by samples of le	ercaptoethanol is fresh n of 0.1% (=approx.12 e (or 1 ml, whatever is ml + 1 ml per sample. pipet tip the likely vi ss than 2 ml) or to a 50 ary, the sample can now	.5 mM). less) of 4 scous sa ml tube	40% GuCl mple to a for large s	(with 2-me 15 ml co amples.	rcaptoet	hanol) to	o the pe	llet. be (for
with a b to be the GuHCl, Sonicati	e: This is super visc lue pipet tip and tra e best tube for the so vortex and scrape on is best if the volu h of cells per tube.	nsfer it onication to get a	to a 6mI that fol as much	snap-top lows]. I th of the re	falcon en add mainin	(2063) anothe g goop	[which r ~1 m that]	seems L 40% [can.
probe sonicat Microtip or Avoid foamin	the cells by sonication tor, for 2 x for 30 secon Branson Sonifier 400: setting during sonication.	nds with ting #2, 159	60 sec coo % output; M	oling break edium probe:	at 60(-80 setting #7)) Watts , 20% out		micro-
cms note: U	Jsing a Fisher Scient	ific 60 so	onicator,	I sonicate	2X 30 s	ec at se	etting 1	0.
23. Clarify the h 4°C.	sonicate by pipet to a comogenate by centrifu	igation fo	or 10 min	at 30,000 x	g (Sorv	all SS3	4: 16,00	•
5 ml Sorvall t		[F				
Color supern	atant:	Co	olor pellet	:				
cms note: dedges.	From Yeast, sup is	clear/ye	ellowish	and pellet	is whit	te and	dark a	around
	ime of the supernatant d 5% GuCl to get equal	•			known	volume	S.	
ID vol	a to got oqual			-				

Dat	tte: 4/25/01 Histones (yeast) p. 5 Exp-code: Binder-Pages:													
25.	25. Add slowly with mixing: µl concentrated HCl (37%=12.1N) to a final concentration of 0.25 N. The solution will likely turn slightly turbid. Observations:													
	26. Place the tubes in melting ice for (at least) 15 min to allow full precipitation of DNA and acidic, non-histone proteins::: hours. Resulting color: 27. Clarify the solution by centrifugation for 30 min at 30,000(-40,000) x g (Sorvall SS34: 16,000 (to 18,000) rpm), 4°C and NO BRAKE.													
	cms note: Remember to put brake back on ☺ 28. Carefully collect by decanting the clear supernatant from the small, white pellet. (color: size:) If part of the precipitate, as pellet or floating on top of the solution, should end up in the supernatant, spin again to remove it before continuing to the next step. 29. Note the volume of the supernatant:													
	ID	the vo	unie or	the supe	zinatani	•								
	vol													
30.	Add 5%.	4 (-6) v	olumes	of 0.1N	A KPi to	decrea	ise the (GuCl co	ncentra	tion fro	m (nom	inally)	40% to	
m	l KPi													
31.	Meas	sure the	Refract	ive Inde	x:									
	n=													
	Add	more 0	1M KPi	(or 40%	6 GuCl)	to make	e the RI	identic	al to tha	t of 5%	GuCl (~	7 4 Bris	x)	
	KPi			(01 107)	o Guery	to make	o the Iti	racintic		01 370		7.1 1112	1).	
	n=													
_]	KPi													
	n=		<u> </u>						-	-				
	KPi n=													
-	n=		<u> </u>		<u> </u>				<u> </u>		<u> </u>			
		st the p	H of the	solutio	n with 5	N KOH	to pH 6	5.8.			ı			
	pН													
K	OH													
33.	Add	merca	ptoetha	nol (!!)	to 5 ml	M to this	solutio	n by ad	ding 0.4	μl/ml.				
	Vol													
μl	2-me													
34.	I t (n case of late startify PR6000	of whole ationary by cent	ones are cell ex yeast c rifugati cal 50 or	traction cultures. ion for	, the sol 20 min	ution ha) rpm a	t 4°C in		-			

25	LL A	D's Dow	70 si	- 4 200	.ul ~a44i	1- 1 o si	•	1010 and	I = (a	' 11 - 0	00 H = D	·**	
35.		_ ml res	-70 resin sin in sto tal volun	orage tul	be.							NA):	
	ID			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>
L	ml						<u></u>			Щ_			
36.	36. Place the capped tubes on a nutator, a rotator for head-over-head mixing or horizontally on a rotary shaker-incubator, overnight at room temperature. Mixing: Date:, hours,: hours.												
	Date:,												
	88. Remove by aspirator the histone-free supernatant and discard. The supernatant will likely to be very turbid when whole-cell extracts are prepared. Supernatant looks:												
	39. Mercaptoethanol to approx. 1.3 mM (0.1 µl/ml) is added to the 5% and 40% GuCl solutions to be used to prevent oxidation of histones: ml 5% GuCl: add µl 2-mercaptoethanol. ml 40% GuCl: add µl 2-mercaptoethanol. 40. Wash the resin with 5% GuCl until the supernatant is clear and free of color.												
_	ID	1 lile res	ın willi .	3% Guc	A Ullum	he supe	rnatam	is citai a	and mee	01 0010	r.	Τ	Т
_	wash						 						
m	ıl 5% GuCl												
	Typi	cally: _		(3) w	ashes w	ith	ml	(45 ml)	5% Gu(21.			
	41. Add just enough 5% GuCl to resuspend the resin and transfer it by Pasteur pipet to an appropriately sized column. Typical column: BioRad 'disposable' 2(-10) ml polypropylene column Larger volume options: a Sephadex 10ml PD-10 column (re-used), or a disposable polypropylene syringe with a porous polyethylene disk (range: 3 - 60 ml). Flow-rate control with typical colum is only needed for 'slowed flow' during 40% GuCl elution. This is achieved by adding a 25 Gauge, 5/8 inch syringe needle. With these very small columns with resin volumes less than 5 ml, the resin does not dry even if no solvent is applied for 15 min after the flow stops. The same needle, or a larger size for larger columns, can be used during resin washing and elution, with a small rubber cork as 'stop-flow' to prevent causing dried resin. When using a pump: DO NOT let the resin run dry!												
42.			lumn wit						1144.	`			
	The vID	wash so	lvent is o	discarae	d (or co	llectea 1	or dispo	osal 11 ra	dioactiv	'e).			T
	ענ lumn		 		 	 	\vdash		 	\vdash		 	
	vol		!	'	!	l'	'	'	'				
m	ıl 5%												

Date: 4/25/01 Histones (yeast) p. 6 Exp-code:_____ Binder-Pages:___-

Date: 4/25/01	Histones (yeast)	p. 7	Exp-code:_		Bind	ler-Pages	s:	
43. The short 25	Gauge needle gives a co	orrect, sl	ow flow rate f	or column	elution	in a sma	all volun	ne.
44. Place a coll e	ecting tube below the sy	yringe.						
45. Elute the col	lumn with 10 column vol	lumes (.	ml) 40% Gu	Cl.				
ID								
#								
aliquots ml 40%	+ + +	+						<u> </u>
GuCl								
vol eluate								Ь
	ns used with labeled nucl th resin-only (if >5 ml res				quilibra	nted.		
18mm Spectrap optional but no If low MW-cur least 10 minute Cut pieces for 48. Pipet or pou • Close ea • Do NOT perpendi • Use simp Multiple s pipet, may	1 or 2 samples, bordered by ker (using a funnel) the eluch end by a double knot. I exclude all air. It will icular to the stirred curreple rubber bands to tie easets of small samples, up to 2 to be tied to a single holder.	Spectrapor done. , use 'norrenots (5 cm tate into assure a ent. ach bag to per tubin	3 holds 6.4 ml/cr mal' (~10000 MV /knot), 1 knot be the dialysis ba vertical posit o a marked, id g, separated by a	n. Boiling in V cutoff) boil tween 2 sam ag. ion of all cutoffied (in a single knot	n 1 mM E led in 5 r ples. dialysis nverted)	bags du) pipet. early mark	A in water ring dia	lysis,
mercaptoeth The use of 0.5, a 4 · C cold-room	rsis: 1 hour against 100 hanol: 0.1 µl/ml or 100 µ 1.0, 2.0 or 5.0 liter polypropy m works very well. 2.5% HAc/2me. Date:	Jl/liter) a ylene beak	ers with handle,	ove the ma with large m	jor amo agnetic fl	ount of C	SuCl. gnetic stir	rrer, in
	hour against 100 volum 2.5% HAc/2me. Date:			: h.	, _		·	_:
	overnight against 100 vo 2.5% HAc/2me. Date:			: h.	, _			_:

Ultra-filtration through Centricon-100 (2 ml sample volume) or CentriPlus-100 (15 ml sample volume) through Amicon YM-100 membrane (100,000 D MW cut-off) gives a filtrate with quantitative histone yield, removing "insolubles" and compounds that elute heterogeneously at high acetonitrile concentrations (30% - >60%) in reversed-phase ProteinPlus HPLC.

Incorporation of total label into dialsate is reduced to 25% (*Ac 2h), 3% (*Ac 2h +cycloheximide), 50-60% (*arg, lys 2h), 15-20% (*met 2hr ±cycloheximide), 10% (*AdoMet 2hr ±cycloheximide) (Y9 experiment), apparently retaining all label incorporated in yeast histones.

52. Tran	sfer the	dialysa	te(s) to (CODED	/labeled	l, cappe	d polypi	opylene	tube(s)	(15, 50)	or 250	ml).
ID												
total												
(ml)												
for												
LSC:												
rubb • i	er adapt initial 2	er-fitted ml spin	tion of d I IEC PR 60 min:	R6000 (d	or RC-20 	C HG-42 h.	L rotor v Result:	with ada	pters).			
•]	load moi	re/rest of	f dialysa	ite:		n.	Result:					
• 1	further s	pin(s):				h.	Result:					
• (ONE wa	ash of	the sma	all resic	dual vol	lume w	ith (up	to) 2	ml 2.5	% HAc	and s	pin to
4	'comple	tion" (overnigl	ht). D	ate:	,		:_	h.		,	
	:	h										
-	·	11.										
54. Tran	sfer the	filtrate((s) to CO	DDED/la	abeled,	capped 1	polypro	pylene t	ube(s) (15, 50 o	or 250 m	1).
ID					Í							
total												
(ml)												
for												
for												
for												
for												
ml E 55. Pund 56. Free	Eppendon eture the ze the tu	f tubes, caps of bes in - Da	alysates for uses the tube-70°C fro tte:,	as samj es. eezer (o	ole in sin r with n	ngle HP nethanol :l	LC or go -dry ice nours.	el analys or liqui	ses. d nitrog	gen.) 	_: ho	
57. Lyop Desp withouthe so Lyop	philize u ite all trap out compl eo-called 'c philizati	ntil dry os, do NC etely char cleaning s on. Dat	in an oi OT use the nging the olvent': it	l-pump oil pump oil (disass causes th	vacuum o for mor semble an ne pump t	with me than 25d d wipe allo seize!)	ethanol- 0 hours (a l accessib ours.	filled confirmation of the filled confirmation o	old-trap y use, es _j i the Sava	and che pecially d ant oil pur	mical training gel	s, less !) NOT use
	ılt:							:				
	ılt:		(Continue	·	.,		:	hours.			
Observa	tions:											

Histones (yeast)

p. 8

Exp-code:_____

Binder-Pages:___-

Date: 4/25/01

Dried histone lyophilizates can be stored indefinitely at -20° C in closed (new caps!) tubes, especially under nitrogen atmosphere. Even storage at room temperature is acceptable.

NOTE: the residual mercaptoethanol in the lyophilizate will confer protection against oxidation if excessive air contact is avoided: store dry histones in tightly capped tubes!