final conc.			Buffer I	Buffer II	<u>Stock</u>	
6	М	Urea	72g			
20	m <i>M</i>	HEPES pH 7.9	4mL	40 mL	1	Μ
300	m <i>M</i>	KCl	30mL	44.76g	2	Μ
0.1 %		NP-40	2mL	20 mL	10	8
5	m <i>M</i>	MgCl ₂	1mL	10 mL	1	Μ
10	8	Glycerol	20mL	200 mL	100	8
1	m <i>M</i>	DTT	200µL	2 mL	1	Μ
0.5 mM		PMSF	1mL	10 mL	100	mM
10	μM	$2nSO_4$	200µL	2 mL	10	mM
		fill w/ H_2O	200mL	2 Ц		

Dialysis Protocol

NOTE: add the $ZnSO_4$ if dealing with a Zn-finger protein

Procedure:

- 1. cut desired length of dialysis tubing; take note of the MW cut-off of the tubing
- 2. Boil tubing for 2' in dH_2O to sterilize
- 3. Soak tubing in Buffer I
- 4. Clamp up one end, open the other end, add some Buffer I into tubing, check for leaks
- 5. Remove buffer and add the protein sol'n. leave some space at top and clamp up.
- 6. Mix gently and let spin by stir bar slowly for 2hrs in the cold room (4C).
- 7. Dialyze as follows:

Step	Urea		Time	Total V
Α	6M	buffer I	2 hrs.	200mL
В	5M	add 35mL buffer II	2 hrs.	236mL
С	4M	add 50mL buffer II	2 hrs.	286mL
D	3M	add 75mL buffer II	2 hrs.	361mL
E	2M	add 120mL buffer II good O/N point	2 hrs.	481mL
F	1M	substract 250mL, add 250mL of buffer II	2 hrs.	500mL
G	0.5M	substract 250mL, add 250mL of buffer II	2 hrs.	500mL
Η	0M	dump all out, add buffer II only	2 hrs.	500mL
Ι	0M	dump all out, add buffer II only	2 hrs.	500mL

8. Transfer tubing to buffer III and spin for 2hrs. @ 4C (cold room)

<u>Buffer III:</u>	20mM	HEPES pH7.9	20mL	1M
	100mM	NaCl	20mL	5M
	0.1%	NP-40	10mL	10%
	5mM	MgCl ₂	5mL	1M
	10%	Glycerol	100mL	100%
	1mM	DTT	1mL	1M
	0.5mM	PMSF	5mL	100mM
	$10 \mu M$	ZnSO4	1mL	10mM
	fill w/ H_2O to		1L	

- 9. Open tubing and transfer contents to 15mL conical vial
- 10. Freeze on dry ice or liquid nitrogen and store at -80C to concentrate later.