
  

Updates from Austin
2009-08-13

Bryan Bishop

http://heybryan.org/

Ben Lipkowitz

http://fennetic.net/

Automated Design Lab at the University of Texas at Austin

Lab wiki:
http://adl.serveftp.org/dokuwiki/

Lab fileserver:
http://adl.serveftp.org/

Lab site:
http://www.me.utexas.edu/~adl/ 

http://heybryan.org/
http://fennetic.net/
http://adl.serveftp.org/dokuwiki/
http://adl.serveftp.org/
http://www.me.utexas.edu/~adl/


  



  

National Design Repository

● Over 40,000 CAD files collected in ~2 years
● Many file formats: IGES, STEP, DXF, SLDPRT, VRML, XML

● Had a part searching algorithm

● No longer on the internet – blown off the face of the earth

● Long-term viability is important
● Accessibility (can someone else find it easily?)

● Share-ability (can a user share/copy information?)

● Workability (does it work with common tools?)

● Reliability (is the hardware representation good?)

● Constructibility (can John Doe make what he finds in the repo?)

● What happens if VOICED and our engineering vanishes too?

● … and what can we do to prevent this?



  

10 second git intro

Centralized Distributed



  

Others popping up on the web

● thingiverse

● instructables

● odesign

● liquidware

● unptnt

● octopart

● ponoko

● shapeways

● OSHbank

● opencores

● openmanufacturing

● diybio

● Pink Army

● skdb (that's us)

full fablab inventory

http://adl.serveftp.org/skdb/doc/BOMs/comparison/fablab.yaml


  

Common themes

● Packages
● Standardized and defined unit of hardware with metadata for distribution

● “Will hardware ever roam the web like mp3s?” - Dave ten Have, CEO of 
Ponoko

● DIY (do-it-yourself) and fablabs

● Principle: Always allow the user full control of what is on his machines.

● Overall poor health:
● instructables.com promotes sending engineering information as photographs 

(not CAD)

● Not building off of community progress

● Isn't a repository supposed to fix this?

– Software world already went through this (we'll talk about this later)



  

Proposed User Roles
● Trends from the scene might inform academic direction?
● Mutually benefitial relationship between community and engineering academia
● Makers (users)

● Consume content.
● Build hardware they find interesting or useful.
● Little or no barrier to entry
● Ex: anyone

● Designers/developers
● Solve particular problems via design.
● Don't want to reinvent the wheel.
● Need to confirm their designs (testing).
● Evaluate and employ concepts.
● Ex: programmers, engineers, professors, health care providers, etc. etc.

● Package maintainers
● Knowers of the gnarly details of the system
● Help users and designers by reviewing designs and making sure nothing breaks the guts of the system.
● Ex: active debian community

– “Debian rides the spaceshuttle!” (1997)
●

●



  

User Scenarios

● Mechanical engineering students design a new 
umbrella and want to offer it as a standard

● Setting up a biolab: what do you need in terms 
of chemicals and equipment?

● Technician needs a replacement part
● Civil engineer wants to plan city infrastructure
● Someone needs instructions for assembly of a 

project, or how to carry out a certain procedure.



  

User Scenarios

● Austin Robot Group members want to submit 
and package their designs for reuse.

● Dorkbot-Austin builds some PCBs, and 
collaborate over the internet

● Dr. Freitas wants to build his self replicating 
lunar factory, but doesn't know where to begin: 
what does he need to build first?

● Building machine tools from scratch: what 
machine tool do you start with?



  



  

http://boingboing.net/2009/02/27/sudo-make-me-a-sandw.html

http://boingboing.net/2009/02/27/sudo-make-me-a-sandw.html


  

Automated Design Lab 
Infrastructure and Toolchains

● Version control systems for software
● Why not hardware too?

● Package management systems for software
● Why not hardware too?

● apt-get & dpkg (among others, i.e. portage)

– How it works

●

● Autoproject tools (“make”)

● Use highly-available commodity tools in toolchain, but don't restrict 
options
● Bryan happens to like: vim, git, diff, uzbl, wget, latex, gnuplot, python, totem 

● But Ben likes nano instead of vim, and mplayer instead of totem

●

How did the programmers solve their growing pains with the internet?



  

What we've been up to (skdb)
● Working code:

● Hardware packaging format
● Part interoperability, compatibility, mating
● Packages: lego, screw, thread, bearing

● CAD kernel (OpenCASCADE) integration



  



  

Dependency Trees (tech trees)



  

analysis



  

H
ee

ks
C

A
D

 in
te

gr
at

io
n



  

Part Interfaces



  

Part Compatibility

● Not quite there yet
● Geometry tags & grammar
● BRep considerations:

● slop & play
● volume interference
● collision detection

● Previous ADL research fitted part compatibility 
to a probability distribution curve



  

10 second YAML intro
foo:
- humpty
- dumpty
- grumpty

bar: 123

myObject: !someclass
    attribute1:
       nested data: [1, 2, 3]
    attribute2:
    attribute3:

YAML data examples:

● Hardware package metadata (authors, interfaces, etc.)

● Manufacturing process representation

● Catalog data



  

A
ct

ua
l l

eg
o

 Y
A

M
L 

d
a

ta



  



  

Manufacturing Process Taxonomy



  

Manufacturing Process 
Representation

● YAML example on next slide
● Process is what happens to matter, energy and 

information
● “A process can be carried out by hand or by 

machine.”
● Wanted: general geometry constraint language. 

Does it exist?



  



  



  



  

Manufacturing Processes

● Different packages implement different techniques
● Milling technique utilizes machining process
● Milling machine implements milling technique
● Different milling machines have slightly different ranges for parameters 

to the milling technique
● But in general they all follow the same technique

● Can technique generate my geometry?
● Volumetric sweeps

● Plan: techniques in skdb should generate both:
● Human-readable instructions
● Machine instructions (gcode)

but never just gcode (why?)



  

Assemble Designs from Repository

in this case you would use a press fit technique



  

Web Interface

● Allows non-technical users to contribute
● Facilitates browsing and presentation
● Good ideas are out there (next slide)
● Technical details:

● Anyone can be a developer (without breaking the system)
● wiki with git-backend
● django, pylons, pyjamas

– views: project view, part/CAD summary view

– YAML easy to edit in browsers

– Validate user contributions immediately for “common sense”

● RESTful



  



  

Incompatibilities with UMR 
repository design

● Hard to contribute to the big locked-in database - 
single point of failure 

● Can't add a new attribute without adding that 
attribute to every single part in the databse table

● Hard to take the diff of XML files (ordering)
● Flows are confusing (non-quantitative)
● XML schema currently limits possibilities of 

specification of function (Function Structure 
Graphs)



Current Model(?)

Artifact

Function1

Function2

Function3

Function4

??



Current Model(?)

Artifact

Function1

Function2

Function3

Function4

Function1

Function2

Function3

Function4

Function1

Function2

Function3

Function4



Ambiguity #1: how are functions 
connected within an artifact?

Artifact

Function1

Function2

Function3

Function1

Function2

Function3

Function1 Function2

Function3



Consideration: product as a graph

Edges represent interface connections.



Consideration: allow for queries like…

a) How are gear and motor typically held 
together?

b) How is the function convert fulfilled? 
Or “Convert EE” or “Convert EE to 
RME”.

c) Give me a solution for “Guide Solid” 
from a real product (include 
connectivity – supporting functions).

d) What does a bolt through a spring 
do? (What is the function?)

e) Retrieve artifact’s name (gather stats. 
via FCM) or actual parts used in past 
simliar design.

a)

b)

c) d)

a) Within product versus across 
repository?



  

Suggestions and Further 
Collaboration

● Future direction of UMR repository?

● UMR-trained package maintainers can help enable 
standardization of hardware packages

● Adoptable milestones:
● Unit tests for entire VOICED / engineering design framework
● Work out kinks in packaging format and work-flow
● Can a UMR hardware package interface with a UT package?
● Algorithms for dependency resolution, instruction generation, 

Frankenstein concepts

● How can we be of assistance?



  

Taking a look at skdb 

● Repository (git): http://adl.serveftp.org/skdb.git/

● Viewable on the web: http://adl.serveftp.org/git/gitweb.cgi

● Also on github with pretty syntax highlighting:
● http://github.com/kanzure/skdb
● http://github.com/kanzure/skdb.git

● Getting assistance
● IRC: #hplusroadmap on irc.freenode.net
● Email: openmanufacturing@googlegroups.com 
● Phone: #512-203-0507 (Bryan)

●

http://adl.serveftp.org/skdb.git/
http://adl.serveftp.org/git/gitweb.cgi
http://github.com/kanzure/skdb
http://github.com/kanzure/skdb.git
mailto:openmanufacturing@googlegroups.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Current Model(?)
	Slide 34
	Ambiguity #1: how are functions connected within an artifact?
	Slide 36
	Consideration 2: allow for queries like…
	Slide 38
	Slide 39

