/* -*- mode: c++; c-basic-offset: 8; indent-tabs-mode: t -*- */ #include "ThermistorTable.h" #define EXTRUDER_FORWARD true #define EXTRUDER_REVERSE false //these our the default values for the extruder. int extruder_speed = 128; int extruder_target_celsius = 0; int extruder_max_celsius = 0; byte extruder_heater_low = 64; byte extruder_heater_high = 255; byte extruder_heater_current = 0; //this is for doing encoder based extruder control int extruder_rpm = 0; long extruder_delay = 0; int extruder_error = 0; int last_extruder_error = 0; int extruder_error_delta = 0; bool extruder_direction = EXTRUDER_FORWARD; void init_extruder() { //default to room temp. extruder_set_temperature(21); //setup our pins pinMode(EXTRUDER_MOTOR_DIR_PIN, OUTPUT); pinMode(EXTRUDER_MOTOR_SPEED_PIN, OUTPUT); pinMode(EXTRUDER_HEATER_PIN, OUTPUT); pinMode(EXTRUDER_FAN_PIN, OUTPUT); //initialize values digitalWrite(EXTRUDER_MOTOR_DIR_PIN, EXTRUDER_FORWARD); analogWrite(EXTRUDER_FAN_PIN, 0); analogWrite(EXTRUDER_HEATER_PIN, 0); analogWrite(EXTRUDER_MOTOR_SPEED_PIN, 0); } void extruder_set_direction(bool direction) { extruder_direction = direction; digitalWrite(EXTRUDER_MOTOR_DIR_PIN, direction); } void extruder_set_speed(byte speed) { analogWrite(EXTRUDER_MOTOR_SPEED_PIN, speed); } void extruder_set_cooler(byte speed) { analogWrite(EXTRUDER_FAN_PIN, speed); } void extruder_set_temperature(int temp) { extruder_target_celsius = temp; extruder_max_celsius = (int)((float)temp * 1.1); } /** * Samples the temperature and converts it to degrees celsius. * Returns degrees celsius. */ int extruder_get_temperature() { #if EXTRUDER_THERMISTOR_PIN >= 0 return extruder_read_thermistor(); #elif EXTRUDER_THERMOCOUPLE_PIN >= 0 return extruder_read_thermocouple(); #endif } /* * This function gives us the temperature from the thermistor in Celsius */ int extruder_read_thermistor() { int raw = extruder_sample_temperature(EXTRUDER_THERMISTOR_PIN); int celsius = 0; byte i; for (i=1; i raw) { celsius = temptable[i-1][1] + (raw - temptable[i-1][0]) * (temptable[i][1] - temptable[i-1][1]) / (temptable[i][0] - temptable[i-1][0]); break; } } // Overflow: Set to last value in the table if (i == NUMTEMPS) celsius = temptable[i-1][1]; // Clamp to byte if (celsius > 255) celsius = 255; else if (celsius < 0) celsius = 0; return celsius; } #if EXTRUDER_THERMOCOUPLE_PIN >= 0 /* * This function gives us the temperature from the thermocouple in Celsius */ int extruder_read_thermocouple() { return ( 5.0 * extruder_sample_temperature(EXTRUDER_THERMOCOUPLE_PIN) * 100.0) / 1024.0; } #endif /* * This function gives us an averaged sample of the analog temperature pin. */ int extruder_sample_temperature(byte pin) { int raw = 0; //read in a certain number of samples for (byte i=0; i 200) { lastread = millis(); //make sure we know what our temp is. int current_celsius = extruder_get_temperature(); byte newheat = 0; //put the heater into high mode if we're not at our target. if (current_celsius < extruder_target_celsius) newheat = extruder_heater_high; //put the heater on low if we're at our target. else if (current_celsius < extruder_max_celsius) newheat = extruder_heater_low; // Only update heat if it changed if (extruder_heater_current != newheat) { extruder_heater_current = newheat; analogWrite(EXTRUDER_HEATER_PIN, extruder_heater_current); } } }