#! /usr/bin/env python """ This page is in the table of contents. Fill is a script to fill the perimeters of a gcode file. The fill manual page is at: http://www.bitsfrombytes.com/wiki/index.php?title=Skeinforge_Fill Allan Ecker aka The Masked Retriever has written the "Skeinforge Quicktip: Fill" at: http://blog.thingiverse.com/2009/07/21/mysteries-of-skeinforge-fill/ ==Operation== The default 'Activate Fill' checkbox is off. When it is on, the functions described below will work, when it is off, the functions will not be called. ==Settings== ===Diaphragm=== The diaphragm is a solid group of layers, at regular intervals. It can be used with a sparse infill to give the object watertight, horizontal compartments and/or a higher shear strength. ====Diaphragm Period==== Default is one hundred. Defines the number of layers between diaphrams. ====Diaphragm Thickness==== Default is zero, because the diaphragm feature is rarely used. Defines the number of layers the diaphram is composed of. ===Extra Shells=== The shells interior perimeter loops. Adding extra shells makes the object stronger & heavier. ====Extra Shells on Alternating Solid Layers==== Default is two. Defines the number of extra shells, on the alternating solid layers. ====Extra Shells on Base==== Default is one. Defines the number of extra shells on the bottom, base layer and every even solid layer after that. Setting this to a different value than the "Extra Shells on Alternating Solid Layers" means the infill pattern will alternate, creating a strong interleaved bond even if the perimeter loop shrinks. ====Extra Shells on Sparse Layer==== Default is one. Defines the number of extra shells on the sparse layers. The solid layers are those at the top & bottom, and wherever the object has a plateau or overhang, the sparse layers are the layers in between. ===Grid=== ====Grid Extra Overlap==== Default is 0.1. Defines the amount of extra overlap added when extruding the grid to compensate for the fact that when the first thread going through a grid point is extruded, since there is nothing there yet for it to connect to it will shrink extra. ====Grid Junction Separation over Octogon Radius At End==== Default is zero. Defines the ratio of the amount the grid square is increased in each direction over the extrusion width at the end, the default is zero. With a value of one or so the grid pattern will have large squares to go with the octogons. ====Grid Junction Separation over Octogon Radius At Middle==== Default is zero. Defines the increase at the middle. If this value is different than the value at the end, the grid would have an accordion pattern, which would give it a higher shear strength. ====Grid Junction Separation Band Height==== Default is ten. Defines the height of the bands of the accordion pattern. ===Infill=== ====Infill Pattern==== Default is 'Line', since it is quicker to generate and does not add extra movements for the extruder. The grid pattern has extra diagonal lines, so when choosing a grid option, set the infill solidity to 0.2 or less so that there is not too much plastic and the grid generation time, which increases with the third power of solidity, will be reasonable. =====Grid Hexagonal===== When selected, the infill will be a hexagonal grid. Because the grid is made with threads rather than with molding or milling, only a partial hexagon is possible, so the rectangular grid pattern is stronger. =====Grid Rectangular===== When selected, the infill will be a funky octogon square honeycomb like pattern which gives the object extra strength. =====Line===== When selected, the infill will be made up of lines. ====Infill Begin Rotation==== Default is forty five degrees, giving a diagonal infill. Defines the amount the infill direction of the base and every second layer thereafter is rotated. ====Infill Odd Layer Extra Rotation==== Default is ninety degrees, making the odd layer infill perpendicular to the base layer. Defines the extra amount the infill direction of the odd layers is rotated compared to the base layer. ====Infill Begin Rotation Repeat==== Default is one, giving alternating cross hatching. Defines the number of layers that the infill begin rotation will repeat. With a value higher than one, the infill will go in one direction more often, giving the object more strength in one direction and less in the other, this is useful for beams and cantilevers. ====Infill Perimeter Overlap==== Default is 0.15. Defines the amount the infill overlaps the perimeter over the average of the perimeter and infill width. The higher the value the more the infill will overlap the perimeter, and the thicker join between the infill and the perimeter. If the value is too high, the join will be so thick that the nozzle will run plow through the join below making a mess, also when it is above 0.7 fill may not be able to create infill correctly. If you want to stretch the infill a lot, set 'Path Stretch over Perimeter Width' in stretch to a high value. ====Infill Solidity==== Default is 0.2. Defines the solidity of the infill, this is the most important setting in fill. A value of one means the infill lines will be right beside each other, resulting in a solid, strong, heavy shape which takes a long time to extrude. A low value means the infill will be sparse, the interior will be mosty empty space, the object will be weak, light and quick to build. ====Interior Infill Density over Exterior Density==== Default is 0.9. Defines the ratio of the infill density of the interior over the infill density of the exterior surfaces. The exterior should have a high infill density, so that the surface will be strong and watertight. With the interior infill density a bit lower than the exterior, the plastic will not fill up higher than the extruder nozzle. If the interior density is too high that could happen, as Nophead described in the Hydraraptor "Bearing Fruit" post at: http://hydraraptor.blogspot.com/2008/08/bearing-fruit.html ====Infill Width over Thickness==== Default is 1.5. Defines the ratio of the infill width over the layer thickness. The higher the value the wider apart the infill will be and therefore the sparser the infill will be. ===Solid Surface Thickness=== Default is three. Defines the number of solid layers that are at the bottom, top, plateaus and overhang. With a value of zero, the entire object will be composed of a sparse infill, and water could flow right through it. With a value of one, water will leak slowly through the surface and with a value of three, the object could be watertight. The higher the solid surface thickness, the stronger and heavier the object will be. ===Thread Sequence Choice=== The 'Thread Sequence Choice' is the sequence in which the threads will be extruded. There are three kinds of thread, the perimeter threads on the outside of the object, the loop threads aka inner shell threads, and the interior infill threads. The default choice is 'Perimeter > Loops > Infill', which the default stretch parameters are based on. If you change from the default sequence choice setting of perimeter, then loops, then infill, the optimal stretch thread parameters would also be different. In general, if the infill is extruded first, the infill would have to be stretched more so that even after the filament shrinkage, it would still be long enough to connect to the loop or perimeter. The six sequence combinations follow below. ====Infill > Loops > Perimeter==== ====Infill > Perimeter > Loops==== ====Loops > Infill > Perimeter==== ====Loops > Perimeter > Infill==== ====Perimeter > Infill > Loops==== ====Perimeter > Loops > Infill==== ==Examples== The following examples fill the file Screw Holder Bottom.stl. The examples are run in a terminal in the folder which contains Screw Holder Bottom.stl and fill.py. > python fill.py This brings up the fill dialog. > python fill.py Screw Holder Bottom.stl The fill tool is parsing the file: Screw Holder Bottom.stl .. The fill tool has created the file: .. Screw Holder Bottom_fill.gcode > python Python 2.5.1 (r251:54863, Sep 22 2007, 01:43:31) [GCC 4.2.1 (SUSE Linux)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import fill >>> fill.main() This brings up the fill dialog. >>> fill.writeOutput( 'Screw Holder Bottom.stl' ) The fill tool is parsing the file: Screw Holder Bottom.stl .. The fill tool has created the file: .. Screw Holder Bottom_fill.gcode """ from __future__ import absolute_import try: import psyco psyco.full() except: pass #Init has to be imported first because it has code to workaround the python bug where relative imports don't work if the module is imported as a main module. import __init__ from skeinforge_tools import profile from skeinforge_tools.meta_plugins import polyfile from skeinforge_tools.skeinforge_utilities import consecution from skeinforge_tools.skeinforge_utilities import euclidean from skeinforge_tools.skeinforge_utilities import gcodec from skeinforge_tools.skeinforge_utilities import intercircle from skeinforge_tools.skeinforge_utilities import interpret from skeinforge_tools.skeinforge_utilities import settings from skeinforge_tools.skeinforge_utilities.vector3 import Vector3 import math import sys __author__ = "Enrique Perez (perez_enrique@yahoo.com)" __date__ = "$Date: 2008/28/04 $" __license__ = "GPL 3.0" # documentation # write/send announce, raft infill overhang.. values should be halved, raft in general has been changed, chamber announce, stretch cross, clip connect & extrusion to perimeter, dimension announce # update wiki how to page # # # # # search page, search items, search links, choice entry field # add label separators # in dimension check for flow rate # remove comments from clip # remove cool set at end of layer # save bug when switching from profile to profile # check for last existing then remove unneeded fill code from euclidean # save just before printing # remove pointer from skeinview when getting a selected line # create skeinforge_profile, skeinforge_help, etc.. # make frame for plugin groups, add plugin help menu, add craft below menu # maybe measuring rod # comb simplify path, option of only combing around inside loops # veer # add hook _extrusion # implement acceleration & collinear removal in viewers _extrusion # add polish, has perimeter, has cut first layer (False) # probably not set addedLocation in distanceFeedRate after arc move # maybe horizontal bridging and/or check to see if the ends are standing on anything # maybe add cached zones on first carving # thin self? check when removing intersecting paths in inset # maybe later remove isPerimeterPathInSurroundLoops, once there are no weird fill bugs, also change getHorizontalSegmentListsFromLoopLists # save all analyze viewers of the same name except itself, update help menu self.wikiManualPrimary.setUpdateFunction # check alterations folder first, if there is something copy it to the home directory, if not check the home directory # move alterations and profiles to top level # # # # help primary menu item refresh # integral thin width _extrusion # xml & svg more forgiving, svg make defaults for layerThickness, maxZ, minZ, add layer z to svg_template, make the slider on the template track even when mouse is outside # layer color, for multilayer start http://reprap.org/pub/Main/MultipleMaterialsFiles/legend.xml _extrusion # option of surrounding lines in display # maybe add connecting line in display line # maybe check inset loops to see if they have are smaller, but this would be slow # maybe status bar # maybe measurement ruler mouse tool # search rss from blogs, add search links for common materials, combine created on or progress bar with searchable help #boundaries, center radius z bottom top, circular or rectangular, polygon, put cool minimum radius orbits within boundaries # move & rotate model # comb improve running jump # trial, meta in a grid settings #laminate tool head #maybe use 5x5 radius search in circle node #maybe add layer updates in behold, skeinview and maybe others #lathe winding, extrusion and cutting; synonym for rotation or turning, loop angle # maybe split into source code and documentation sections # transform plugins, start with sarrus http://www.thingiverse.com/thing:1425 # maybe make setting backups # maybe settings in gcode or saved versions # move skeinforge_utilities to fabmetheus_utilities # # # # pick and place # simulate #document gear script #transform #extrude loops I guess make circles? and/or run along sparse infill #custom inclined plane, inclined plane from model, screw, fillet travel as well maybe # probably not stretch single isLoop #maybe much afterwards make congajure multistep view #maybe stripe although model colors alone can handle it #stretch fiber around shape, maybe modify winding for asymmetric shapes #multiple heads around edge #maybe add full underscored date name for version #maybe add rarely used tool option #angle shape for overhang extrusions # maybe double height shells option _extrusion #maybe m111? countdown #make stl instead of essentially gts the default format #common tool #first time tool tip #individual tool tip to place in text # maybe try to simplify raft layer start # maybe make temp directory # maybe carve aoi xml testing and check xml gcode # maybe cross hatch support polishing??? # maybe print svg view from current layer or zero layer in single view # maybe check if tower is picking the nearest island # maybe combine skein classes in fillet # maybe isometric svg option #Manual #10,990 #11,1776 #12,3304 #1,4960 #2, 7077 #85 jan7, 86jan11, 87 jan13, 88 jan15, 91 jan21, 92 jan23, 95 jan30, 98 feb6 #make one piece electromagnet spool #stepper rotor with ceramic disk magnet in middle, electromagnet with long thin spool line? #stepper motor #make plastic coated thread in vat with pulley #tensile stuart platform #kayak #gear vacuum pump #gear turbine #heat engine #solar power #sailboat #yacht #house #condo with reflected gardens in between buildings #medical equipment #cell counter, etc.. #pipe clamp lathe # square tube driller & cutter # archihedron # look from top of intersection circle plane to look for next, add a node; tree out until all are stepped on then connect, when more than three intersections are close # when loading a file, we should have a preview of the part and orientation in space # second (and most important in my opinion) would be the ability to rotate the part on X/Y/Z axis to chose it's orientation # third, a routine to detect the largest face and orient the part accordingly. Mat http://reprap.kumy.net/ # concept, three perpendicular slices to get display spheres # extend lines around short segment after cross hatched boolean # concept, teslocracy; donation, postponement, rotate ad network, probably not gutenpedia, cached search options # concept, join cross slices, go from vertex to two orthogonal edges, then from edges to each other, if not to a common point, then simplify polygons by removing points which do not change the area much # concept, each node is fourfold, use sorted intersectionindexes to find close, connect each double sided edge # concept, in file, store polygon mesh and centers # concept, display spheres or polygons would have original triangle for work plane # .. then again no point with slices # concept, filled slices, about 2 mm thick # concept, rgb color triangle switch to get inside color, color golden ratio on 5:11 slope with a modulo 3 face # concept, interlaced bricks at corners ( length proportional to corner angle ) # concept, new links to archi, import links to archi and adds skeinforge tool menu item, back on skeinforge named execute tool is added # concept, trnsnt # concept, inscribed key silencer # concept, spreadsheet to python and/or javascript # concept, blog, frequent updates, mix associated news def addAroundGridPoint( arounds, gridPoint, gridPointInsetX, gridPointInsetY, gridPoints, gridSearchRadius, isBothOrNone, isDoubleJunction, isJunctionWide, paths, pixelTable, width ): "Add the path around the grid point." closestPathIndex = None aroundIntersectionPaths = [] for aroundIndex in xrange( len( arounds ) ): loop = arounds[ aroundIndex ] for pointIndex in xrange( len( loop ) ): pointFirst = loop[ pointIndex ] pointSecond = loop[ ( pointIndex + 1 ) % len( loop ) ] yIntersection = getYIntersectionIfExists( pointFirst, pointSecond, gridPoint.real ) addYIntersectionPathToList( aroundIndex, pointIndex, gridPoint.imag, yIntersection, aroundIntersectionPaths ) if len( aroundIntersectionPaths ) < 2: print( 'This should never happen, aroundIntersectionPaths is less than 2 in fill.' ) print( aroundIntersectionPaths ) print( gridPoint ) return yCloseToCenterArounds = getClosestOppositeIntersectionPaths( aroundIntersectionPaths ) if len( yCloseToCenterArounds ) < 2: print( 'This should never happen, yCloseToCenterArounds is less than 2 in fill.' ) print( gridPoint ) return segmentFirstY = min( yCloseToCenterArounds[ 0 ].y, yCloseToCenterArounds[ 1 ].y ) segmentSecondY = max( yCloseToCenterArounds[ 0 ].y, yCloseToCenterArounds[ 1 ].y ) yIntersectionPaths = [] gridPixel = euclidean.getStepKeyFromPoint( gridPoint / width ) segmentFirstPixel = euclidean.getStepKeyFromPoint( complex( gridPoint.real, segmentFirstY ) / width ) segmentSecondPixel = euclidean.getStepKeyFromPoint( complex( gridPoint.real, segmentSecondY ) / width ) pathIndexTable = {} addPathIndexFirstSegment( gridPixel, pathIndexTable, pixelTable, segmentFirstPixel ) addPathIndexSecondSegment( gridPixel, pathIndexTable, pixelTable, segmentSecondPixel ) for pathIndex in pathIndexTable.keys(): path = paths[ pathIndex ] for pointIndex in xrange( len( path ) - 1 ): pointFirst = path[ pointIndex ] pointSecond = path[ pointIndex + 1 ] yIntersection = getYIntersectionInsideYSegment( segmentFirstY, segmentSecondY, pointFirst, pointSecond, gridPoint.real ) addYIntersectionPathToList( pathIndex, pointIndex, gridPoint.imag, yIntersection, yIntersectionPaths ) if len( yIntersectionPaths ) < 1: return yCloseToCenterPaths = [] if isDoubleJunction: yCloseToCenterPaths = getClosestOppositeIntersectionPaths( yIntersectionPaths ) else: yIntersectionPaths.sort( compareDistanceFromCenter ) yCloseToCenterPaths = [ yIntersectionPaths[ 0 ] ] for yCloseToCenterPath in yCloseToCenterPaths: setIsOutside( yCloseToCenterPath, yIntersectionPaths ) if len( yCloseToCenterPaths ) < 2: yCloseToCenterPaths[ 0 ].gridPoint = gridPoint insertGridPointPair( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, paths, pixelTable, yCloseToCenterPaths[ 0 ], width ) return plusMinusSign = getPlusMinusSign( yCloseToCenterPaths[ 1 ].y - yCloseToCenterPaths[ 0 ].y ) yCloseToCenterPaths[ 0 ].gridPoint = complex( gridPoint.real, gridPoint.imag - plusMinusSign * gridPointInsetY ) yCloseToCenterPaths[ 1 ].gridPoint = complex( gridPoint.real, gridPoint.imag + plusMinusSign * gridPointInsetY ) yCloseToCenterPaths.sort( comparePointIndexDescending ) insertGridPointPairs( gridPoint, gridPointInsetX, gridPoints, yCloseToCenterPaths[ 0 ], yCloseToCenterPaths[ 1 ], isBothOrNone, isJunctionWide, paths, pixelTable, width ) def addPath( infillWidth, infillPaths, path, rotationPlaneAngle ): "Add simplified path to fill." simplifiedPath = euclidean.getSimplifiedPath( path, infillWidth ) if len( simplifiedPath ) < 2: return planeRotated = euclidean.getPointsRoundZAxis( rotationPlaneAngle, simplifiedPath ) infillPaths.append( planeRotated ) def addPathIndexFirstSegment( gridPixel, pathIndexTable, pixelTable, segmentFirstPixel ): "Add the path index of the closest segment found toward the second segment." for yStep in xrange( gridPixel[ 1 ], segmentFirstPixel[ 1 ] - 1, - 1 ): if getKeyIsInPixelTableAddValue( ( gridPixel[ 0 ], yStep ), pathIndexTable, pixelTable ): return def addPathIndexSecondSegment( gridPixel, pathIndexTable, pixelTable, segmentSecondPixel ): "Add the path index of the closest segment found toward the second segment." for yStep in xrange( gridPixel[ 1 ], segmentSecondPixel[ 1 ] + 1 ): if getKeyIsInPixelTableAddValue( ( gridPixel[ 0 ], yStep ), pathIndexTable, pixelTable ): return def addPointOnPath( path, pathIndex, pixelTable, point, pointIndex, width ): "Add a point to a path and the pixel table." pointIndexMinusOne = pointIndex - 1 if pointIndex < len( path ) and pointIndexMinusOne >= 0: segmentTable = {} begin = path[ pointIndexMinusOne ] end = path[ pointIndex ] euclidean.addValueSegmentToPixelTable( begin, end, segmentTable, pathIndex, width ) euclidean.removePixelTableFromPixelTable( segmentTable, pixelTable ) if pointIndexMinusOne >= 0: begin = path[ pointIndexMinusOne ] euclidean.addValueSegmentToPixelTable( begin, point, pixelTable, pathIndex, width ) if pointIndex < len( path ): end = path[ pointIndex ] euclidean.addValueSegmentToPixelTable( point, end, pixelTable, pathIndex, width ) path.insert( pointIndex, point ) def addPointOnPathIfFree( path, pathIndex, pixelTable, point, pointIndex, width ): "Add the closest point to a path, if the point added to a path is free." if isAddedPointOnPathFree( path, pixelTable, point, pointIndex, width ): addPointOnPath( path, pathIndex, pixelTable, point, pointIndex, width ) def addShortenedLineSegment( lineSegment, shortenDistance, shortenedSegments ): "Add shortened line segment." pointBegin = lineSegment[ 0 ].point pointEnd = lineSegment[ 1 ].point segment = pointEnd - pointBegin segmentLength = abs( segment ) if segmentLength < 2.1 * shortenDistance: return segmentShorten = segment * shortenDistance / segmentLength lineSegment[ 0 ].point = pointBegin + segmentShorten lineSegment[ 1 ].point = pointEnd - segmentShorten shortenedSegments.append( lineSegment ) def addSparseEndpoints( doubleExtrusionWidth, endpoints, fillLine, horizontalSegmentLists, infillSolidity, removedEndpoints, solidSurfaceThickness, surroundingXIntersections ): "Add sparse endpoints." horizontalEndpoints = horizontalSegmentLists[ fillLine ] for segment in horizontalEndpoints: addSparseEndpointsFromSegment( doubleExtrusionWidth, endpoints, fillLine, horizontalSegmentLists, infillSolidity, removedEndpoints, segment, solidSurfaceThickness, surroundingXIntersections ) def addSparseEndpointsFromSegment( doubleExtrusionWidth, endpoints, fillLine, horizontalSegmentLists, infillSolidity, removedEndpoints, segment, solidSurfaceThickness, surroundingXIntersections ): "Add sparse endpoints from a segment." endpointFirstPoint = segment[ 0 ].point endpointSecondPoint = segment[ 1 ].point if fillLine < 1 or fillLine >= len( horizontalSegmentLists ) - 1 or surroundingXIntersections == None: endpoints += segment return if infillSolidity > 0.0: if int( round( round( fillLine * infillSolidity ) / infillSolidity ) ) == fillLine: endpoints += segment return if abs( endpointFirstPoint - endpointSecondPoint ) < doubleExtrusionWidth: endpoints += segment return if not isSegmentAround( horizontalSegmentLists[ fillLine - 1 ], segment ): endpoints += segment return if not isSegmentAround( horizontalSegmentLists[ fillLine + 1 ], segment ): endpoints += segment return if solidSurfaceThickness == 0: removedEndpoints += segment return if isSegmentCompletelyInAnIntersection( segment, surroundingXIntersections ): removedEndpoints += segment return endpoints += segment def addYIntersectionPathToList( pathIndex, pointIndex, y, yIntersection, yIntersectionPaths ): "Add the y intersection path to the y intersection paths." if yIntersection == None: return yIntersectionPath = YIntersectionPath( pathIndex, pointIndex, yIntersection ) yIntersectionPath.yMinusCenter = yIntersection - y yIntersectionPaths.append( yIntersectionPath ) def compareDistanceFromCenter( self, other ): "Get comparison in order to sort y intersections in ascending order of distance from the center." distanceFromCenter = abs( self.yMinusCenter ) distanceFromCenterOther = abs( other.yMinusCenter ) if distanceFromCenter > distanceFromCenterOther: return 1 if distanceFromCenter < distanceFromCenterOther: return - 1 return 0 def comparePointIndexDescending( self, other ): "Get comparison in order to sort y intersections in descending order of point index." if self.pointIndex > other.pointIndex: return - 1 if self.pointIndex < other.pointIndex: return 1 return 0 def createExtraFillLoops( radius, shouldExtraLoopsBeAdded, surroundingLoop ): "Create extra fill loops." for innerSurrounding in surroundingLoop.innerSurroundings: createFillForSurroundings( radius, shouldExtraLoopsBeAdded, innerSurrounding.innerSurroundings ) outsides = [] insides = euclidean.getInsidesAddToOutsides( surroundingLoop.getFillLoops(), outsides ) allFillLoops = [] for outside in outsides: transferredLoops = euclidean.getTransferredPaths( insides, outside ) allFillLoops += getExtraFillLoops( transferredLoops, outside, radius ) surroundingLoop.lastFillLoops = allFillLoops if shouldExtraLoopsBeAdded: surroundingLoop.extraLoops += allFillLoops if len( allFillLoops ) > 0: surroundingLoop.lastExistingFillLoops = allFillLoops def createFillForSurroundings( radius, shouldExtraLoopsBeAdded, surroundingLoops ): "Create extra fill loops for surrounding loops." for surroundingLoop in surroundingLoops: createExtraFillLoops( radius, shouldExtraLoopsBeAdded, surroundingLoop ) def getAdditionalLength( path, point, pointIndex ): "Get the additional length added by inserting a point into a path." if pointIndex == 0: return abs( point - path[ 0 ] ) if pointIndex == len( path ): return abs( point - path[ - 1 ] ) return abs( point - path[ pointIndex - 1 ] ) + abs( point - path[ pointIndex ] ) - abs( path[ pointIndex ] - path[ pointIndex - 1 ] ) def getCraftedText( fileName, gcodeText = '', fillRepository = None ): "Fill the inset file or gcode text." return getCraftedTextFromText( gcodec.getTextIfEmpty( fileName, gcodeText ), fillRepository ) def getCraftedTextFromText( gcodeText, fillRepository = None ): "Fill the inset gcode text." if gcodec.isProcedureDoneOrFileIsEmpty( gcodeText, 'fill' ): return gcodeText if fillRepository == None: fillRepository = settings.getReadRepository( FillRepository() ) if not fillRepository.activateFill.value: return gcodeText return FillSkein().getCraftedGcode( fillRepository, gcodeText ) def getClosestOppositeIntersectionPaths( yIntersectionPaths ): "Get the close to center paths, starting with the first and an additional opposite if it exists." yIntersectionPaths.sort( compareDistanceFromCenter ) beforeFirst = yIntersectionPaths[ 0 ].yMinusCenter < 0.0 yCloseToCenterPaths = [ yIntersectionPaths[ 0 ] ] for yIntersectionPath in yIntersectionPaths[ 1 : ]: beforeSecond = yIntersectionPath.yMinusCenter < 0.0 if beforeFirst != beforeSecond: yCloseToCenterPaths.append( yIntersectionPath ) return yCloseToCenterPaths return yCloseToCenterPaths def getExtraFillLoops( insideLoops, outsideLoop, radius ): "Get extra loops between inside and outside loops." greaterThanRadius = 1.4 * radius # later 1.01 * radius extraFillLoops = [] points = intercircle.getPointsFromLoops( insideLoops + [ outsideLoop ], greaterThanRadius ) centers = intercircle.getCentersFromPoints( points, greaterThanRadius ) otherLoops = insideLoops + [ outsideLoop ] for center in centers: inset = intercircle.getSimplifiedInsetFromClockwiseLoop( center, radius ) if intercircle.isLargeSameDirection( inset, center, radius ): if isPathAlwaysInsideLoop( outsideLoop, inset ): if isPathAlwaysOutsideLoops( insideLoops, inset ): if not euclidean.isLoopIntersectingLoops( inset, otherLoops ): inset.reverse() extraFillLoops.append( inset ) return extraFillLoops def getKeyIsInPixelTableAddValue( key, pathIndexTable, pixelTable ): "Determine if the key is in the pixel table, and if it is and if the value is not None add it to the path index table." if key in pixelTable: value = pixelTable[ key ] if value != None: pathIndexTable[ value ] = None return True return False def getNonIntersectingGridPointLine( gridPointInsetX, isJunctionWide, paths, pixelTable, yIntersectionPath, width ): "Get the points around the grid point that is junction wide that do not intersect." pointIndexPlusOne = yIntersectionPath.getPointIndexPlusOne() path = yIntersectionPath.getPath( paths ) begin = path[ yIntersectionPath.pointIndex ] end = path[ pointIndexPlusOne ] plusMinusSign = getPlusMinusSign( end.real - begin.real ) if isJunctionWide: gridPointXFirst = complex( yIntersectionPath.gridPoint.real - plusMinusSign * gridPointInsetX, yIntersectionPath.gridPoint.imag ) gridPointXSecond = complex( yIntersectionPath.gridPoint.real + plusMinusSign * gridPointInsetX, yIntersectionPath.gridPoint.imag ) if isAddedPointOnPathFree( path, pixelTable, gridPointXSecond, pointIndexPlusOne, width ): if isAddedPointOnPathFree( path, pixelTable, gridPointXFirst, pointIndexPlusOne, width ): return [ gridPointXSecond, gridPointXFirst ] if isAddedPointOnPathFree( path, pixelTable, yIntersectionPath.gridPoint, pointIndexPlusOne, width ): return [ gridPointXSecond, yIntersectionPath.gridPoint ] return [ gridPointXSecond ] if isAddedPointOnPathFree( path, pixelTable, yIntersectionPath.gridPoint, pointIndexPlusOne, width ): return [ yIntersectionPath.gridPoint ] return [] def getPlusMinusSign( number ): "Get one if the number is zero or positive else negative one." if number >= 0.0: return 1.0 return - 1.0 def getNewRepository(): "Get the repository constructor." return FillRepository() def getWithLeastLength( path, point ): "Insert a point into a path, at the index at which the path would be shortest." if len( path ) < 1: return 0 shortestPointIndex = None shortestAdditionalLength = 999999999999999999.0 for pointIndex in xrange( len( path ) + 1 ): additionalLength = getAdditionalLength( path, point, pointIndex ) if additionalLength < shortestAdditionalLength: shortestAdditionalLength = additionalLength shortestPointIndex = pointIndex return shortestPointIndex def getYIntersection( firstPoint, secondPoint, x ): "Get where the line crosses x." secondMinusFirst = secondPoint - firstPoint xMinusFirst = x - firstPoint.real return xMinusFirst / secondMinusFirst.real * secondMinusFirst.imag + firstPoint.imag def getYIntersectionIfExists( complexFirst, complexSecond, x ): "Get the y intersection if it exists." isXAboveFirst = x > complexFirst.real isXAboveSecond = x > complexSecond.real if isXAboveFirst == isXAboveSecond: return None return getYIntersection( complexFirst, complexSecond, x ) def getYIntersectionInsideYSegment( segmentFirstY, segmentSecondY, complexFirst, complexSecond, x ): "Get the y intersection inside the y segment if it does, else none." isXAboveFirst = x > complexFirst.real isXAboveSecond = x > complexSecond.real if isXAboveFirst == isXAboveSecond: return None yIntersection = getYIntersection( complexFirst, complexSecond, x ) if yIntersection <= min( segmentFirstY, segmentSecondY ): return None if yIntersection < max( segmentFirstY, segmentSecondY ): return yIntersection return None def insertGridPointPair( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, paths, pixelTable, yIntersectionPath, width ): "Insert a pair of points around the grid point is is junction wide, otherwise inset one point." linePath = getNonIntersectingGridPointLine( gridPointInsetX, isJunctionWide, paths, pixelTable, yIntersectionPath, width ) insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, linePath, paths, pixelTable, yIntersectionPath, width ) def insertGridPointPairs( gridPoint, gridPointInsetX, gridPoints, intersectionPathFirst, intersectionPathSecond, isBothOrNone, isJunctionWide, paths, pixelTable, width ): "Insert a pair of points around a pair of grid points." gridPointLineFirst = getNonIntersectingGridPointLine( gridPointInsetX, isJunctionWide, paths, pixelTable, intersectionPathFirst, width ) if len( gridPointLineFirst ) < 1: if isBothOrNone: return intersectionPathSecond.gridPoint = gridPoint insertGridPointPair( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, paths, pixelTable, intersectionPathSecond, width ) return gridPointLineSecond = getNonIntersectingGridPointLine( gridPointInsetX, isJunctionWide, paths, pixelTable, intersectionPathSecond, width ) if len( gridPointLineSecond ) > 0: insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, gridPointLineFirst, paths, pixelTable, intersectionPathFirst, width ) insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, gridPointLineSecond, paths, pixelTable, intersectionPathSecond, width ) return if isBothOrNone: return originalGridPointFirst = intersectionPathFirst.gridPoint intersectionPathFirst.gridPoint = gridPoint gridPointLineFirstCenter = getNonIntersectingGridPointLine( gridPointInsetX, isJunctionWide, paths, pixelTable, intersectionPathFirst, width ) if len( gridPointLineFirstCenter ) > 0: insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, gridPointLineFirstCenter, paths, pixelTable, intersectionPathFirst, width ) return intersectionPathFirst.gridPoint = originalGridPointFirst insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, gridPointLineFirst, paths, pixelTable, intersectionPathFirst, width ) def insertGridPointPairWithLinePath( gridPoint, gridPointInsetX, gridPoints, isJunctionWide, linePath, paths, pixelTable, yIntersectionPath, width ): "Insert a pair of points around the grid point is is junction wide, otherwise inset one point." if len( linePath ) < 1: return if gridPoint in gridPoints: gridPoints.remove( gridPoint ) intersectionBeginPoint = None moreThanInset = 2.1 * gridPointInsetX path = yIntersectionPath.getPath( paths ) begin = path[ yIntersectionPath.pointIndex ] end = path[ yIntersectionPath.getPointIndexPlusOne() ] if yIntersectionPath.isOutside: distanceX = end.real - begin.real if abs( distanceX ) > 2.1 * moreThanInset: intersectionBeginXDistance = yIntersectionPath.gridPoint.real - begin.real endIntersectionXDistance = end.real - yIntersectionPath.gridPoint.real intersectionPoint = begin * endIntersectionXDistance / distanceX + end * intersectionBeginXDistance / distanceX distanceYAbsoluteInset = max( abs( yIntersectionPath.gridPoint.imag - intersectionPoint.imag ), moreThanInset ) intersectionEndSegment = end - intersectionPoint intersectionEndSegmentLength = abs( intersectionEndSegment ) if intersectionEndSegmentLength > 1.1 * distanceYAbsoluteInset: intersectionEndPoint = intersectionPoint + intersectionEndSegment * distanceYAbsoluteInset / intersectionEndSegmentLength path.insert( yIntersectionPath.getPointIndexPlusOne(), intersectionEndPoint ) intersectionBeginSegment = begin - intersectionPoint intersectionBeginSegmentLength = abs( intersectionBeginSegment ) if intersectionBeginSegmentLength > 1.1 * distanceYAbsoluteInset: intersectionBeginPoint = intersectionPoint + intersectionBeginSegment * distanceYAbsoluteInset / intersectionBeginSegmentLength for point in linePath: addPointOnPath( path, yIntersectionPath.pathIndex, pixelTable, point, yIntersectionPath.getPointIndexPlusOne(), width ) if intersectionBeginPoint != None: addPointOnPath( path, yIntersectionPath.pathIndex, pixelTable, intersectionBeginPoint, yIntersectionPath.getPointIndexPlusOne(), width ) def isAddedPointOnPathFree( path, pixelTable, point, pointIndex, width ): "Determine if the point added to a path is intersecting the pixel table or the path." if pointIndex > 0 and pointIndex < len( path ): if isSharpCorner( ( path[ pointIndex - 1 ] ), point, ( path[ pointIndex ] ) ): return False pointIndexMinusOne = pointIndex - 1 if pointIndexMinusOne >= 0: maskTable = {} begin = path[ pointIndexMinusOne ] if pointIndex < len( path ): end = path[ pointIndex ] euclidean.addValueSegmentToPixelTable( begin, end, maskTable, None, width ) segmentTable = {} euclidean.addSegmentToPixelTable( point, begin, segmentTable, 0.0, 2.0, width ) if euclidean.isPixelTableIntersecting( pixelTable, segmentTable, maskTable ): return False if isAddedPointOnPathIntersectingPath( begin, path, point, pointIndexMinusOne ): return False if pointIndex < len( path ): maskTable = {} begin = path[ pointIndex ] if pointIndexMinusOne >= 0: end = path[ pointIndexMinusOne ] euclidean.addValueSegmentToPixelTable( begin, end, maskTable, None, width ) segmentTable = {} euclidean.addSegmentToPixelTable( point, begin, segmentTable, 0.0, 2.0, width ) if euclidean.isPixelTableIntersecting( pixelTable, segmentTable, maskTable ): return False if isAddedPointOnPathIntersectingPath( begin, path, point, pointIndex ): return False return True def isAddedPointOnPathIntersectingPath( begin, path, point, pointIndex ): "Determine if the point added to a path is intersecting the path by checking line intersection." segment = point - begin segmentLength = abs( segment ) if segmentLength <= 0.0: return False normalizedSegment = segment / segmentLength segmentYMirror = complex( normalizedSegment.real, - normalizedSegment.imag ) pointRotated = segmentYMirror * point beginRotated = segmentYMirror * begin if euclidean.isXSegmentIntersectingPath( path[ max( 0, pointIndex - 20 ) : pointIndex ], pointRotated.real, beginRotated.real, segmentYMirror, pointRotated.imag ): return True return euclidean.isXSegmentIntersectingPath( path[ pointIndex + 1 : pointIndex + 21 ], pointRotated.real, beginRotated.real, segmentYMirror, pointRotated.imag ) def isIntersectingLoopsPaths( loops, paths, pointBegin, pointEnd ): "Determine if the segment between the first and second point is intersecting the loop list." normalizedSegment = pointEnd.dropAxis( 2 ) - pointBegin.dropAxis( 2 ) normalizedSegmentLength = abs( normalizedSegment ) if normalizedSegmentLength == 0.0: return False normalizedSegment /= normalizedSegmentLength segmentYMirror = complex( normalizedSegment.real, - normalizedSegment.imag ) pointBeginRotated = euclidean.getRoundZAxisByPlaneAngle( segmentYMirror, pointBegin ) pointEndRotated = euclidean.getRoundZAxisByPlaneAngle( segmentYMirror, pointEnd ) if euclidean.isLoopListIntersectingInsideXSegment( loops, pointBeginRotated.real, pointEndRotated.real, segmentYMirror, pointBeginRotated.imag ): return True return euclidean.isXSegmentIntersectingPaths( paths, pointBeginRotated.real, pointEndRotated.real, segmentYMirror, pointBeginRotated.imag ) def isPathAlwaysInsideLoop( loop, path ): "Determine if all points of a path are inside another loop." for point in path: if euclidean.getNumberOfIntersectionsToLeft( loop, point ) % 2 == 0: return False return True def isPathAlwaysOutsideLoops( loops, path ): "Determine if all points in a path are outside another loop in a list." for loop in loops: for point in path: if euclidean.getNumberOfIntersectionsToLeft( loop, point ) % 2 == 1: return False return True #def isPerimeterPathInSurroundLoops( surroundingLoops ): # "Determine if there is a perimeter path in the surrounding loops." # for surroundingLoop in surroundingLoops: # if len( surroundingLoop.perimeterPaths ) > 0: # return True # return False def isPointAddedAroundClosest( aroundPixelTable, layerExtrusionWidth, paths, removedEndpointPoint, width ): "Add the closest removed endpoint to the path, with minimal twisting." closestDistanceSquared = 999999999999999999.0 closestPathIndex = None for pathIndex in xrange( len( paths ) ): path = paths[ pathIndex ] for pointIndex in xrange( len( path ) ): point = path[ pointIndex ] distanceSquared = abs( point - removedEndpointPoint ) if distanceSquared < closestDistanceSquared: closestDistanceSquared = distanceSquared closestPathIndex = pathIndex if closestPathIndex == None: return if closestDistanceSquared < 0.8 * layerExtrusionWidth * layerExtrusionWidth: return closestPath = paths[ closestPathIndex ] closestPointIndex = getWithLeastLength( closestPath, removedEndpointPoint ) if isAddedPointOnPathFree( closestPath, aroundPixelTable, removedEndpointPoint, closestPointIndex, width ): addPointOnPath( closestPath, closestPathIndex, aroundPixelTable, removedEndpointPoint, closestPointIndex, width ) return True return isSidePointAdded( aroundPixelTable, closestPath, closestPathIndex, closestPointIndex, layerExtrusionWidth, removedEndpointPoint, width ) def isSegmentAround( aroundSegments, segment ): "Determine if there is another segment around." for aroundSegment in aroundSegments: endpoint = aroundSegment[ 0 ] if isSegmentInX( segment, endpoint.point.real, endpoint.otherEndpoint.point.real ): return True return False def isSegmentCompletelyInAnIntersection( segment, xIntersections ): "Add sparse endpoints from a segment." for xIntersectionIndex in xrange( 0, len( xIntersections ), 2 ): surroundingXFirst = xIntersections[ xIntersectionIndex ] surroundingXSecond = xIntersections[ xIntersectionIndex + 1 ] if euclidean.isSegmentCompletelyInX( segment, surroundingXFirst, surroundingXSecond ): return True return False def isSegmentInX( segment, xFirst, xSecond ): "Determine if the segment overlaps within x." segmentFirstX = segment[ 0 ].point.real segmentSecondX = segment[ 1 ].point.real if min( segmentFirstX, segmentSecondX ) > max( xFirst, xSecond ): return False return max( segmentFirstX, segmentSecondX ) > min( xFirst, xSecond ) def isSharpCorner( beginComplex, centerComplex, endComplex ): "Determine if the three complex points form a sharp corner." centerBeginComplex = beginComplex - centerComplex centerEndComplex = endComplex - centerComplex centerBeginLength = abs( centerBeginComplex ) centerEndLength = abs( centerEndComplex ) if centerBeginLength <= 0.0 or centerEndLength <= 0.0: return False centerBeginComplex /= centerBeginLength centerEndComplex /= centerEndLength return euclidean.getDotProduct( centerBeginComplex, centerEndComplex ) > 0.9 def isSidePointAdded( aroundPixelTable, closestPath, closestPathIndex, closestPointIndex, layerExtrusionWidth, removedEndpointPoint, width ): "Add side point along with the closest removed endpoint to the path, with minimal twisting." if closestPointIndex <= 0 or closestPointIndex >= len( closestPath ): return False pointBegin = closestPath[ closestPointIndex - 1 ] pointEnd = closestPath[ closestPointIndex ] removedEndpointPoint = removedEndpointPoint closest = pointBegin farthest = pointEnd removedMinusClosest = removedEndpointPoint - pointBegin removedMinusClosestLength = abs( removedMinusClosest ) if removedMinusClosestLength <= 0.0: return False removedMinusOther = removedEndpointPoint - pointEnd removedMinusOtherLength = abs( removedMinusOther ) if removedMinusOtherLength <= 0.0: return False insertPointAfter = None insertPointBefore = None if removedMinusOtherLength < removedMinusClosestLength: closest = pointEnd farthest = pointBegin removedMinusClosest = removedMinusOther removedMinusClosestLength = removedMinusOtherLength insertPointBefore = removedEndpointPoint else: insertPointAfter = removedEndpointPoint removedMinusClosestNormalized = removedMinusClosest / removedMinusClosestLength perpendicular = removedMinusClosestNormalized * complex( 0.0, layerExtrusionWidth ) sidePoint = removedEndpointPoint + perpendicular #extra check in case the line to the side point somehow slips by the line to the perpendicular sidePointOther = removedEndpointPoint - perpendicular if abs( sidePoint - farthest ) > abs( sidePointOther - farthest ): perpendicular = - perpendicular sidePoint = sidePointOther maskTable = {} closestSegmentTable = {} toPerpendicularTable = {} euclidean.addValueSegmentToPixelTable( pointBegin, pointEnd, maskTable, None, width ) euclidean.addValueSegmentToPixelTable( closest, removedEndpointPoint, closestSegmentTable, None, width ) euclidean.addValueSegmentToPixelTable( sidePoint, farthest, toPerpendicularTable, None, width ) if euclidean.isPixelTableIntersecting( aroundPixelTable, toPerpendicularTable, maskTable ) or euclidean.isPixelTableIntersecting( closestSegmentTable, toPerpendicularTable, maskTable ): sidePoint = removedEndpointPoint - perpendicular toPerpendicularTable = {} euclidean.addValueSegmentToPixelTable( sidePoint, farthest, toPerpendicularTable, None, width ) if euclidean.isPixelTableIntersecting( aroundPixelTable, toPerpendicularTable, maskTable ) or euclidean.isPixelTableIntersecting( closestSegmentTable, toPerpendicularTable, maskTable ): return False if insertPointBefore != None: addPointOnPathIfFree( closestPath, closestPathIndex, aroundPixelTable, insertPointBefore, closestPointIndex, width ) addPointOnPathIfFree( closestPath, closestPathIndex, aroundPixelTable, sidePoint, closestPointIndex, width ) if insertPointAfter != None: addPointOnPathIfFree( closestPath, closestPathIndex, aroundPixelTable, insertPointAfter, closestPointIndex, width ) return True def removeEndpoints( aroundPixelTable, layerExtrusionWidth, paths, removedEndpoints, aroundWidth ): "Remove endpoints which are added to the path." for removedEndpointIndex in xrange( len( removedEndpoints ) - 1, - 1, - 1 ): removedEndpoint = removedEndpoints[ removedEndpointIndex ] removedEndpointPoint = removedEndpoint.point if isPointAddedAroundClosest( aroundPixelTable, layerExtrusionWidth, paths, removedEndpointPoint, aroundWidth ): removedEndpoints.remove( removedEndpoint ) def setIsOutside( yCloseToCenterPath, yIntersectionPaths ): "Determine if the yCloseToCenterPath is outside." beforeClose = yCloseToCenterPath.yMinusCenter < 0.0 for yIntersectionPath in yIntersectionPaths: if yIntersectionPath != yCloseToCenterPath: beforePath = yIntersectionPath.yMinusCenter < 0.0 if beforeClose == beforePath: yCloseToCenterPath.isOutside = False return yCloseToCenterPath.isOutside = True def writeOutput( fileName = '' ): "Fill an inset gcode file." fileName = interpret.getFirstTranslatorFileNameUnmodified( fileName ) if fileName != '': consecution.writeChainTextWithNounMessage( fileName, 'fill' ) class FillRepository: "A class to handle the fill settings." def __init__( self ): "Set the default settings, execute title & settings fileName." profile.addListsToCraftTypeRepository( 'skeinforge_tools.craft_plugins.fill.html', self ) self.fileNameInput = settings.FileNameInput().getFromFileName( interpret.getGNUTranslatorGcodeFileTypeTuples(), 'Open File for Fill', self, '' ) self.openWikiManualHelpPage = settings.HelpPage().getOpenFromAbsolute( 'http://www.bitsfrombytes.com/wiki/index.php?title=Skeinforge_Fill' ) self.activateFill = settings.BooleanSetting().getFromValue( 'Activate Fill:', self, True ) settings.LabelDisplay().getFromName( '- Diaphragm -', self ) self.diaphragmPeriod = settings.IntSpin().getFromValue( 20, 'Diaphragm Period (layers):', self, 200, 100 ) self.diaphragmThickness = settings.IntSpin().getFromValue( 0, 'Diaphragm Thickness (layers):', self, 5, 0 ) settings.LabelDisplay().getFromName( '- Extra Shells -', self ) self.extraShellsAlternatingSolidLayer = settings.IntSpin().getFromValue( 0, 'Extra Shells on Alternating Solid Layer (layers):', self, 3, 2 ) self.extraShellsBase = settings.IntSpin().getFromValue( 0, 'Extra Shells on Base (layers):', self, 3, 1 ) self.extraShellsSparseLayer = settings.IntSpin().getFromValue( 0, 'Extra Shells on Sparse Layer (layers):', self, 3, 1 ) settings.LabelDisplay().getFromName( '- Grid -', self ) self.gridExtraOverlap = settings.FloatSpin().getFromValue( 0.0, 'Grid Extra Overlap (ratio):', self, 0.5, 0.1 ) self.gridJunctionSeparationBandHeight = settings.IntSpin().getFromValue( 0, 'Grid Junction Separation Band Height (layers):', self, 20, 10 ) self.gridJunctionSeparationOverOctogonRadiusAtEnd = settings.FloatSpin().getFromValue( 0.0, 'Grid Junction Separation over Octogon Radius At End (ratio):', self, 0.8, 0.0 ) self.gridJunctionSeparationOverOctogonRadiusAtMiddle = settings.FloatSpin().getFromValue( 0.0, 'Grid Junction Separation over Octogon Radius At Middle (ratio):', self, 0.8, 0.0 ) settings.LabelDisplay().getFromName( '- Infill -', self ) self.infillBeginRotation = settings.FloatSpin().getFromValue( 0.0, 'Infill Begin Rotation (degrees):', self, 90.0, 45.0 ) self.infillBeginRotationRepeat = settings.IntSpin().getFromValue( 0, 'Infill Begin Rotation Repeat (layers):', self, 3, 1 ) self.infillInteriorDensityOverExteriorDensity = settings.FloatSpin().getFromValue( 0.8, 'Infill Interior Density over Exterior Density (ratio):', self, 1.0, 0.9 ) self.infillOddLayerExtraRotation = settings.FloatSpin().getFromValue( 30.0, 'Infill Odd Layer Extra Rotation (degrees):', self, 90.0, 90.0 ) self.infillPatternLabel = settings.LabelDisplay().getFromName( 'Infill Pattern:', self ) infillLatentStringVar = settings.LatentStringVar() self.infillPatternGridHexagonal = settings.Radio().getFromRadio( infillLatentStringVar, 'Grid Hexagonal', self, False ) self.infillPatternGridRectangular = settings.Radio().getFromRadio( infillLatentStringVar, 'Grid Rectangular', self, False ) self.infillPatternLine = settings.Radio().getFromRadio( infillLatentStringVar, 'Line', self, True ) self.infillPerimeterOverlap = settings.FloatSpin().getFromValue( 0.0, 'Infill Perimeter Overlap (ratio):', self, 0.4, 0.15 ) self.infillSolidity = settings.FloatSpin().getFromValue( 0.04, 'Infill Solidity (ratio):', self, 0.3, 0.2 ) self.infillWidthOverThickness = settings.FloatSpin().getFromValue( 1.3, 'Infill Width over Thickness (ratio):', self, 1.7, 1.5 ) self.solidSurfaceThickness = settings.IntSpin().getFromValue( 0, 'Solid Surface Thickness (layers):', self, 5, 3 ) self.threadSequenceChoice = settings.MenuButtonDisplay().getFromName( 'Thread Sequence Choice:', self ) self.threadSequenceInfillLoops = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Infill > Loops > Perimeter', self, False ) self.threadSequenceInfillPerimeter = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Infill > Perimeter > Loops', self, False ) self.threadSequenceLoopsInfill = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Loops > Infill > Perimeter', self, False ) self.threadSequenceLoopsPerimeter = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Loops > Perimeter > Infill', self, True ) self.threadSequencePerimeterInfill = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Perimeter > Infill > Loops', self, False ) self.threadSequencePerimeterLoops = settings.MenuRadio().getFromMenuButtonDisplay( self.threadSequenceChoice, 'Perimeter > Loops > Infill', self, False ) self.executeTitle = 'Fill' def execute( self ): "Fill button has been clicked." fileNames = polyfile.getFileOrDirectoryTypesUnmodifiedGcode( self.fileNameInput.value, interpret.getImportPluginFileNames(), self.fileNameInput.wasCancelled ) for fileName in fileNames: writeOutput( fileName ) class FillSkein: "A class to fill a skein of extrusions." def __init__( self ): self.bridgeWidthMultiplier = 1.0 self.distanceFeedRate = gcodec.DistanceFeedRate() self.extruderActive = False self.fillInset = 0.18 self.isPerimeter = False self.lastExtraShells = - 1 self.lineIndex = 0 self.oldLocation = None self.oldOrderedLocation = Vector3() self.rotatedLayer = None self.rotatedLayers = [] self.shutdownLineIndex = sys.maxint self.surroundingLoop = None self.thread = None def addFill( self, layerIndex ): "Add fill to the carve layer." alreadyFilledArounds = [] aroundPixelTable = {} arounds = [] betweenWidth = self.betweenWidth self.layerExtrusionWidth = self.infillWidth layerFillInset = self.fillInset rotatedLayer = self.rotatedLayers[ layerIndex ] # if layerIndex > 2: # return # print( 'layer index: %s z: %s' % ( layerIndex, rotatedLayer.z ) ) self.distanceFeedRate.addLine( '( %s )' % rotatedLayer.z ) layerRotationAroundZAngle = self.getLayerRoundZ( layerIndex ) reverseZRotationAngle = complex( layerRotationAroundZAngle.real, - layerRotationAroundZAngle.imag ) surroundingCarves = [] layerRemainder = layerIndex % int( round( self.fillRepository.diaphragmPeriod.value ) ) if layerRemainder >= int( round( self.fillRepository.diaphragmThickness.value ) ) and rotatedLayer.rotation == None: for surroundingIndex in xrange( 1, self.solidSurfaceThickness + 1 ): self.addRotatedCarve( layerIndex - surroundingIndex, reverseZRotationAngle, surroundingCarves ) self.addRotatedCarve( layerIndex + surroundingIndex, reverseZRotationAngle, surroundingCarves ) extraShells = self.fillRepository.extraShellsSparseLayer.value if len( surroundingCarves ) < self.doubleSolidSurfaceThickness: extraShells = self.fillRepository.extraShellsAlternatingSolidLayer.value if self.lastExtraShells != self.fillRepository.extraShellsBase.value: extraShells = self.fillRepository.extraShellsBase.value if rotatedLayer.rotation != None: extraShells = 0 betweenWidth *= self.bridgeWidthMultiplier self.layerExtrusionWidth = self.infillWidth * self.bridgeWidthMultiplier layerFillInset = self.fillInset * self.bridgeWidthMultiplier self.distanceFeedRate.addLine( '( %s )' % rotatedLayer.rotation ) aroundInset = 0.25 * self.layerExtrusionWidth aroundWidth = 0.25 * self.layerExtrusionWidth self.lastExtraShells = extraShells gridPointInsetX = 0.5 * layerFillInset doubleExtrusionWidth = 2.0 * self.layerExtrusionWidth endpoints = [] infillPaths = [] layerInfillSolidity = self.infillSolidity self.isDoubleJunction = True self.isJunctionWide = True if self.fillRepository.infillPatternGridHexagonal.value: if abs( euclidean.getDotProduct( layerRotationAroundZAngle, euclidean.getUnitPolar( self.infillBeginRotation ) ) ) < math.sqrt( 0.5 ): layerInfillSolidity *= 0.5 self.isDoubleJunction = False else: self.isJunctionWide = False rotatedExtruderLoops = [] # for surroundingLoop in rotatedLayer.surroundingLoops: # surroundingLoop.fillBoundaries = intercircle.getInsetLoopsFromLoop( betweenWidth, surroundingLoop.boundary ) # surroundingLoop.lastExistingFillLoops = surroundingLoop.fillBoundaries surroundingLoops = euclidean.getOrderedSurroundingLoops( self.layerExtrusionWidth, rotatedLayer.surroundingLoops ) # if isPerimeterPathInSurroundLoops( surroundingLoops ): # extraShells = 0 createFillForSurroundings( betweenWidth, False, surroundingLoops ) for extraShellIndex in xrange( extraShells ): createFillForSurroundings( self.layerExtrusionWidth, True, surroundingLoops ) fillLoops = euclidean.getFillOfSurroundings( surroundingLoops ) slightlyGreaterThanFill = 1.01 * layerFillInset for loop in fillLoops: alreadyFilledLoop = [] alreadyFilledArounds.append( alreadyFilledLoop ) planeRotatedPerimeter = euclidean.getPointsRoundZAxis( reverseZRotationAngle, loop ) rotatedExtruderLoops.append( planeRotatedPerimeter ) centers = intercircle.getCentersFromLoop( planeRotatedPerimeter, slightlyGreaterThanFill ) euclidean.addLoopToPixelTable( planeRotatedPerimeter, aroundPixelTable, aroundWidth ) for center in centers: alreadyFilledInset = intercircle.getSimplifiedInsetFromClockwiseLoop( center, layerFillInset ) if intercircle.isLargeSameDirection( alreadyFilledInset, center, layerFillInset ): alreadyFilledLoop.append( alreadyFilledInset ) around = intercircle.getSimplifiedInsetFromClockwiseLoop( center, aroundInset ) if euclidean.isPathInsideLoop( planeRotatedPerimeter, around ) == euclidean.isWiddershins( planeRotatedPerimeter ): around.reverse() arounds.append( around ) euclidean.addLoopToPixelTable( around, aroundPixelTable, aroundWidth ) if len( arounds ) < 1: self.addThreadsBridgeLayer( rotatedLayer, surroundingLoops ) return back = euclidean.getBackOfLoops( arounds ) front = euclidean.getFrontOfLoops( arounds ) area = self.getCarveArea( layerIndex ) if area > 0.0 and len( surroundingCarves ) >= self.doubleSolidSurfaceThickness: areaChange = 0.0 for surroundingIndex in xrange( 1, self.solidSurfaceThickness + 1 ): areaChange = max( areaChange, self.getAreaChange( area, layerIndex - surroundingIndex ) ) areaChange = max( areaChange, self.getAreaChange( area, layerIndex + surroundingIndex ) ) if areaChange < 0.5 or self.solidSurfaceThickness == 0: if self.fillRepository.infillInteriorDensityOverExteriorDensity.value <= 0.0: self.addThreadsBridgeLayer( rotatedLayer, surroundingLoops ) self.layerExtrusionWidth /= self.fillRepository.infillInteriorDensityOverExteriorDensity.value front = math.ceil( front / self.layerExtrusionWidth ) * self.layerExtrusionWidth fillWidth = back - front numberOfLines = int( math.ceil( fillWidth / self.layerExtrusionWidth ) ) self.frontOverWidth = 0.0 self.horizontalSegmentLists = euclidean.getHorizontalSegmentListsFromLoopLists( alreadyFilledArounds, front, numberOfLines, rotatedExtruderLoops, self.layerExtrusionWidth ) self.surroundingXIntersectionLists = [] self.yList = [] removedEndpoints = [] if len( surroundingCarves ) >= self.doubleSolidSurfaceThickness: xIntersectionIndexLists = [] self.frontOverWidth = euclidean.getFrontOverWidthAddXListYList( front, surroundingCarves, numberOfLines, xIntersectionIndexLists, self.layerExtrusionWidth, self.yList ) for fillLine in xrange( len( self.horizontalSegmentLists ) ): xIntersectionIndexList = xIntersectionIndexLists[ fillLine ] surroundingXIntersections = euclidean.getIntersectionOfXIntersectionIndexes( self.doubleSolidSurfaceThickness, xIntersectionIndexList ) self.surroundingXIntersectionLists.append( surroundingXIntersections ) addSparseEndpoints( doubleExtrusionWidth, endpoints, fillLine, self.horizontalSegmentLists, layerInfillSolidity, removedEndpoints, self.solidSurfaceThickness, surroundingXIntersections ) else: for fillLine in xrange( len( self.horizontalSegmentLists ) ): addSparseEndpoints( doubleExtrusionWidth, endpoints, fillLine, self.horizontalSegmentLists, layerInfillSolidity, removedEndpoints, self.solidSurfaceThickness, None ) if len( endpoints ) < 1: self.addThreadsBridgeLayer( rotatedLayer, surroundingLoops ) return paths = euclidean.getPathsFromEndpoints( endpoints, self.layerExtrusionWidth, aroundPixelTable, aroundWidth ) if self.isGridToBeExtruded(): self.addGrid( arounds, fillLoops, gridPointInsetX, layerIndex, paths, aroundPixelTable, reverseZRotationAngle, surroundingCarves, aroundWidth ) oldRemovedEndpointLength = len( removedEndpoints ) + 1 while oldRemovedEndpointLength - len( removedEndpoints ) > 0: oldRemovedEndpointLength = len( removedEndpoints ) removeEndpoints( aroundPixelTable, self.layerExtrusionWidth, paths, removedEndpoints, aroundWidth ) paths = euclidean.getConnectedPaths( paths, aroundPixelTable, aroundWidth ) for path in paths: addPath( self.layerExtrusionWidth, infillPaths, path, layerRotationAroundZAngle ) euclidean.transferPathsToSurroundingLoops( infillPaths, surroundingLoops ) self.addThreadsBridgeLayer( rotatedLayer, surroundingLoops ) def addGcodeFromThreadZ( self, thread, z ): "Add a gcode thread to the output." self.distanceFeedRate.addGcodeFromThreadZ( thread, z ) def addGrid( self, arounds, fillLoops, gridPointInsetX, layerIndex, paths, pixelTable, reverseZRotationAngle, surroundingCarves, width ): "Add the grid to the infill layer." if len( surroundingCarves ) < self.doubleSolidSurfaceThickness: return explodedPaths = [] pathGroups = [] for path in paths: pathIndexBegin = len( explodedPaths ) for pointIndex in xrange( len( path ) - 1 ): pathSegment = [ path[ pointIndex ], path[ pointIndex + 1 ] ] explodedPaths.append( pathSegment ) pathGroups.append( ( pathIndexBegin, len( explodedPaths ) ) ) for pathIndex in xrange( len( explodedPaths ) ): explodedPath = explodedPaths[ pathIndex ] euclidean.addPathToPixelTable( explodedPath, pixelTable, pathIndex, width ) gridPoints = self.getGridPoints( fillLoops, reverseZRotationAngle ) gridPointInsetY = gridPointInsetX * ( 1.0 - self.fillRepository.gridExtraOverlap.value ) if self.fillRepository.infillPatternGridRectangular.value: gridBandHeight = self.fillRepository.gridJunctionSeparationBandHeight.value gridLayerRemainder = ( layerIndex - self.solidSurfaceThickness ) % gridBandHeight halfBandHeight = 0.5 * float( gridBandHeight ) halfBandHeightFloor = math.floor( halfBandHeight ) fromMiddle = math.floor( abs( gridLayerRemainder - halfBandHeight ) ) fromEnd = halfBandHeightFloor - fromMiddle gridJunctionSeparation = self.gridJunctionSeparationAtEnd * fromMiddle + self.gridJunctionSeparationAtMiddle * fromEnd gridJunctionSeparation /= halfBandHeightFloor gridPointInsetX += gridJunctionSeparation gridPointInsetY += gridJunctionSeparation oldGridPointLength = len( gridPoints ) + 1 while oldGridPointLength - len( gridPoints ) > 0: oldGridPointLength = len( gridPoints ) self.addRemainingGridPoints( arounds, gridPointInsetX, gridPointInsetY, gridPoints, True, explodedPaths, pixelTable, width ) oldGridPointLength = len( gridPoints ) + 1 while oldGridPointLength - len( gridPoints ) > 0: oldGridPointLength = len( gridPoints ) self.addRemainingGridPoints( arounds, gridPointInsetX, gridPointInsetY, gridPoints, False, explodedPaths, pixelTable, width ) for pathGroupIndex in xrange( len( pathGroups ) ): pathGroup = pathGroups[ pathGroupIndex ] paths[ pathGroupIndex ] = [] for explodedPathIndex in xrange( pathGroup[ 0 ], pathGroup[ 1 ] ): explodedPath = explodedPaths[ explodedPathIndex ] if len( paths[ pathGroupIndex ] ) == 0: paths[ pathGroupIndex ] = explodedPath else: paths[ pathGroupIndex ] += explodedPath[ 1 : ] def addGridLinePoints( self, begin, end, gridPoints, gridRotationAngle, offset, y ): "Add the segments of one line of a grid to the infill." if self.gridRadius == 0.0: return gridWidth = self.gridWidthMultiplier * self.gridRadius gridXStep = int( math.floor( ( begin ) / gridWidth ) ) - 3 gridXOffset = offset + gridWidth * float( gridXStep ) while gridXOffset < begin: gridXStep = self.getNextGripXStep( gridXStep ) gridXOffset = offset + gridWidth * float( gridXStep ) while gridXOffset < end: gridPointComplex = complex( gridXOffset, y ) * gridRotationAngle if self.isPointInsideLineSegments( gridPointComplex ): gridPoints.append( gridPointComplex ) gridXStep = self.getNextGripXStep( gridXStep ) gridXOffset = offset + gridWidth * float( gridXStep ) def addRemainingGridPoints( self, arounds, gridPointInsetX, gridPointInsetY, gridPoints, isBothOrNone, paths, pixelTable, width ): "Add the remaining grid points to the grid point list." for gridPointIndex in xrange( len( gridPoints ) - 1, - 1, - 1 ): gridPoint = gridPoints[ gridPointIndex ] addAroundGridPoint( arounds, gridPoint, gridPointInsetX, gridPointInsetY, gridPoints, self.gridRadius, isBothOrNone, self.isDoubleJunction, self.isJunctionWide, paths, pixelTable, width ) def addRotatedCarve( self, layerIndex, reverseZRotationAngle, surroundingCarves ): "Add a rotated carve to the surrounding carves." if layerIndex < 0 or layerIndex >= len( self.rotatedLayers ): return surroundingLoops = self.rotatedLayers[ layerIndex ].surroundingLoops rotatedCarve = [] for surroundingLoop in surroundingLoops: planeRotatedLoop = euclidean.getPointsRoundZAxis( reverseZRotationAngle, surroundingLoop.boundary ) rotatedCarve.append( planeRotatedLoop ) surroundingCarves.append( rotatedCarve ) def addThreadsBridgeLayer( self, rotatedLayer, surroundingLoops ): "Add the threads, add the bridge end & the layer end tag." euclidean.addToThreadsRemoveFromSurroundings( self.oldOrderedLocation, surroundingLoops, self ) if rotatedLayer.rotation != None: self.distanceFeedRate.addLine( '()' ) self.distanceFeedRate.addLine( '()' ) def addToThread( self, location ): "Add a location to thread." if self.oldLocation == None: return if self.isPerimeter: self.surroundingLoop.addToLoop( location ) return elif self.thread == None: self.thread = [ self.oldLocation.dropAxis( 2 ) ] self.surroundingLoop.perimeterPaths.append( self.thread ) self.thread.append( location.dropAxis( 2 ) ) def getAreaChange( self, area, layerIndex ): "Get the difference between the area of the carve at the layer index and the given area." layerArea = self.getCarveArea( layerIndex ) return 1.0 - min( area, layerArea ) / max( area, layerArea ) def getCraftedGcode( self, fillRepository, gcodeText ): "Parse gcode text and store the bevel gcode." self.fillRepository = fillRepository self.lines = gcodec.getTextLines( gcodeText ) self.threadSequence = None if fillRepository.threadSequenceInfillLoops.value: self.threadSequence = [ 'infill', 'loops', 'perimeter' ] if fillRepository.threadSequenceInfillPerimeter.value: self.threadSequence = [ 'infill', 'perimeter', 'loops' ] if fillRepository.threadSequenceLoopsInfill.value: self.threadSequence = [ 'loops', 'infill', 'perimeter' ] if fillRepository.threadSequenceLoopsPerimeter.value: self.threadSequence = [ 'loops', 'perimeter', 'infill' ] if fillRepository.threadSequencePerimeterInfill.value: self.threadSequence = [ 'perimeter', 'infill', 'loops' ] if fillRepository.threadSequencePerimeterLoops.value: self.threadSequence = [ 'perimeter', 'loops', 'infill' ] if self.fillRepository.infillPerimeterOverlap.value > 0.7: print( '' ) print( '!!! WARNING !!!' ) print( '"Infill Perimeter Overlap" is greater than 0.7, which may create problems with the infill, like threads going through empty space.' ) print( 'If you want to stretch the infill a lot, set "Path Stretch over Perimeter Width" in stretch to a high value instead of setting "Infill Perimeter Overlap" to a high value.' ) print( '' ) self.parseInitialization() self.betweenWidth = self.perimeterWidth - 0.5 * self.infillWidth self.fillInset = self.infillWidth - self.infillWidth * self.fillRepository.infillPerimeterOverlap.value if self.fillRepository.infillInteriorDensityOverExteriorDensity.value > 0: self.interiorExtrusionWidth /= self.fillRepository.infillInteriorDensityOverExteriorDensity.value self.infillSolidity = fillRepository.infillSolidity.value if self.isGridToBeExtruded(): self.setGridVariables( fillRepository ) self.infillBeginRotation = math.radians( fillRepository.infillBeginRotation.value ) self.infillOddLayerExtraRotation = math.radians( fillRepository.infillOddLayerExtraRotation.value ) self.solidSurfaceThickness = int( round( self.fillRepository.solidSurfaceThickness.value ) ) self.doubleSolidSurfaceThickness = self.solidSurfaceThickness + self.solidSurfaceThickness for lineIndex in xrange( self.lineIndex, len( self.lines ) ): self.parseLine( lineIndex ) for layerIndex in xrange( len( self.rotatedLayers ) ): self.addFill( layerIndex ) self.distanceFeedRate.addLines( self.lines[ self.shutdownLineIndex : ] ) return self.distanceFeedRate.output.getvalue() def getGridPoints( self, fillLoops, reverseZRotationAngle ): "Get the grid pointsl." if self.infillSolidity > 0.8: return [] gridPoints = [] rotationBaseAngle = euclidean.getUnitPolar( self.infillBeginRotation ) reverseRotationBaseAngle = complex( rotationBaseAngle.real, - rotationBaseAngle.imag ) gridRotationAngle = reverseZRotationAngle * rotationBaseAngle gridAlreadyFilledArounds = [] gridRotatedExtruderLoops = [] back = - 999999999.0 front = - back gridInset = 1.2 * self.interiorExtrusionWidth slightlyGreaterThanFill = 1.01 * gridInset for loop in fillLoops: gridAlreadyFilledLoop = [] gridAlreadyFilledArounds.append( gridAlreadyFilledLoop ) planeRotatedPerimeter = euclidean.getPointsRoundZAxis( reverseRotationBaseAngle, loop ) gridRotatedExtruderLoops.append( planeRotatedPerimeter ) centers = intercircle.getCentersFromLoop( planeRotatedPerimeter, slightlyGreaterThanFill ) for center in centers: alreadyFilledInset = intercircle.getSimplifiedInsetFromClockwiseLoop( center, gridInset ) if euclidean.isWiddershins( alreadyFilledInset ) == euclidean.isWiddershins( center ): gridAlreadyFilledLoop.append( alreadyFilledInset ) if euclidean.isPathInsideLoop( planeRotatedPerimeter, alreadyFilledInset ) == euclidean.isWiddershins( planeRotatedPerimeter ): for point in alreadyFilledInset: back = max( back, point.imag ) front = min( front, point.imag ) front = ( 0.01 + math.ceil( front / self.gridRadius ) ) * self.gridRadius fillWidth = back - front numberOfLines = int( math.ceil( fillWidth / self.gridRadius ) ) gridSegmentLists = euclidean.getHorizontalSegmentListsFromLoopLists( gridAlreadyFilledArounds, front, numberOfLines, gridRotatedExtruderLoops, self.gridRadius ) shortenedSegmentLists = [] for fillLine in xrange( numberOfLines ): lineSegments = gridSegmentLists[ fillLine ] shortenedSegments = [] for lineSegment in lineSegments: addShortenedLineSegment( lineSegment, self.interiorExtrusionWidth, shortenedSegments ) shortenedSegmentLists.append( shortenedSegments ) for shortenedSegmentList in shortenedSegmentLists: for shortenedSegment in shortenedSegmentList: endpointFirst = shortenedSegment[ 0 ] endpointSecond = shortenedSegment[ 1 ] begin = min( endpointFirst.point.real, endpointSecond.point.real ) end = max( endpointFirst.point.real, endpointSecond.point.real ) y = endpointFirst.point.imag offset = self.offsetMultiplier * self.gridRadius * ( round( y / self.gridRadius ) % 2 ) self.addGridLinePoints( begin, end, gridPoints, gridRotationAngle, offset, y ) return gridPoints def getLayerRoundZ( self, layerIndex ): "Get the plane angle around z that the layer is rotated by." rotation = self.rotatedLayers[ layerIndex ].rotation if rotation != None: return rotation infillBeginRotationRepeat = self.fillRepository.infillBeginRotationRepeat.value infillOddLayerRotationMultiplier = float( layerIndex % ( infillBeginRotationRepeat + 1 ) == infillBeginRotationRepeat ) return euclidean.getUnitPolar( self.infillBeginRotation + infillOddLayerRotationMultiplier * self.infillOddLayerExtraRotation ) def getNextGripXStep( self, gridXStep ): "Get the next grid x step, increment by an extra one every three if hexagonal grid is chosen." gridXStep += 1 if self.fillRepository.infillPatternGridHexagonal.value: if gridXStep % 3 == 0: gridXStep += 1 return gridXStep def getCarveArea( self, layerIndex ): "Get the area of the carve." if layerIndex < 0 or layerIndex >= len( self.rotatedLayers ): return 0.0 surroundingLoops = self.rotatedLayers[ layerIndex ].surroundingLoops area = 0.0 for surroundingLoop in surroundingLoops: area += euclidean.getPolygonArea( surroundingLoop.boundary ) return area def isGridToBeExtruded( self ): "Determine if the grid is to be extruded." return ( not self.fillRepository.infillPatternLine.value ) and self.fillRepository.infillInteriorDensityOverExteriorDensity.value > 0 def isPointInsideLineSegments( self, gridPoint ): "Is the point inside the line segments of the loops." if self.solidSurfaceThickness <= 0: return True fillLine = int( round( gridPoint.imag / self.layerExtrusionWidth - self.frontOverWidth ) ) if fillLine >= len( self.horizontalSegmentLists ) or fillLine < 0: return False lineSegments = self.horizontalSegmentLists[ fillLine ] surroundingXIntersections = self.surroundingXIntersectionLists[ fillLine ] for lineSegment in lineSegments: if isSegmentCompletelyInAnIntersection( lineSegment, surroundingXIntersections ): xFirst = lineSegment[ 0 ].point.real xSecond = lineSegment[ 1 ].point.real if gridPoint.real > min( xFirst, xSecond ) and gridPoint.real < max( xFirst, xSecond ): return True return False def linearMove( self, splitLine ): "Add a linear move to the thread." location = gcodec.getLocationFromSplitLine( self.oldLocation, splitLine ) if self.extruderActive: self.addToThread( location ) self.oldLocation = location def parseInitialization( self ): "Parse gcode initialization and store the parameters." for self.lineIndex in xrange( len( self.lines ) ): line = self.lines[ self.lineIndex ] splitLine = gcodec.getSplitLineBeforeBracketSemicolon( line ) firstWord = gcodec.getFirstWord( splitLine ) self.distanceFeedRate.parseSplitLine( firstWord, splitLine ) if firstWord == '(': self.perimeterWidth = float( splitLine[ 1 ] ) threadSequenceString = ' '.join( self.threadSequence ) self.distanceFeedRate.addTagBracketedLine( 'threadSequenceString', threadSequenceString ) elif firstWord == '()': self.distanceFeedRate.addLine( '( fill )' ) elif firstWord == '()': self.distanceFeedRate.addLine( line ) return elif firstWord == '(': self.bridgeWidthMultiplier = float( splitLine[ 1 ] ) elif firstWord == '(': self.layerThickness = float( splitLine[ 1 ] ) self.infillWidth = self.fillRepository.infillWidthOverThickness.value * self.layerThickness self.interiorExtrusionWidth = self.infillWidth self.distanceFeedRate.addLine( line ) def parseLine( self, lineIndex ): "Parse a gcode line and add it to the fill skein." line = self.lines[ lineIndex ] splitLine = gcodec.getSplitLineBeforeBracketSemicolon( line ) if len( splitLine ) < 1: return firstWord = splitLine[ 0 ] if firstWord == 'G1': self.linearMove( splitLine ) elif firstWord == 'M101': self.extruderActive = True elif firstWord == 'M103': self.extruderActive = False self.thread = None self.isPerimeter = False elif firstWord == '()': self.surroundingLoop = euclidean.SurroundingLoop( self.threadSequence ) self.rotatedLayer.surroundingLoops.append( self.surroundingLoop ) elif firstWord == '()': self.surroundingLoop = None elif firstWord == '(': location = gcodec.getLocationFromSplitLine( None, splitLine ) self.surroundingLoop.addToBoundary( location ) elif firstWord == '(': secondWordWithoutBrackets = splitLine[ 1 ].replace( '(', '' ).replace( ')', '' ) self.rotatedLayer.rotation = complex( secondWordWithoutBrackets ) elif firstWord == '()': self.shutdownLineIndex = lineIndex elif firstWord == '(': self.rotatedLayer = RotatedLayer( float( splitLine[ 1 ] ) ) self.rotatedLayers.append( self.rotatedLayer ) self.thread = None elif firstWord == '(': self.isPerimeter = True def setGridVariables( self, fillRepository ): "Set the grid variables." self.gridRadius = self.interiorExtrusionWidth / self.infillSolidity self.gridWidthMultiplier = 2.0 self.offsetMultiplier = 1.0 if self.fillRepository.infillPatternGridHexagonal.value: self.gridWidthMultiplier = 2.0 / math.sqrt( 3.0 ) self.offsetMultiplier = 2.0 / math.sqrt( 3.0 ) * 1.5 if self.fillRepository.infillPatternGridRectangular.value: halfGridRadiusMinusInteriorExtrusionWidth = 0.5 * ( self.gridRadius - self.interiorExtrusionWidth ) self.gridJunctionSeparationAtEnd = halfGridRadiusMinusInteriorExtrusionWidth * fillRepository.gridJunctionSeparationOverOctogonRadiusAtEnd.value self.gridJunctionSeparationAtMiddle = halfGridRadiusMinusInteriorExtrusionWidth * fillRepository.gridJunctionSeparationOverOctogonRadiusAtMiddle.value class RotatedLayer: "A rotated layer." def __init__( self, z ): self.rotation = None self.surroundingLoops = [] self.z = z def __repr__( self ): "Get the string representation of this RotatedLayer." return '%s, %s, %s' % ( self.z, self.rotation, self.surroundingLoops ) class YIntersectionPath: "A class to hold the y intersection position, the loop which it intersected and the point index of the loop which it intersected." def __init__( self, pathIndex, pointIndex, y ): "Initialize from the path, point index, and y." self.pathIndex = pathIndex self.pointIndex = pointIndex self.y = y def __repr__( self ): "Get the string representation of this y intersection." return '%s, %s, %s' % ( self.pathIndex, self.pointIndex, self.y ) def getPath( self, paths ): "Get the path from the paths and path index." return paths[ self.pathIndex ] def getPointIndexPlusOne( self ): "Get the point index plus one." return self.pointIndex + 1 def main(): "Display the fill dialog." if len( sys.argv ) > 1: writeOutput( ' '.join( sys.argv[ 1 : ] ) ) else: settings.startMainLoopFromConstructor( getNewRepository() ) if __name__ == "__main__": main()